
Non-convex optimization in digital pre-distortion
of the signal?

Dmitry Pasechnyuk1[0000−0002−1208−1659], Alexander
Maslovskiy1[0000−0001−7388−6146], Alexander Gasnikov1,4,5[0000−0002−7386−039X],
Anton Anikin2[0000−0002−7681−2481], Alexander Rogozin1[0000−0003−3435−2680],

Alexander Gornov2[0000−0002−8340−5729], Andrey Vorobyev3, Eugeniy
Yanitskiy3, Lev Antonov3[0000−0002−2403−9503], Roman

Vlasov3[0000−0002−3798−8310], Anna Nikolaeva6[0000−0003−2980−2587], and Maria
Begicheva6[0000−0002−9824−0373]

1 Moscow Institute of Physics and Technology, Dolgoprudny, Russia
{pasechniuk.da,aleksandr.maslovskiy,aleksandr.rogozin}@phystech.edu

2 Matrosov Institute for System Dynamics and Control Theory, Irkutsk, Russia
{anikin,gornov}@icc.ru

3 Huawei Russian Research Institute, Moscow, Russia
{andrey.vorobyev,yanitskiy.eugeniy,vlasov.roman,antonov.lev}@huawei.com

4 Institute for Information Transmission Problems RAS
5 Russia Caucasus Mathematical Center, Adyghe State University, Russia

gasnikov@yandex.ru
6 Skolkovo Institute of Science and Technology

{anna.nikolaeva,maria.begicheva}@skoltech.ru

Abstract. In this paper we give some observation of applying mod-
ern optimization methods for functionals describing digital predistor-
tion (DPD) of signals with orthogonal frequency division multiplexing
(OFDM) modulation. The considered family of model functionals is de-
termined by the class of cascade Wiener–Hammerstein models, which can
be represented as a computational graph consisting of various nonlinear
blocks. To assess optimization methods with the best convergence depth
and rate as a properties of this models family we multilaterally consider
modern techniques used in optimizing neural networks and numerous
numerical methods used to optimize non-convex multimodal functions.
The research emphasizes the most effective of the considered techniques
and describes several useful observations about the model properties and
optimization methods behavior.

Keywords: digital pre-distortion · non-convex optimization · Wiener–
Hammerstein models.

1 Introduction

Today, base stations, which perform in the capacity of radio signal transceivers,
are widely used for the implementation and organization of wireless communi-
? The work was supported by the Russian Science Foundation (project 21-71-30005).

ar
X

iv
:2

10
3.

10
55

2v
1

 [
m

at
h.

O
C

]
 1

8
M

ar
 2

02
1

2 D. Pasechnyuk et al.

cation between remote devices. Modern base stations have a complex technical
structure and include many technical components allowing organize accurate
and efficient data transmission. One of the most important of these components
is the analog power amplifier (PA). Its role is to amplify the signal from the
base station, reduce the noise effect on the signal and increase the transmission
range.

The impact of some ideal amplifiers can be characterized with functional
PA(x) = a · x, where a � 1 and x is an input signal. However, real amplifiers
are complex non-linear analog devices that couldn’t be described by analytical
function due to the influence of many external and internal obstructing factors.
Power Amplifiers can change phase, cut amplitude of the original signal, and gen-
erate parasitic harmonics outside the carrier frequency range. These influences
cause significant distortions of the high-frequency and high-bandwidth signal.
The spectrum plot from fig. 1 shows that described problem is relevant in the
conditions of operation of modern devices: when the signal goes through the
power amplifier its spectrum range becomes wider than the spectrum range of
the original signal and as a result generates noise for other signals.

Fig. 1. Power spectral density plot of original signal, out of PA signal, and result of
pre-distorting signal

One possible solution to this problem is employing the digital baseband pre-
distortion (DPD) technique to compensate for non-linear effects, that influence
the input signal. In this case, DPD acts upon the input signal with an inverse
non-linear with the aim of offsetting the impact of the power amplifier.

Fig. 2. DPD principle of suppression spread spectrum [11]

Non-convex optimization in digital pre-distortion of the signal 3

To compensate for errors generated during the amplification, the difference be-
tween input and output of power amplifier signals transmits to adaptive digi-
tal pre-distorter to optimize its parameters. In this paradigm, the pre-distorter
model can be presented as a parametric function transforming signal in accor-
dance with the real digital pre-distorter operation. Thus, the parametrization of
the model is being optimized as parameters of real adaptive filters.

Fig. 3. DPD and PA influence of signal
According to all the above, from a mathematical point of view, pre-distortion

consists of applying to the input signal function DPD, that approximates the
inverse to the real PA function describing the effect of an analog power amplifier
[11]. This problem can be expressed in the following optimization form7:

1

2
‖PA(y)− ax‖22 → min

y=:DPD(x)
.

A more practical approach is to choose a certain parametric family of func-
tions {DPD(x, θ)}θ∈Θ (in particular, defined by a computational graph of a
specific type). Taking into account that non-linear transformation of the sig-
nal can be obtained as a result of passing it through a number of non-linear
functions and thus presented as the composition of some additive changes, the
optimization problem reformulated in the following form:

1

2
‖DPDθ(x)− e‖22 → min

θ∈Θ
.

If we have large enough training set8 (x, e), it is possible to optimize the
model parameters on it, thereby choosing a good approximation for the function
that acts as a DPD for the sample signal.

This work is devoted to a wide range of issues related to the numerical so-
lution of problems of this kind for one fairly wide class of models — Wiener–
Hammerstein models [8,23]. Based on the results of numerous computational ex-
periments, there were identified and are now described the methods that demon-
strate the most successful results in terms of the convergence depth, its rate, and
7 Note that even in this formulation, the problem can be solved by a classical gradient
descent scheme yk+1 = yk−h(PA(yk)−ax), assuming that DPD can model arbitrary
function, and that the Jacobian ∂PA(y)/∂y ≈ aI.

8 In fact, it is enough to have just a large segment of the input signal, since by solving
one of the problems posed above by a method tuned to a sufficiently high accuracy,
after some time it is possible to obtain a sufficiently accurate approximation of the
inverse function, which can, in turn, act as a benchmark when carrying out the
experiments.

4 D. Pasechnyuk et al.

method’s susceptibility to overfitting. Approaches to online and offline training
of DPD models, methods of initializing models, and also some directions for pos-
sible further development of methods for solving the problems of the category
under consideration are proposed.

2 Problem formulation

2.1 Model Description

In this paper we consider block oriented models describing dynamic nonlinear
effects of PA. These models have a tend to reduce number of coefficients unlike
the Volterra series. Considered Wiener–Hammerstein models can account for
static non-linear behavior of PA and deal with linear memory effects in the
modeled system. To refine model robustness and enhance its performance it was
chosen an instance of cascade Wiener–Hammerstein model [8], those structure
is presented in fig. 4.

Fig. 4. Two-layer block model of the Wiener–Hammerstein type

Let us describe a formal, with some generality, mathematical model for the
case of two layers. The first z-layer and the second y-layer’s outputs are the sum
of the results returned from Rz and Ry, respectively, identical blocks forming the
previous layer. Each of these blocks is described as a combination of convolution,
polynomials and lookup table functions applied to the input signal:

dk,Hlut,HCS (x) := convHCS

(
convk,Hlut

(
P∑
p=1

Cp · φp(|x|) · x

)
− x

)

blockH,HCS ,Hlut,C,k(x) := convk,Hlut

(
P∑
p=1

Cp · φp(|x|) · x

)
(1)

+

Bk∑
l=0

convk,Hl

(
dk,Hlut,HCS

(x) · |dk,Hlut,HCS
(x)|l

)

Non-convex optimization in digital pre-distortion of the signal 5

where H lut ∈ CM , H ∈ CN , HCS ∈ CK×L =
{
Hl ∈ CK

∣∣ l ∈ {1, ..., L}} denote
weights of convolutions, C ∈ CP are weighting coefficients of gains in lookup
table functions, φp is a polynomial function of arbitrary order applied to the
input vector to activate special gain for quantized amplitude of the complex
input, convk,H is the convolution of the input vector with a vector of weights H
and shift k ∈ N [8]:

convk,H(x) :=

N∑
n=1

Hnxk−n+1.

Thus, the presented two-layer model is described as follows:

zk(x) =

Rz∑
r=1

blockHz,HCS,z,Hlut
z ,Cz,k(x), (2)

yk(x) =

Ry∑
r=1

blockHy,HCS,y,Hlut
y ,Cy,k(z(x)).

In this work, we also study the following modification of the described model,
obtained by utilizing skip connections technique (widely used in residual neural
networks [12]):

zk(x) =

Rz∑
r=1

blockHz,HCS,z,Hlut
z ,Cz,k(x), (3)

yk(x) =

Ry∑
r=1

blockHy,HCS,y,Hlut
y ,Cy,k(z(x)) + zk(x).

As a result, we get a computational graph, characterized by the following
hyperparameters (such a set for each layer):

1. N , M , K — width of applied convolution,
2. P — number of spline functions,
3. R — number of blocks in a layer;

and having the following set of training parameters:

θ := (Hz, H
lut
z , HCS,z, Hy, H

lut
y , HCS,y, Cz, Cy),

where

Hz ∈ CRz×Kz×L, HCS,z ∈ CRz×Nz , H lut
z ∈ CRz×Mz

Hy ∈ CRy×Ky×L, HCS,y ∈ CRy×Ny , H lut
y ∈ CRy×My

}
convolution weights

Cz ∈ CRz×Pz , Cy ∈ CRy×Py
}

spline weights.

The total number of model parameters can be calculated as follows: n =
Rz(Nz +Mz +Kz × L+ Pz) + Ry(Ny +My +Ky × L+ Py). In the numerical
experiments presented in this paper, the tuning of the model was such that
the number of model parameters n ∼ 103. Note that additional experiments
on considering various graph configurations and hyperparameter settings are
presented in Appendix ??.

6 D. Pasechnyuk et al.

2.2 Optimization Problem Statement

Let’s denote the result returned by the used model parameterized by the vector
θ at the input x asMθ(x) := y(x) (3). The main considered problem of restoring
the function PA−1 using the described model can be formulated as a problem
of supervised learning in the form of regression. Let then (x, y) be a training
sample, where x ∈ Cm is a signal input to the DPD, y ∈ Cm is the desired
modulated output signal. In this setting, the problem of restoring the DPD
function can be formulated as minimizing the empirical risk (in this case, with
a quadratic loss function):

f(θ) :=
1

m

m∑
k=1

([Mθ(x)]k − yk)2 → min
θ
. (4)

To assess the quality of the solution obtained as a result of the optimization of
this loss functional, we will further use the normalized mean square error quality
metric, measured in decibels:

NMSE(y, y) := 10 log10

{∑m
k=1(yk − yk)2∑m

k=1 x
2
k

}
dB.

3 Optimization Methods

In this main section of the article, we consider three wide classes of optimiza-
tion methods: full-gradient methods, Gauss–Newton methods, and stochastic
(SGD-like) methods. Only the most effective methods for the problem under
consideration are described directly, however, the provided experimental results
cover a much wider variety of algorithms. The implementation features of some
of the approaches are also described.

3.1 Long memory L-BFGS

Let us start with considering the class of quasi-Newton methods. In contrast
to the classical Newton’s method, which uses the Hessian to find the quadratic
approximation of a function at a certain point, the quasi-Newton methods are
based on the principle of finding such a quadratic approximation that is tangent
to the graph of the function at the current point and have the same gradient value
as the original function at the previous point of the trajectory. More specifically,
these methods have iterations of form xk+1 = xk − hkHk∇f(xk), where Hk is
an approximation of inverse Hessian [∇2f(xk)]

−1 and hk is the step-size. The
choice of matrices Hk is constrained to the following quasi-Newton condition:

Hk+1(∇f(xk+1)−∇f(xk)) = xk+1 − xk, (5)

which is inspired by Taylor series at point xk+1

∇f(xk)−∇f(xk+1) = ∇2f(xk+1)(xk − xk+1) + o(‖xk − xk+1‖2)
xk+1 − xk ≈ [∇2f(xk+1)]

−1(∇f(xk+1)−∇f(xk))

Non-convex optimization in digital pre-distortion of the signal 7

There are several methods that use different rules to satisfy criteria (5) —
some of them (viz. DFP) are also presented in the method comparison table 1.
However, one of the most practically efficient quasi-Newton methods is BFGS
(the results of which are also presented in the table 1):

xk+1 = xk − hk ·Hk∇f(xk), where hk = argmin
h>0

f(xk − h ·Hk∇f(xk)),

Hk+1 = Hk +
Hkγkδ

>
k + δkγ

>
k Hk

〈Hkγk, γk〉
− βk

Hkγkγ
>
k Hk

〈Hkγk, γk〉
,

where βk = 1 +
〈γk, δk〉
〈Hkγk, γk〉

, γk = ∇f(xk+1)−∇f(xk), δk = xk+1 − xk, H0 = I.

One of its practically valuable features is the stability to computational and
line-search inaccuracies (there were also tested several methods of line-search,
the most effective and economical turned out to be the method of quadratic inter-
polations, tuned for a certain fixed number of iterations. However, this method is
unsuitable for large-scale problems due to the large amount of memory required
to store the matrix Hk. Therefore, in practice, the method of recalculating the
Hk matrix using only r vectors γk and δk from the last iterations is often used
[18], in this case Hk−r is assumed to be equal to I. The described principle
underlies the L-BFGS(r) methods class with a r memory depth.

Theoretically, it is known about quasi-Newton methods that the global rate
of their convergence in the case of smooth convex problems does not exceed the
estimates obtained for the classical gradient method, and in the vicinity of the
minimum the rate of convergence becomes superlinear [6]. At the same time, in
practical terms, the L-BFGS method (and its various modifications) is one of the
most universal and effective methods of convex and even unimodal optimization
[14,24], which allows us to assume the possibility of its effective application to
the problem under consideration. Now, let us assess the practical efficiency of
used version of the L-BFGS method: the results of work at various settings
r = 3, ..., 900 are presented in table 1. In addition to quasi-Newton methods, the
table 1 presents the experimental results for various versions of Polyak method
(Polyak) [21], Barzilai–Borwein method (BB) [4], conjugate gradient method
(CG) [16] and steepest descent method with zeroed small gradient components
(Raider).

As you can see from the presented data, the L-BFGS method actually demon-
strates better performance compared to other methods. One of the unexpected
results of this experiments is the special efficiency of the L-BFGS method in
the case of using a large amount of information from past iterations. Classically,
limited memory variants of the BFGS method have small optimal values of the
history size, and are not so dependent on it, however, in this case, the best con-
vergence rate of the L-BFGS method is achieved for value r = 900, and with
a further increase in this parameter, the result does not improve. This can be
thought as one of the special and remarkable properties of the particular problem
under consideration.

8 D. Pasechnyuk et al.

Table 1. Full-gradient methods convergence, no
time limit, residual model

Method Time to reach dB, sec.
-30 dB -35 dB -37 dB -39 dB

DFP(100) 11.02 50.22 83.46 2474.27
DFP(200) 10.27 41.48 79.75 1750.35
DFP(300) 10.24 41.32 69.49 2120.14
DFP(400) 10.29 42.07 70.27 1344.80
DFP(inf) 11.10 43.96 72.56 944.52
BFGS(100) 7.41 34.77 53.89 695.28
BFGS(200) 10.01 44.97 228.66 3747.02
BFGS(300) 10.70 48.00 202.40 3870.83
BFGS(400) 10.02 44.95 211.28 4104.48
BFGS(inf) 10.65 47.96 188.55
LBFGS(3) 4.75 22.47 57.34
LBFGS(10) 4.31 19.45 48.82 777.82
LBFGS(100) 4.04 16.81 36.09 513.34
LBFGS(300) 4.02 16.77 34.51 449.31
LBFGS(500) 4.01 16.80 34.63 424.39
LBFGS(700) 4.00 16.77 34.62 410.86
LBFGS(900) 4.01 16.75 34.49 399.52

Method Time to reach dB, sec.
-30 dB -35 dB -37 dB -39 dB

SDM 25.83 925.92 5604.51
Polyak(orig.) 7.39 123.93 345.10
Polyak(v1) 24.41 1317.58
Polyak(v2) 19.09 782.29
BB(v1) 9.82 148.09 386.93
BB(v2) 10.25 186.78
Raider(0.1) 40.15 2602.57
Raider(0.2) 482.80
Raider(0.3) 266.83
CG(HS) 4.50 27.31 61.94
CG(FR) 15.31 55.44 109.25 4209.56
CG(PRP) 3.88 26.13 60.10
CG(PRP+) 4.16 24.91 60.29
CG(CD) 4.29 25.15 59.90
CG(LS) 4.17 26.58 60.86
CG(DY) 12.38 47.21 80.74 3721.43
CG(Nesterov) 28.86 114.86 277.88

3.2 Flexible Gauss–Newton Method

Let us now proceed another possible approach to solving the described problem,
using the ideas underlying the Gauss–Newton method for solving the nonlinear
least squares problem. The approach described in this section was proposed
by Yu.E. Nesterov in work9 [17]. Let us reformulate the original problem (4).
Consider a mapping F : Rn → Rm of the following form:

F (x) := (F1(x), . . . , Fm(x)),

where each component represents the discrepancy between the approximation
obtained by the model and the exact solution for each of the objects of the

9 This paper is in print. The result of Nesterov’s paper and our paper make up the
core of the joint Huawei project. The described below Method of Three Squares
[17] was developed as an attempt to beat L-BFGS (see fig. 5). We repeat in this
paper the main results of [17] since they were developed for considered problem
formulation and for the moment there is no possibility to read about these results
somewhere else. Note, that recently some results of the paper [17] were generalized
[26]. In particular, in [26] one can find more information about the Method of Three
Squares.

Non-convex optimization in digital pre-distortion of the signal 9

training set: Fi(x) := [Mθ(x)]i − yi. Then the original problem can be reduced
to solving the following least squares problem:

min
x∈Rn
{f1(x) := ‖F (x)‖2}. (6)

We additionally require only the Lipschitz smoothness of the functional F (note
that throughout the analysis of the method, the requirement of convexity will
not be imposed on the functional, that is, the presented convergence estimates
are valid in non-convex generality):

‖F ′(x)− F ′(y)‖2 ≤ LF ‖x− y‖2, x, y ∈ Rn,

where F ′(x) =
(
∂Fi(x)
∂xj

)
i,j

is a Jacobian. Under these assumptions, one can prove

the following lemma on the majorant for the initial function f1:

Lemma 1. [17] Let x and y be some points from Rn, L ≥ LF ,and f1(x) > 0.
Then

f1(y) ≤ ψ̂x,L(y) :=
1

2f1(x)

[
f21 (x) + ‖F (x) + F ′(x)(y − x)‖22

]
+
L

2
‖y − x‖22. (7)

Let us assume for a moment that we know an upper bound L for the Lipschitz
constant LF . Then the last inequality in (7) leads to the following method:

Method of Three Squares ([17]) (8)

xk+1 = arg min
y∈Rn

{L
2
‖y − xk‖22 +

1

2
f1(xk)

[
f21 (xk) + ‖F (xk) + F ′(xk)(y − xk)‖22

]}

The global convergence of this method is characterized by the following theorem.

Theorem 1. [17] Let us assume that the function F (·) is uniformly non-degenerate:
F ′(x)F ′(x)> � µIm for all x ∈ F0 := {x ∈ Rn : f1(x) ≤ f1(x0)}. If in the
method (8), we choose L ≥ LF , then it converges linearly to the solution of
equation F (x) = 0:

f1(xk) ≤ f1(x0) · exp
{
− µk

2(Lf1(x0) + µ)

}
, k ≥ 0.

At the same time, for any k ≥ 0 we have

f1(xk+1) ≤
1

2
f1(xk) +

L

2µ
f2(xk).

Thus, the coefficient for asymptotic local linear rate of convergence for this
method is 1

2 .

10 D. Pasechnyuk et al.

If we relax the assumptions of theorem 1, then we can estimate the rate of
convergence of this method to a stationary point of problem (6). Denote

f2(x) := f21 (x) = ‖F (x)‖22.

Theorem 2. [17] Suppose that the function F has uniformly bounded derivative:
‖F ′(x)‖2 ≤MF for all x ∈ F0. If in the method (8) L ≥ Lf , then for any k ≥ 0
we have

f2(xk)− f2(xk+1) ≥
1

8(Lf1(x0) +M2
F)
‖∇f2(xk)‖22.

Thus, under very mild assumption (bounded derivative), we can prove that the
measure of non-stationarity ‖∇f2(·)‖22 is decreasing as follows [17]:

min
0≤i≤k

‖∇f2(xk)‖22 ≤
8f2(x0)(Lf1(x0) +M2

F)

k + 1
, k ≥ 0.

We will also consider the following enhanced version of method (8).

Non-Smooth Gauss-Newton Method ([17]) (9)

xk+1 = arg min
y∈Rn

{
ψxk,L(y) :=

L

2
‖y − xk‖22 + ‖F (xk) + F ′(xk)(y − xk)‖2

}

Let us describe its convergence properties.

Theorem 3. [17] Let us choose in the method (9) L ≥ Lf .

1. If function F is uniformly non-degenerate: F ′(x)F ′(x)> � µIm, x ∈ F0,
then method (9) converges linearly to the solution of equation F (x) = 0:

f1(xk) ≤ f1(x0) · exp
{
− µk

2(Lf1(x0) + µ)

}
, k ≥ 0.

At the same time, it has local quadratic convergence:

f1(xk+1) ≤
L

2µ
f21 (xk), k ≥ 0.

2. Suppose that function F has uniformly bounded derivative: ‖F ′(x)‖2 ≤MF , x ∈
F0, then for any k ≥ 0 we have

f2(xk)− f2(xk+1) ≥
1

8(Lf1(x0) +M2
F)
‖∇f2(xk)‖22.

Non-convex optimization in digital pre-distortion of the signal 11

Now, let us consider the normalized versions of introduced objective func-
tions: f̂1(x) := 1√

m
f1(x) =

[
1
mf2(x)

]1/2
, f̂2(x) :=

1
mf2(x). This normalization

allows us to consider m → ∞. Moreover, the objective function in this form
admits stochastic approximation. Therefore, let us describe a stochastic variant
of method (8).

Method of Stochastic Squares ([17]) (10)
a) Choose L0 > 0 and fix the batch size p ∈ {0, . . . ,m}.
b) Form Ik ⊆ {1, . . . ,m} with |Ik| = p and define Gk := {F ′i (xk), i ∈ Ik}.

c) Define ϕk(y) := f̂1(xk) + 〈f̂ ′1(xk), y − xk〉+ 1
2f̂1(xk)

(
1
p‖G

T
k (y − xk)‖22

)
.

d) Find the smallest ik ≥ 0 such that for the point

Tik = argmin
y

{
ψik(y) := ϕk(y) +

2ikLk
2
‖y − xk‖22

}
we have f̂1(Tik) ≤ ψik(Tik)
e) Set xk+1 = Tik and Lk+1 = 2ik−1Lk.

3.2.1 Numerical experiments All variants of the Gauss–Newton method
described above were implemented taking into account the above remarks about
the possibilities of their effective implementation. In a series of numerical ex-
periments, it was tested the practical efficiency of two described full-gradient
methods (8) (3SM) and (9) (NsGNM), and the stochastic method (10) (SSM)
for various batch sizes p. The results are presented in the table 2, along with the
results of the Gauss–Newton method in the Levenberg–Marquardt version (LM)
[15]. It can be seen from the presented results that the Three Squares method
demonstrates better performance than the Levenberg–Marquardt method, and,
moreover, batching technique significantly accelerates the convergence of the
proposed scheme. The best setting of the method with10 p = 6n demonstrates a
result that exceeds the performance of the L-BFGS method, starting from the
mark of −39 dB of the quality metric (see fig. 5).

10 Note, that p ∼ n can be easily explained by the following observation. In this regime
Jacobian calculation ∼ pn2 has the same complexity as Jacobian inversion ∼ n3.
It means that there is no reason to choose p large, but p � n. If p is large we can
consider p to be greater than n since the complexity of each iteration include n3

term anyway.

12 D. Pasechnyuk et al.

Table 2. Gauss-Newton methods convergence,
residual model

Method Time to reach dB level, sec.
-30 dB -35 dB -37 dB -39 dB

LM(1) 919.28 1665.08 3165.61 14270.56
LM(2) 760.54 2277.11 5534.27
LM(3) 550.06 1494.13 3584.74
3SM 633.88 1586.69 1747.28 4616.80
NsGNM 762.99 1626.18 2265.74 9172.11
SSM(0.3n) 93.57 271.63 864.04
SSM(0.6n) 50.43 145.60 437.22
SSM(1n) 48.79 104.31 186.37 12469.39
SSM(2n) 60.43 91.62 141.99 4407.34
SSM(3n) 37.13 77.75 116.78 1118.43
SSM(4n) 53.71 96.04 110.08 570.92
SSM(5n) 42.65 88.14 110.00 315.28
SSM(6n) 47.32 72.30 89.08 314.95
SSM(7n) 44.16 109.33 137.58 382.58
SSM(8n) 39.71 92.33 114.27 400.38
SSM(10n) 46.65 120.24 145.04 331.06
SSM(11n) 48.43 111.66 150.10 343.44

Fig. 5. Convergence of Stochastic Squares Method
(SSM) and L-BFGS method, residual model

3.3 Stochastic methods

Let us now turn to a class of methods that are especially widely used for problems
related to training models represented in the form of large computational graphs
(in particular, neural networks) — stochastic gradient methods. In addition to the
repeatedly confirmed practical efficiency, the motivation for applying stochastic
methods to the existing problem is a significant saving of time when evaluating
the function for only one of the terms of the sum-type functional at our disposal.
Indeed, consider the calculation complexity for the one term — it requires not
more than 4 · (Ry + 1) · (RyNz + 2MzPz) ' 4 · 103 arithmetical operations,
whereas the complexity for the full sum is 4 · 2m · (RyNz + 2MzPz) ' 3 · 108
a.o., that almost in ∼ m times more. Further, according to theory of automatic
differentiation, for the particular computational graph the calculation of gradient
is not more than 4 times more expensive than calculation of the function value
[9,19], although it is necessary to store the entire computational graph in RAM.

In our experiments, we apply stochastic methods to the problem under con-
sideration. Along with classical stochastic gradient method (SGD), there were
tested various modifications of adaptive and adaptive momentum stochastic
methods (Adam, Adagrad, Adadelta, Adamax). Adaptability of these methods
lies in the absence of the need to know the smoothness constants of the objective
function, which is especially effective in deep learning problems [27], although
theoretically has no advantages in terms of convergence rate. Moreover, a number

Non-convex optimization in digital pre-distortion of the signal 13

of variance reduction methods were applied (SVRG, SpiderBoost). SpiderBoost
matches theoretical lower bound for the number of iterations sufficient to achieve
a given accuracy in the class of stochastic methods under the assumption that all
terms are smooth. Note, that the code of most of these methods is free available
at GitHub: https://github.com/jettify/pytorch-optimizer.

As one can see from the figures below, adaptive stochastic methods, in par-
ticular Adam, show the most effective (among stochastic methods) convergence
for the considered model (see fig. 6). At the same time, the use of variance reduc-
tion methods does not allow achieving any acceleration of the convergence (see
fig. 7). Note also that variance reduction methods are inferior in convergence
rate to the standard SGD method also in terms of the number of passes through
the dataset.

Experiments also show that the efficiency of stochastic algorithms (in com-
parison with full-gradient methods) significantly depends on the dimension of
the parameter space of the model used. Moreover, for models with a large num-
ber of blocks, the rate of convergence of Adam-type algorithms is slower than
for methods of the L-BFGS type, due to the slowdown in convergence with an
increase in the number of iterations of the method. It is important to note,
however, that losing in the considered setting in terms of the depth and rate
characteristics of convergence, stochastic methods show the advantage of being
more resistant to overfitting [1] (due to their randomized nature). At the same
time, the stochastic methods in the current version are especially valuable for
the possibility of using them for online training of the model. Indeed, the main
application of the solution to the problem posed at the beginning of the article
is to optimize the DPD function, however, it is quite natural that with a change
in the characteristics of the input signal over time, the optimal parametrization
of the model can smoothly change, so it is necessary to adjust the model to the
new data. Modification of full-gradient methods for their efficient operation on
mini-batches is a separate non-trivial problem, while stochastic methods provide
such opportunities out of the box. Also, stochastic methods are more convenient
for their hardware implementation, since they do not require storing long signal
segments for training.

Table 3. Stochastic methods convergence, resid-
ual model

Method Setup dB
t = 0 sec. t = 300 sec.

ASGD (128, 10.0)

-15.616

-28.976
Adadelta (2048, 10.0) -32.697
Adagrad (2048, 0.01) -36.608
Adam (2048, 0.001) -38.129
Adamax (2048, 0.01) -37.934
RMSprop (2048, 0.001) -36.499
SGD (128, 10.0) -34.061
FastAdaptive -36.273

Fig. 6. Stochastic methods conver-
gence, residual model

https://github.com/jettify/pytorch-optimizer

14 D. Pasechnyuk et al.

0 200 400 600 800 1000 1200 1400 1600
Time, s

40

35

30

25

20

15

De
cib

el
s

SVRG_iid, b=100, epoch=245, gamma = 2.0, decreasing_in_0.8_each_5000_iter
SVRG, b=3923, epoch=62, gamma = 20.0, decreasing_in_0.8_each_5000_iter
SGD, b=1000, gamma = 20.0, decreasing_in_0.8_each_10000_iter
SGD, b=100, gamma = 20.0, decreasing_in_0.8_each_10000_iter
SGD_true_iid, b=100, gamma = 20.0, decreasing_in_0.8_each_10000_iter

Fig. 7. Comparison of various sam-
pling strategies for SVRG and SGD
in terms of running time (in sec-
onds) to reach the predefined threshold
(−30,−35,−37,−38 dB).

0 500 1000 1500 2000 2500 3000 3500
Time, s

40

35

30

25

20

15

De
cib

el
s

SVRG_iid, b=100, epoch=245, gamma = 2.0, decreasing_in_0.8_each_5000_iter
SVRG, b=3923, epoch=62, gamma = 20.0, decreasing_in_0.8_each_5000_iter
SpiderBoost_true_iid, b=100, epoch = 245, gamma = 2.0, decreasing_in_0.8_each_10000_iter
SpiderBoostM_true_iid, b=100, epoch = 245, gamma = 1.0, decreasing_in_0.8_each_10000_iter
SpiderBoost, b=495, epoch = 495, gamma = 2.0, decreasing_in_0.8_each_10000_iter
SpiderBoostM, b=495, epoch = 495, gamma = 1.0, decreasing_in_0.8_each_10000_iter

Fig. 8. Comparison of various sam-
pling strategies for SVRG and Spider-
Boost in terms of running time (in sec-
onds) to reach the predefined threshold
(−30,−35,−37,−38 dB).

3.4 Global algorithms

3.4.1 Multi-start tests

From the point of view of characterizing the model under consideration, it
is useful to investigate its global characteristics. In this section, we consider
the issue of optimization methods operation stability with a random choice of
the starting point for them, for two variants of the model: a direct model and
a model utilizing skip connections. We perform numerous multi-start tests for
both original and residual model according to the following principle: firstly, a
set of start points are uniformly drawn from n-orthotope [−0.1, 0.1]n and then
L-BFGS(900) method works starting from every point until it fails to find re-
laxation for the next step (neither the maximum number of iterations nor the
maximum working time nor any other stop criteria is specified).

The performed numerical experiments showed that the original model has a
significant instability of the results depending on the starting point. The differ-
ence between the worst and best obtained solutions exceeds 5 dB and the effect
of the multi-start scheme is quite noticeable (see fig. 9). Residual model on the
contrary showed high enough stability — for the majority of starting points the
result of optimization gives values below −39 dB. The difference between the
worst and best solutions is about 2 − 2.5 dB and the effect of the multi-start
scheme is not too significant (see fig. 10).

Non-convex optimization in digital pre-distortion of the signal 15

Fig. 9. Multi-start results, original model Fig. 10. Multi-start results, residual
model

3.4.2 Simulated annealing
Optimization method considered in this division is an adaptation of the Metropolis–
Hastings algorithm to the analogy of thermodynamic system states evolution.
The simulated annealing method is a non-local optimization method that allows
one to construct, according to the same principle, many different modifications
of the method for various particular classes of extremal problems, both contin-
uous and discrete. The variant of the method used in this article is based on a
particular Metropolis–Kirkpatrick procedure [13]. To date, there are quite a few
modifications of algorithms such as simulated annealing, for which can be formu-
lated some strict theoretical statements on their convergence properties [10,20].
This method is used for an extremely large variety of practical problems, in-
cluding some NP-hard problems and significantly global optimization problems,
where it turns out to be quite effective.

There were implemented two variants of the considered scheme — the classic
one, using only a value of the function (v1), and the modified one, in which the
optimization trajectory is built based on the conjugate gradient method (v2).
The decision to conduct a jump in the trajectory, which allows tunneling from
one local solution to another, is made either by the built-in cooling strategy or
forcibly through a priori specified number of iterations. Numerical experiments
have shown that the value of the jump lengths is, in a sense, a parameter that
regulates the globality of the method: at small values of the parameter, it is
possible to achieve a faster local convergence of the method, while at large values,
the chance of jumping into the region of attraction of a neighboring, possibly
better, local minimum increases. It turned out that in the v2 version of the
method, the number of local descent iterations must be related to the length of
the jumps: the longer jump length is set, the greater the number of local descent
iterations must be performed in order to preserve the relaxation of iterations
(6). Note also that the quality of the method depends significantly on the choice
of the starting point.

16 D. Pasechnyuk et al.

3.5 Differential evolution

Table 4. Non-convex (global) methods performance, residual model

Method Time to reach dB level, sec.
-30 dB -35 dB -37 dB -39 dB

SA(0.1, 1500) 80.53 80.53 80.53 161.04
SA(0.1, 2500) 136.47 136.47 136.47 136.47
DE(5, 1000) 658.71 658.71 658.71 2377.19
DE(50, 100) 655.39 1879.50 2418.66
DE(10, 2000) 1107.28 1107.28 1107.28 1107.28
DE(100, 200) 996.40 996.40 2846.19 9192.72

Differential evolution is another non-local, bio-inspired, population type method
that based on the addition of information recorded in four randomly selected in-
dividuals from the population (three “mothers” and one “father”). This approach
was proposed in [25], many details and variations of the algorithm can be found
in the book [22].

From the results of the experiments, also presented in the summary table 4,
it can be seen that the population size directly affects the convergence rate of
the algorithm: large values increase the degree of biodiversity (in the original
sense, the degree of globalization of the method), but increases the complexity
of each iteration. This obstacle can be technically circumvented by using multiple
GPU’s, since the processing for each element of the population does not depend
on the other members. The number of iterations of the local algorithm also affects
the quality of the algorithm: too small values degrade the relaxation properties
of the iteration of the method.(7) The starting point affects the quality of work
rather poorly, since the method is initially designed for the presence of many
different instances in the population.

4 Model Tuning

4.1 Model Structure

A naturally arising interesting question is the optimal configuration of the used
Wiener–Hammerstein model, that is, the potential approximating capabilities
of the model itself — this is useful both from a practical point of view (if the
optimal scheme turns out to be significantly more efficient than an arbitrarily
chosen one), and with an abstract (comparison may reveal new dependencies of
the quality of the approximation on the structure of the model, characterizing
the tendency to overfitting or the specifics of the data, which could be used in
further studies).

Several experiments have been carried out using optimization algorithm L-
BFGS, the results of which are presented in the table 5. They can be summarized
by the following points (the notation of section 2.1 is used):

Non-convex optimization in digital pre-distortion of the signal 17

1. Layers number L is much more important hyperparameter than R, so we
should prefer to increase L instead of R.

2. If some model has R > L, then by simple swapping this values we can
generally get better results with the same number of parameters.

3. The original model settings (L = 2, Rz/y = 11) give the worst results. The
model with L = 8, Rz/y/.. = 2 gives better results with fewer parameters
count (1072 vs 1474).

Table 5. Optimization results for different network se-
tups, residual model

Layers R
Parameters, dB
(complex) t = 0 sec. t = 300 sec. t = tend

3 8

1608

-15.666 -40.552 -41.087
4 6 -15.577 -41.048 -42.029
6 4 -15.742 -41.727 -43.375
8 3 -15.781 -41.209 -43.790
2 11 1474 -15.477 -38.920 -39.141
11 2 -15.693 -40.835 -43.707
3 7 1407 -15.549 -40.429 -40.949
7 3 -15.865 -40.986 -42.690

tend, sec.

1258.257
1195.800
2029.769
2511.681
1405.771
2783.392
1191.327
946.900

4.2 Initialization

Computational graphs parameters optimization problems have a number of spe-
cific features that complicate the operation of the numerical methods applied
to them. In the case of classical neural networks, corresponding training prob-
lems are characterized by significant multimodality and the presence of com-
plex ravines [2,5,7]. If we consider in more detail the used Wiener–Hammerstein
model, we can assume that the corresponding functional has extensive plateaus
(regions of functional’s regularity) — this follows from the model’s output struc-
ture of the “sum of products” form. This raises the question of the correct ini-
tialization of the model parameters, at which the initial point of the methods
trajectories could lie near the attraction region of the potential global minimum,
and not in an arbitrary region of the parametric space with possibly poor local
problem’s properties. It is worth noting, however, that many random initializa-
tion strategies would be inappropriate in this case. The fact is that deep com-
putational graphs during training are also subject to the phenomena of gradient
vanishing and gradient exploding, which significantly impairs the convergence of
methods and the trainability of the model in general. In view of this, we would
also like to have a method for initializing weights, which allowing to maintain
the variance of the values at the output of each layer approximately equal to the
variance of the values at its input.

In this research we considered the initialization techniques which is used
in classical neural networks: Xavier and He initialization (the corresponding

18 D. Pasechnyuk et al.

formulas presented in a table below), which, however, are applicable as effective
heuristics in the case of the model under consideration.

Xavier initialization Initialization He

wi ∼ U
[
−

√
6√

nin + nout

,

√
6√

nin + nout

]
wi ∼ N

(
0,

√
2

nin

)

These techniques rely on some theoretical analysis of variance propagation
through the classical neural network, so they do not allow to deal with specific
model under consideration. Nevertheless, we used them as a baseline strategies
to compare with the proposed initialization. The proposed technique of Simple
shifted initialization is described in following division.

4.2.1 Simple shifted initialization The idea behind this type of initializa-
tion is to cause minimal changes to the input signal while it is processed by
the initial model. It seems a natural assumption for an untrained predistortion
model, and at the same time avoids the difficulties associated with getting stuck
in the domains of regularity: a model initialized in this way will always return
a reasonable, although possibly not the best, result. Now, let us describe the
scheme itself:

1. Consider a convolution with kernel width (2k−1) and weightsH = (h1, . . . , h2k−1).
If this convolution weights are initialised as

hj =

{
1 + i, j = k,

0, j 6= k.

and zero padding of appropriate length is used, then input vector x will be
unchanged by applying the convolution.

2. We initialize all entries of spline coefficient matrices with equal values α ≥ 0:
Cij = α, 1 ≤ i, j ≤ P +1. In our experiments, setting value α = 0.01 showed
itself as a good choice.

3. We also use a special diagonal initialization technique for output convolu-
tions. Namely, let model have rank R and output convolution at layer m
have weights Hm = (hm1 , . . . , h

m
2k−1). This weights are initialized as

hji =

{
1, j − i = (R+ 1) mod 2− k,
0, else.

Consider layer number (R + 1) mod 2 – a middle layer. The corresponding
output convolution at position k has entry 1 and zeros elsewhere. At the
consequent layer number (R + 1) mod 2 + 1, the output convolution has 1
at shifted position k + 1. For example, if kernel width equals 2k − 1 = 7
and model has R = 5 layers, the initialization is the following: Hi = ei, i =
1, ..., 5, where ei is i-th unit basis vector. Initializing output convolutions with

Non-convex optimization in digital pre-distortion of the signal 19

ones in different positions helps make layers non-equivalent at the stage of
initialization. Our experiments show that diagonal initialization significantly
improves optimization effectiveness and allows to achieve better loss values.

Numerous experiments (such as those presented in section 3.4.1, as well as
experiments comparing the operation of other optimization methods) have shown
that the presented initialization technique allows achieving better model stability
in comparison with classical techniques for initializing neural networks, as well
as obtaining an initial approximation with a better quality criterion value. In
all the experiments presented in this article, Simple shifted initialization was
used, and in no case was it observed that the problem at a given point had poor
properties: the methods under consideration demonstrated satisfactory starting
convergence and converged to very close solution points.

5 Overfitting

Overfitting is a common problem in computational graphs parameters training,
when the tuned model corresponds too closely or exactly to a particular set of
data, and may therefore fail to fit additional data or predict future observations
reliably. In other words, in such a situation, the generalizing ability of the model
is sacrificed to the quality of optimization of a specific function of empirical risk,
due to which the performance of methods will decrease drastically on the data,
which differ from those used for training.

In order to control overfitting, in the experiments presented in the work,
the original dataset was divided into two parts — training (75%) and validation
(25%), and during training, the loss function was calculated both on training
and validation datasets, in order to be able to compare the quality of the meth-
ods and detect overfitting to data. Fig. 11 presents the results of experiments
demonstrating how train and validation errors differ for several methods. As one
can see, in the case of the used partition, the error difference is 0.05 dB, whereas
the error itself at the given time interval is −37 dB. Note that at this scale of
training time and data quantity the least overfitting is achieved when using the
L-BFGS method.

5.1 Different training set size

From the point of view of studying the specific properties of the data generated
by the signal arriving at the input of the pre-distorter, it is interesting to consider
the dependence of the model’s susceptibility to overfitting on the size of the
training dataset. The dataset of 245 760 pairs of complex numbers (x, y), used to
set up all experiments in this work, was divided in the course of this experiment
into two parts: a training set and a validation set. Moreover, the data was split in
a sequential form, without random shuffling (which, on the contrary, is usually
done in the case of training, for example, neural networks), so that an solid
opening signal segment is used for training, and the entire remaining signal

20 D. Pasechnyuk et al.

segment is taken as a validation set. After training the model on the selected
training signal, the model with the resulting parameters was used to obtain a
solution for the validation signal, and the performance of the method was thus
assessed in parallel for two sets. The L-BFGS(900) method was used as the
optimization method.

It is clearly seen from the results of the experiment that there is a discrepancy
between the results of the model for different volumes of training and validation
sets. With a small amount of training set, we get a model that describes very
well a small number of objects (overtrained), but returns an irrelevant result
when processing a new signal with naturally changed characteristics. At the
same time, if you use a significant part of the dataset for training the model, the
result for an arbitrary segment of the signal will, on average, be quite satisfac-
tory, while the model can make errors for some rare individuals. Note that the
specificity of this model is a rather small size of the required training sample:
even when using 20% of the training signal segment (which in this case has a size
of ≈ 200 000), the difference between the quality metrics for the training and
validation samples does not exceed 0.5 dB. At the same time, when assessing the
effects of overfitting, it is important that the samples used after splitting have
a sufficiently large size, since when choosing a too small training or validation
set, because of data in this parts can be really different and as a result naturally
occurring approximation errors begin to strongly influence the result.

Fig. 11. Difference between train
and validation errors

Fig. 12. Residual model overfitting, 5%, 20%
of original data used as training set. Red line —
convergence while training on sample signal,
blue line — quality of the solution for valida-
tion signal

6 Conclusion

This article discusses various approaches to optimizing the parameters of com-
putational graphs simulating the behavior of a digital pre-distorter for the mod-
ulated signal. In the numerous experiments it was tested different full-gradient
methods, and stochastic algorithms.

Among the many randomized (batch) algorithms that significantly use the
sum-type structure of the objective functional, the Adam algorithm, which is

Non-convex optimization in digital pre-distortion of the signal 21

most relevant for use in online-training regime, demonstrates the best efficiency.
However, it should be noted that for its effective adjustment, that is, choosing
the optimal step length and batch size, it is necessary to perform a rather time-
consuming pre-calculations.

Of all the considered methods, the L-BFGS algorithm turned out to be the
undisputed leader. It may be somewhat unexpected that the optimal memory
depth of the L-BFGS method for this problem is in the range of 800–1000. Note
that the idea of using the L-BFGS method for DPD optimization was proposed
earlier in paper [3], for models based on the Volterra series. Experiments de-
scribed in this paper thus confirm the particular effectiveness of the L-BFGS
method for the DPD problem in relative independence from a particular model
and dataset. At the same time, the idea of deep memory is original, and perhaps
it is specific to the used model class. In addition to the best convergence rate,
the L-BFGS method as a training procedure also leads to the least error on
the validation set: the discrepancy in the quality metric, that characterizes the
overfitting susceptibility, for the dataset used is approximately 0.05 dB.

There were described a number of new modifications of the Gauss–Newton
method proposed by Yu.E. Nesterov, including the Method of Stochastic Squares.
The practical efficiency of the proposed approaches is not only significantly
higher than that of other Gauss–Newton methods, but is also the best among
all the local methods considered in the experiments (see fig. 5).

Many experiments have been carried out evaluating the specifics of the dataset
used, generated by the samples of the modulated signal. Experiments on the use
of different sizes of the training sample have shown that it is enough to use 20%
of the original dataset to obtain a sufficiently good quality on the validation set
(−38 dB). Moreover, in this case, it is possible to reach the −38 dB threshold
much faster than using the full training dataset. It should be noted that even
5% of the data is enough to reach the −37 dB threshold, and also in a much
shorter time.

Table 6. Best methods performance, residual
model

Method Time to reach dB level, sec.
-30 dB -35 dB -37 dB -39 dB

SDM 25.83 925.92 5604.51
CG(DY) 12.38 47.21 80.74 3721.43
DFP(inf) 11.10 43.96 72.56 944.52
BFGS(100) 7.41 34.77 53.89 695.28
LBFGS(900) 4.01 16.75 34.49 399.52
3SM 633.88 1586.69 1747.28 4616.80
SSM(6n) 47.32 72.30 89.08 314.95 Fig. 13. Best methods convergence, resid-

ual model

Thus, despite the fact that the considered class of models has significant speci-
ficity, following the classical way of studying large computational graphs from
the point of view of their parameters optimizing, formed mainly around the prob-

22 D. Pasechnyuk et al.

lem of training neural networks, makes it possible to collect a set of algorithms
and approaches that are most effective for the problem under consideration.
Moreover, many of the solutions developed specifically for neural networks turn
out to be relevant for Wiener–Hammerstein type models. In particular, adaptive
stochastic methods remain just as effective. At the same time, it is possible to
significantly and drastically improve the results of classical approaches taking
into account the specifics of the problem, such as the use of deep memory for
the L-BFGS method, shifted weights initialization, small width of network layers
or a small training sample. Apparently, the dependencies found in the course of
the described study are quite universal for this family of models, and therefore
the presented observations can be useful not only for efficiently solving related
practical problems, but also for further exploration of the problem of digital
predistortion of the signals.

References

1. Amir, I., Koren, T., Livni, R.: Sgd generalizes better than gd (and regularization
doesn’t help). arXiv preprint arXiv:2102.01117 (2021)

2. Auer, P., Herbster, M., Warmuth, M.K.: Exponentially many local minima for
single neurons. In: Advances in neural information processing systems. pp. 316–
322 (1996)

3. Bao, J.L., Zhu, R.X., Yuan, H.X.: Restarted lbfgs algorithm for power amplifier
predistortion. In: Applied Mechanics and Materials. vol. 336, pp. 1871–1876. Trans
Tech Publ (2013)

4. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA Journal of
Numerical Analysis 8, 141–148 (1988)

5. Choromanska, A., Henaff, M., Mathieu, M., Arous, G.B., LeCun, Y.: The loss
surfaces of multilayer networks. In: Artificial intelligence and statistics. pp. 192–
204 (2015)

6. Dennis, Jr, J.E., Moré, J.J.: Quasi-newton methods, motivation and theory. SIAM
review 19(1), 46–89 (1977)

7. Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D., Wilson, A.G.: Loss surfaces,
mode connectivity, and fast ensembling of dnns. arXiv preprint arXiv:1802.10026
(2018)

8. Ghannouchi, F.M., Hammi, O., Helaoui, M.: Behavioral modeling and predistortion
of wideband wireless transmitters. John Wiley & Sons (2015)

9. Griewank, A., et al.: On automatic differentiation. Mathematical Programming:
recent developments and applications 6(6), 83–107 (1989)

10. Hajek, B.: Cooling schedules for optimal annealing. Mathematics of operations
research 13(2), 311–329 (1988)

11. Haykin, S.S.: Adaptive filter theory. Pearson Education India (2008)
12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(06 2016)

13. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
science 220(4598), 671–680 (1983)

14. Liu, D.C., Nocedal, J.: On the limited memory bfgs method for large scale opti-
mization. Mathematical programming 45(1), 503–528 (1989)

Non-convex optimization in digital pre-distortion of the signal 23

15. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parame-
ters. Journal of the society for Industrial and Applied Mathematics 11(2), 431–441
(1963)

16. Neculai, A.: Conjugate gradient algorithms for unconstrained optimization. a sur-
vey on their definition. ICI Technical Report 13, 1–13 (2008)

17. Nesterov, Y.: Flexible modification of gauss-newton method. CORE Discussion
paper (2021)

18. Nocedal, J.: Updating quasi-newton matrices with limited storage. Mathematics
of computation 35(151), 773–782 (1980)

19. Nocedal, J., Wright, S.: Numerical optimization. Springer Science & Business Me-
dia (2006)

20. Nolte, A., Schrader, R.: A note on the finite time behavior of simulated annealing.
Mathematics of Operations Research 25(3), 476–484 (2000)

21. Polyak, B.T.: Minimization of unsmooth functionals. USSR Computational Math-
ematics and Mathematical Physics 9, 14–29 (1969)

22. Price, K., Storn, R.M., Lampinen, J.A.: Differential evolution: a practical approach
to global optimization. Springer Science & Business Media (2006)

23. Schreurs, D., O’Droma, M., Goacher, A.A., Gadringer, M.: RF power amplifier
behavioral modeling. Cambridge university press New York, NY, USA (2008)

24. Skajaa, A.: Limited memory bfgs for nonsmooth optimization. Master’s thesis
(2010)

25. Storn, R.: Differrential evolution-a simple and efficient adaptive scheme for global
optimization over continuous spaces. Technical report, International Computer Sci-
ence Institute 11 (1995)

26. Yudin, N., Gasnikov, A.: Flexible modification of gauss-newton method and its
stochastic extension. arXiv preprint arXiv:2102.00810 (2021)

27. Zhang, J., Karimireddy, S.P., Veit, A., Kim, S., Reddi, S.J., Kumar, S., Sra, S.:
Why adam beats sgd for attention models. arXiv preprint arXiv:1912.03194 (2019)

24 D. Pasechnyuk et al.

Appendices

A Stochastic Squares Method Implementation Details

The efficiency of Stochastic Squares Method implementation heavily depends on
the size p of the batch. We follow the work [17].

A.1 Small batch size (0 ≤ p ≤ n)

At each iteration of this method, it is necessary to invert the matrix

Bk :=
1

2pf̂1(x)
GkG

T
k + 2ikLkI ∈ Rn×n.

If p is small, then it is acceptable to do this at each iteration using Sherman–
Morrison formula:

B−1k =
1

2ikLk

[
I + γkGkG

T
k

]−1
=

1

2ikLk

[
I − γkGk[Ip + γkG

T
kGk]

−1GTk
]
,

where γk = 1
2ik+1pLkf̂1(x)

. Note that we need B−1k only for multiplying by vectors.
Therefore, we have to form and invert only a small matrix

[Ip + γkG
T
kGk] ∈ Rp×p.

This requires O(p2(n + p)) operations, and this must be done at all ik internal
iterations of step d) in method. Note that the version with p = 0 corresponds to
the simple Gradient Method as applied to function f̂1.

A.2 Big batch size (n < p ≤ m)

In this case, n is the smallest size of the matrix Gk. Therefore, for efficient
implementation of the inversion of matrix Bk, it is reasonable to compute an
appropriate factorization of matrix Gk ∈ Rn×p. Namely, we need to represent
this matrix in the following form:

Gk = UkΛkVk,

where Uk and Vk are orthogonal matrices of the corresponding sizes and Λk ∈
Rn×n is the lower-triangular bi-diagonal matrix. It is easier to compute this
factorization if we represent the matrices Uk and Vk in multiplicative form. The
basic orthogonal transformation used in this process is the Hausdorff matrix

H(a, b) = I − 2
(b− a)(b− a)T

‖b− a‖22
,

Non-convex optimization in digital pre-distortion of the signal 25

where b 6= a and ‖a‖2 = ‖b‖2. It is easy to check that

H(a, b)a = b, H(a, b)b = a, H2(a, b) = I.

The orthogonalization process has n steps. At the first step, we multiply the
matrix Gk from the right by an orthogonal matrix S1 ∈ Rp×p, which maps the
first row e>1 Gk to the vector ‖G>k e1‖2 e>1 , where ei is the i-th unit basis vector
of the dimension corresponding to the context.

Further, denote by G+
k the matrix composed by the rows 2 . . . n of the matrix

GkS1. We multiply it from the left by an orthogonal matrix, which transforms
its first column into a vector proportional to e1. This ends the first step of the
process. Denote the resulting matrix by G++

k . The matrix for the next step is
formed by columns 2 . . . n of matrix G++

k .
In the end, we get a lower-triangular bi-diagonal matrix Λk and the matrices

Uk and Vk represented in multiplicative form. For the optimization process, it
is reasonable to keep them in this form since we need only to multiply these
matrices by vectors.

For stability of the above process, it is important to apply matrices H(a, b)
with sufficiently big ‖a−b‖2. This can be always achieved by considering vectors
±b (for us they are multiples of the coordinate vectors), and choosing the sign
ensuring 〈a, b〉 ≤ 0.

B Quasi-Newton Algorithms
Table 7. BFGS/DFP algorithmic parameters

εGN the accuracy of the stopping criterion according to the gradient norm
KRS the direction restart frequency

Algorithm 1 BFGS/DFP method
Require: algorithmic parameters setup, x0.
1: for k = 0, . . . , kmax do
2: if ‖∇f(xk)‖ ≤ εGN then
3: x∗ = xk

4: return
5: end if
6: if (k mod KRS) = 0 then
7: Hk = E
8: end if
9: pk = −∇f(xk)Hk

10: αk = arg minα>0 f(xk + αpk).
11: xk+1 = xk + αkpk

12: Hk+1 = Φ(Zk, xk, xk+1,∇f(xk),∇f(xk+1)) – update H (B−1 approximation)
with corresponding update rule Φ for BFGS/DFP scheme

13: end for
Ensure: x∗ if the early termination condition was reached, otherwise the final iterate

x(kmax+1).

26 D. Pasechnyuk et al.

Table 8. L-BFGS algorithmic parameters

m > 0 the history size (length).
εGN the accuracy of the stopping criterion according to the gradient norm
εFLT “machine epsilon”, equal to 7 · 10−16 (1 + εMAS = 1).

Algorithm 2 L-BFGS method
Require: algorithmic parameters setup, initial x0.
1: p0 = −∇f(x0).
2: for k = 0, . . . , kmax do
3: if ‖∇f(xk)‖2 ≤ εGN then
4: x∗ = xk

5: return
6: end if
7: αk = arg minα>0 f(xk + αpk)
8: xk+1 = xk + αkpk

9: pk+1 = −∇f(xk+1).
10: m̃ = min(k + 1,m)
11: for j = m̃, m̃− 1, . . . , 2 do
12: sj = sj−1.
13: yj = yj−1.
14: end for
15: s1 = xk+1 − xk
16: y1 = ∇f(xk+1)−∇f(xk)
17: for j = 1, 2, . . . , m̃ do
18: ρ =

〈
sj , yj

〉
19: if |ρ| ≤ εFLT then
20: pk+1 = −∇f(xk+1), go to line 33
21: end if
22: α̂j = 1/ρ

〈
sj , pk+1

〉
.

23: pk+1 = pk+1 − α̂jyj .
24: end for
25: for j = m̃, m̃− 1, . . . , 1 do
26: ρ =

〈
sj , yj

〉
27: if |ρ| ≤ εFLT then
28: pk+1 = −∇f(xk+1), go to line 33
29: end if
30: β̂j = 1/ρ

〈
yj , pk+1

〉
.

31: pk+1 = pk + (α̂j − β̂j)sj .
32: end for
33: continue loop
34: end for
Ensure: x∗ if the early termination condition was reached, otherwise the final iterate

x(kmax+1).

Non-convex optimization in digital pre-distortion of the signal 27

C Conjugate Gradients Algorithms
Table 9. CG algorithmic parameters

εGN the accuracy of the stopping criterion according to the gradient norm
εFLT “machine epsilon”, equal to 7 · 10−16 (1 + εMAS = 1).
KRS the direction restart frequency

Algorithm 3 CG(HS) method
Require: algorithmic parameters setup, initial x0.
1: p0 = −∇f(x0)
2: for k = 0, . . . , kmax do
3: if ‖∇f(xk)‖ ≤ εGN then
4: x∗ = xk

5: return
6: end if
7: αk = arg minα>0 f(xk + αpk)
8: xk+1 = xk + αkpk

9: if ((k + 1) mod KRS) = 0 then
10: pk+1 = −∇f(xk+1), go to line 18
11: end if
12: s = 〈∇f(xk+1)−∇f(xk), xk+1 − xk〉
13: if |s| ≤ εFLT then
14: pk+1 = −∇f(xk+1), go to line 18
15: end if
16: β = 〈∇f(xk+1)−∇f(xk),∇f(xk)〉/s
17: pk+1 = −∇f(xk+1) + β · pk
18: continue loop
19: end for
Ensure: x∗ if the early termination condition was reached, otherwise the final iterate

x(kmax+1).

Algorithm 4 CG(FR) method
Require: algorithmic parameters setup, initial x0.
1: p0 = −∇f(x0)
2: for k = 0, . . . , kmax do
3: if ‖∇f(xk)‖ ≤ εGN then
4: x∗ = xk

5: return
6: end if
7: αk = arg minα>0 f(xk + αpk)
8: xk+1 = xk + αkpk

9: if ((k + 1) mod KRS) = 0 then
10: pk+1 = −∇f(xk+1)
11: else
12: β = ||∇f(xk+1)||2 / ||∇f(xk)||2
13: pk+1 = −∇f(xk+1) + β · pk
14: end if
15: end for
Ensure: x∗ if the early termination condition was reached, otherwise the final iterate

x(kmax+1).

28 D. Pasechnyuk et al.

Algorithm 5 CG(Nesterov) method
Require: algorithmic parameters setup, initial x0. y−1 = y−2 = x0

1: for k = 0, . . . , kmax do
2: if ‖∇f(xk)‖ ≤ εGN then
3: x∗ = xk

4: return
5: end if
6: αk1 = arg minα>0 f(xk + α(yk−2 − xk))
7: yk = xk + αk1(yk−2 − xk)
8: αk2 = arg minα>0 f(yk − α∇f(yk))
9: xk+1 = yk − αk2∇f(yk)
10: end for
Ensure: x∗ if the early termination condition was reached, otherwise the final iterate

x(kmax+1).

Non-convex optimization in digital pre-distortion of the signal 29

D Global Algorithms

D.1 Simulated annealing

Table 10. Simulated annealing algorithmic parameters

t0 initial "temperature" [1.0, 1000.0], 6.0

KCG number of iterations of the conjugate gradient method [1, 1000] 0 (v1) or 50
(v2)

Kjump frequency of "jump" – forced update of the starting point [1, 1000], 100

Djump "jump" intensity [10−6, 103], 1

tmax algorithm time limit, sec. [1, 105], 600

Algorithm 6 Simulated Annealing method
Require: algorithmic parameters setup, initial x0, bounds xL, xG ∈ Rn.
1: x∗ = x0

2: f∗ = f(x∗)
3: k = 0
4: while tk ≤ tmax do
5: Perform KCG iterations of the conjugate gradient method which begins in xk,

save results to x̄k

6: if f(x̄k) < f(xk) then
7: x∗ = x̄k

8: xk+1 = x̄k

9: else
10: Generate (uniform) random vector r ∈ Rn : Ri ∈ [−1, 1]
11: Perform a “jump”: xk+1 = x∗ +Djump · r
12: k = k + 1, goto next iteration
13: end if
14: Calculate the “jump” probability P k = (1/k)1/t0 .
15: Generate (uniform) random value p ∈ [0, 1]
16: if (K mod Kjump = 0) or (p ≤ PK) then
17: Perform a “jump” (see line 10 for details)
18: else
19: xk+1 = xk

20: end if
21: k = k + 1
22: end while
23: return x∗

30 D. Pasechnyuk et al.

D.2 Differential Evolution results
Table 11. Differential evolution algorithmic parameters

m number of individuals in a population [4, 1000], 20

KCG number of iterations of the conjugate gradient method [1, 1000] 0 (v1) or 50 (v2)
F mutation “force” – amplitude of the introduced disturbance [1.0, 1000.0], 0.5

CR mutation probability [10−3, 1.0], 0.1

εBIO minimum allowed measure of “biodiversity” [10−12, 10.0], 10−6

tmax algorithm time limit, sec. [1, 105], 600

Algorithm 7 Differential Evolution method
Require: algorithmic parameters setup, initial x0, bounds xL, xG ∈ Rn.
1: x∗ = x0

2: f∗ = f(x∗)
3: k = 0
4: Generate a random starting population P 0 = {p1 = x0, p2, ..., pm}, xL ≤ pi ≤
xG,∀i ∈ [1, ...,m]

5: Perform a selection of the starting population: make m local descents, each of KCG

iterations of the conjugate gradient method, each begins with its individual of the
starting population P 0, save results to S = {s1, s2, ..., sm}

6: Refine the record: x∗ = arg min
x∈S

f(x)

7: P 0 = S
8: while tk ≤ tmax do

9: Calculate a weak "measure of biodiversity" MBIO = 1/(m− 1)
m−1∑
l=1

‖pl+1 − pl‖

10: if MBIO ≤ εBIO then
11: return x∗

12: end if
13: for l = 1, . . . ,m do
14: Generate (uniform) random value Rl ∈ [0, 1]
15: if Rl < CR then
16: pk+1

l = pkl
17: else
18: Generate three random indexes j1, j2, j3 : j1 6= j2 6= j3 6= l
19: Generate an individual of a new population pk+1

l = pj1 + F (pj2 − pj3).
20: end if
21: Estimate new individual: perform KCG iterations of the conjugate gradient

method which begins in pk+1
l , save results to sl

22: end for
23: Refine the record: x∗ = arg min

x∈S
f(x)

24: Perform selection: add m best individuals from P k ∪ S to the new population
P k+1

25: k = k + 1
26: end while
27: return x∗

Non-convex optimization in digital pre-distortion of the signal 31

E Other Algorithms

E.1 Raider Method

The main idea of the method is to identify a subset of influential variables and
to optimize at each iteration in the gradient direction, corresponding only to this
set. To assess the influence of variables, an analysis of the gradient component
modules is used, from the maximum of which a cross section is performed, which
determines the influence of each variable in this situation. The cross-sectional
level is set by the algorithmic parameter DLEV EL. In the direction thus trun-
cated, the simplest one-dimensional search is performed, which implements a
multiple division of the step (starting from a single value) to achieve an im-
proving approximation. It seems obvious that the effectiveness of such a method
should most significantly depend on the value of the parameter , indicating
which part of the variables is selected at a given iteration. In connection with
the above, we consider two versions of the algorithm: the “good” variant with
DLEV EL = 0.2 (Var1) and the “evil” variant with DLEV EL = 0.9 (Var2).

Table 12. Raider algorithmic parameters

DLEV EL the gradient cross section level [10−6, 1.0], equal to 0.2.
εNG the accuracy of the stopping criterion according to the gradient norm from

[10−12, 102], equal to 10−5.
Kα the coefficient of the step compression from [1.1, 10.0], equal to 3.0 (Var2).
αMIN the minimum step of the local descent [10−15, 10−1], equal to 10−12 (Var2).

E.2 Levenberg–Marquardt Method

It was also explored other ways to select the S(xk) matrix, whose scheme looks
like S(xk) = λkB(xk), where B(xk) selected as described in table 13.

Table 13. Levenberg–Marquardt method variants

Variant B(xk)

1 I = diag {1, 1, ..., 1}
2 diag {G} = diag {G11(xk), G22(xk), ..., Gnn(xk)}, where G(xk) = J(xk)TJ(xk)

3 diag {
√
G} = diag {

√
G11(xk),

√
G22(xk), ...,

√
Gnn(xk)}

Algorithm 9 describes a modification of the Levenberg–Marquardt method
implemented for the presented experiments. Parameter values used in computa-
tional experiments: α = 0.5, β = 10, λ0 = 10−1.

32 D. Pasechnyuk et al.

Algorithm 8 Raider method
Require: algorithmic parameters setup, initial x0.
1: for K = 0, . . . , Tout do
2: if ||∇f(xK)|| ≤ εNG then
3: x∗ = xK

4: return
5: end if
6: MGRAD = max{|∇if(xK)|, i = 1, n}.
7: for i = 1, . . . , n do
8: if |∇if(xK)| > DLEV EL ·MGRAD then
9: yKi = xKi −∇if(xK)
10: else
11: yKi = xKi .
12: end if
13: end for
14: α = 1.
15: x(α) = xK + α(yK − xK)
16: if f(x(α)) < f(xK) then
17: xK+1 = x(α)
18: else
19: α = α/Kα.
20: if α ≤ αMIN then
21: x∗ = xK

22: return
23: else
24: go to line 15
25: end if
26: end if
27: end for
Ensure: x∗ if the early termination condition was reached, otherwise the final iterate

xTout+1.

E.3 Modification of B.T. Polyak Method

Table 14. B.T. Polyak Method algorithmic parameters

f∗ the lower bound for the optimal value of the function from [−1010, 1010], equal
to 0.0.

εNG the accuracy of the stopping criterion according to the gradient norm from
[10−12, 102], equal to 10−5.

αMIN the minimum value of local step [10−15, 10−1], 10−12.
Kα the coefficient of the step compression [1.1, 10.0], 3.0.

Non-convex optimization in digital pre-distortion of the signal 33

Algorithm 9 Levenberg–Marquardt method
Require: 0 < α < 1, β > 1, λ0 > 0
1: for k = 1, . . . , N do
2: λk = λk−1

3: Calc J(xk), B(xk)
4: Try to find direction dk (solve linear system with Cholesky decomposition for

example): (
J(xk)TJ(xk) + λkBk

)
dk = −J(xk)T f(xk)

5: if dk is not found (linear system cannot be solved) then
6: λk = λk · β, goto line 4
7: end if
8: xk+1 = xk + d
9: if F (xk+1) ≥ F (xk) then
10: λk = λk · β, goto line 4
11: else
12: λk = λk · α
13: end if
14: end for

Algorithm 10 Polyak method
Require: initial x0, number of iterations Tout.
1: for K = 0, . . . , Tout do
2: if ‖∇f(xK)‖ ≤ εNG then
3: x∗ = xK

4: return
5: end if
6: if Variant1 then
7: α = (f(xK)− fNIZ)/||∇f(xK)||2
8: end if
9: if Variant2 then
10: α = 2(f(xK)− fNIZ)/||∇f(xK)||2
11: end if
12: xK+1 = xK − α∇f(xK)
13: if f(xK+1) ≥ f(xK) then
14: α = α/Kα

15: if α < αMIN then
16: x∗ = xK

17: return
18: else
19: go to line 12
20: end if
21: end if
22: end for
Ensure: x∗ if the early termination condition was reached, otherwise the final iterate

xTout+1.

	Non-convex optimization in digital pre-distortion of the signal
	1 Introduction
	2 Problem formulation
	2.1 Model Description
	2.2 Optimization Problem Statement

	3 Optimization Methods
	3.1 Long memory L-BFGS
	3.2 Flexible Gauss–Newton Method
	3.2.1 Numerical experiments

	3.3 Stochastic methods
	3.4 Global algorithms
	3.4.1 Multi-start tests
	3.4.2 Simulated annealing

	3.5 Differential evolution

	4 Model Tuning
	4.1 Model Structure
	4.2 Initialization
	4.2.1 Simple shifted initialization

	5 Overfitting
	5.1 Different training set size

	6 Conclusion
	Appendices
	A Stochastic Squares Method Implementation Details
	A.1 Small batch size (TEXT)
	A.2 Big batch size (TEXT)

	B Quasi-Newton Algorithms
	C Conjugate Gradients Algorithms
	D Global Algorithms
	D.1 Simulated annealing
	D.2 Differential Evolution results

	E Other Algorithms
	E.1 Raider Method
	E.2 Levenberg–Marquardt Method
	E.3 Modification of B.T. Polyak Method

