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Zeroth-order Median Clipping for Non-Smooth Convex Optimization Problems
with Heavy-tailed Symmetric Noise

Nikita Kornilov 1 2 Yuriy Dorn 3 1 4 Aleksandr Lobanov 1 5 Nikolay Kutuzov 1 Innokentiy Shibaev 1 4

Eduard Gorbunov 6 Alexander Gasnikov 1 5 2 Alexander Nazin 7 1

Abstract

In this paper, we consider non-smooth convex op-
timization with a zeroth-order oracle corrupted
by symmetric stochastic noise. Unlike the exist-
ing high-probability results requiring the noise to
have bounded κ-th moment with κ ∈ (1, 2], our
results allow even heavier noise with any κ > 0,
e.g., the noise distribution can have unbounded 1-
st moment. Moreover, our results match the best-
known ones for the case of the bounded variance.
To achieve this, we use the mini-batched median
estimate of the sampled gradient differences, ap-
ply gradient clipping to the result, and plug in the
final estimate into the accelerated method. We
apply this technique to the stochastic multi-armed
bandit problem with heavy-tailed distribution of
rewards and achieve O(

√
dT ) regret by incorpo-

rating the additional assumption of noise symme-
try.

1. Introduction
During the recent few years, stochastic optimization prob-
lems with heavy-tailed noise received a lot of attention and
were actively studied by many researchers. In particular,
heavy-tailed noise was observed in various problems, such
as the training of large language models (Brown et al., 2020;
Zhang et al., 2020), generative adversarial networks (Good-
fellow et al., 2014; Gorbunov et al., 2022a), finance (Rachev,
2003), and blockchain (Wang et al., 2019). To solve these
problems efficiently many algorithms and techniques were
proposed. One of the most popular techniques for handling
heavy-tailed noise in theory and practice is gradient clipping
(Pascanu et al., 2013), see (Gorbunov et al., 2020; Cutkosky
& Mehta, 2021; Sadiev et al., 2023; Nguyen et al., 2023;
Puchkin et al., 2023) for the recent advances.

1MIPT, Moscow, Russia 2SkolTech, Moscow, Russia 3MSU AI
Institute 4IITP RAS 5ISP RAS 6MBZUAI 7ICS RAS. Correspon-
dence to: Nikita Kornilov <kornilov.nm@phystech.edu>.

However, most of the mentioned works focus on the
gradient-based (first-order) methods. For some problems,
such as the bandit optimization problem (Flaxman et al.,
2004; Bartlett et al., 2008; Bubeck & Cesa-Bianchi, 2012),
only losses are available, and thus, zeroth-order algorithms
are required. The only existing works that handle heavy-
tailed noise in the case of the zeroth-order optimization
are (Kornilov et al., 2023a;b). In particular, Kornilov et al.
(2023a;b) obtain high-probability convergence guarantees
for non-smooth convex stochastic optimization problems
with the noise having bounded κ-th moment for κ ∈ (1, 2].
These guarantees degenerate when κ tends to 1, and the
convergence is not guaranteed for κ = 1. In the case of
first-order methods, this issue is addressed by Puchkin et al.
(2023), who consider symmetric (and close to symmetric)
heavy-tailed distributions and achieve better complexity
guarantees than previous ones. However, the question of the
possibility of the extension the results from (Puchkin et al.,
2023) to the case of the zeroth-order optimization remains
open. In this paper, we address this question.

1.1. Problem setup

We consider a non-smooth convex optimization problem on
set Q ⊆ Rd

min
x∈Q

f(x), (1)

where f : Rd → R is M2-Lipschitz continuous function
w.r.t. the Euclidean norm. The optimization is performed
only by accessing function evaluations rather than sub-
gradients, i.e., for any of points x, y ∈ Q, a stochastic
oracle returns the pair of the scalar values f(x, ξ), f(y, ξ)
with the same realization of the stochastic variable ξ, such
that

f(x, ξ)− f(y, ξ) = f(x)− f(y) + ϕ(ξ|x, y),

where ϕ(ξ|x, y) is the symmetric stochastic noise, whose
distribution depends on points x, y. Distribution of ϕ(ξ|x, y)
is induced by random variable ξ.

Moreover, ϕ is supposed to have heavy tails, i.e., there exists
κ > 0 such that probability density function pϕ(u|x, y) ∼
a(x,y)

1+|u|1+κ (u ∈ R). Previous results on zeroth-order stochas-
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tic optimization were based on the assumption of the exis-
tence of the finite expectation of the noise ϕ (κ ∈ (1, 2]).
The assumption on symmetric noise allows us to consider
a wider range of problems (e.g., without finite expectation)
and achieve a convergence rate as if the noise had a bounded
second moment with the correspondingly small number of
oracle calls. Although these results cannot be applied in
the case of asymmetric noise and the question of their op-
timality remains open, they dramatically improve existing
bounds for the larger family of stochastic noise.

In our work, we consider two types of noise ϕ(ξ|x, y) based
on the dependency on points x, y. If the distribution of ϕ
does not depend on points x, y, then the oracle is called
the “one point oracle”, since for every point x, we have
independent value f(x, ξ). If the distribution of ϕ becomes
more concentrated around zero as the distance ∥x − y∥2
becomes smaller, then the oracle is called “Lipschitz oracle”.
This property allows obtaining for two close points x, y
better estimation of f(x) − f(y) and, as a consequence,
better convergence rate of the proposed algorithms.

We apply the median operator to the batch ϕ(ξi|x, y)2m+1

i=1

of size proportional to 1
κ in order to lighten tails of symmet-

ric ϕ distribution and obtain unbiased oracle for f(x)−f(y)
with bounded second moment. Then we plug in this esti-
mate to the existing zeroth-order algorithm. For the most
common noise distributions with κ ∈ [1, 2], the number of
samples for the median operator allowing computation in
parallel is not greater than 10.

1.2. Contributions

For unconstrained convex optimization we propose modi-
fied version of ZO-clipped-SSTM (Kornilov et al., 2023b)
called ZO-clipped-med-SSTM. This algorithm is acceler-
ated and allow parallel batching. For optimization on convex
compact we propose modified version of ZO-clipped-SMD
(Kornilov et al., 2023a) called ZO-clipped-med-SMD. This
algorithm is not accelerated and considered without batch-
ing. Finally, for strongly convex functions we propose
restarted versions of the above-mentioned algorithms.

In the Table 1 we provide number of successive iterations
required to achieve accuracy ε on function value with prob-
ability at least 1− β for above-mentioned algorithms.

For each iteration ZO-clip-med-SSTM requires perform-
ing in parallel way b

κ oracle calls, while ZO-clip-SSTM
requires only b calls.

For the constrained optimization the same bounds without
acceleration and batching hold true.

For stochastic multi-armed bandit (MAB) problem with
heavy tails we propose Clipped-INF-med-SMD algorithm.
In Theorem 3 we get O(

√
Td) bound on regret which coin-

cides with lower bound for stochastic MAB with bounded
variance on rewards and in general is better then lower
bound for heavy-tailed MAB setting. Moreover, this bound
holds even in cases, when reward distribution expected value
is not defined. To the best of our knowledge, this is the first
positive result for the setting.

1.3. Paper organization.

In Section 2, we introduce notations, main assumptions, and
a smoothing technique for gradient estimation. Next, in
Sections 3, we introduce two novel gradient-free algorithms:
ZO-clipped-SSTM and R-ZO-clipped-SSTM for non-
smooth stochastic optimization under heavy-tailed noise.
Additionally, we present convergence analysis for each al-
gorithm. In Section 4, we introduce the Clipped-INF-med-
SMD algorithm for stochastic multi-armed bandits with
heavy tails and provide convergence analysis. In Section
A.4, we present the results of computational experiments.

2. Preliminaries
Notations. For vector x ∈ Rd and p ∈ [1, 2] we define

p-norm as ∥x∥p
def
=

(
d∑
i=1

|xi|p
) 1

p

and its dual norm ∥x∥q,

where 1
p + 1

q = 1. In the case q = ∞, we define ∥x∥∞ =

max
i=1,...,d

|xi|.

Median operator Median({ai}2m+1
i=1 ) applied to the ele-

ments sequence of the odd size 2m + 1,m ∈ N returns
m-th order statistics. We also use short notation for max
operator, i.e. a ∨ b def

= max(a, b).

We define the Euclidean unit ball Bd2
def
= {x ∈ Rd : ∥x∥2 ≤

1}, the Euclidean unit sphere Sd2
def
= {x ∈ Rd : ∥x∥2 = 1},

and the probability simplex ∆d
+

def
= {x ∈ Rd+ :

∑d
i=1 xi =

1}. Denote by [x, y] an interval between two fixed endpoints
x and y.

Notation Õ hides logarithm factors.

Assumptions. First, we make a convexity and Lipschitz
continuity assumptions on optimized function f .

Assumption 1 (Strong convexity) There exists µ ≥ 0
such that function f : Q → R is µ-strongly convex on
convex set Q ⊆ Rd, i.e.

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

− 1

2
µλ(1− λ)∥x1 − x2∥22,

for all x1, x2 ∈ Q,λ ∈ [0, 1]. If µ = 0 we can say "convex
function" instead of "0-strongly convex function".
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Table 1: Number of successive iterations to achieve a function accuracy ε; unconstrained optimization via Lipschitz
oracle with bounded κ-th moment. Constants b,M ′

2 denote the batch size and the Lipschitz constant of the oracle f(x, ξ),
respectively.

As 1 ZO-clipped-SSTM (Kornilov et al., 2023b) ZO-clipped-med-SSTM (this work)
κ > 1 κ > 0, symmetric noise

µ = 0 Õ
(
max

{
d

1
4M ′

2

ε , 1b

(√
dM ′

2

ε

) κ
κ−1

})
Õ
(
max

{
d

1
4M ′

2

ε , 1b

(√
dM ′

2

ε

)2})
µ > 0 Õ

(
max

{
d

1
4M ′

2

ε , 1b

(
d(M ′

2)
2

µε

) κ
2(κ−1)

})
Õ
(
max

{
d

1
4M ′

2

ε , 1b
d(M ′

2)
2

µε

})

For a constant τ > 0, let us define an expansion of set Q
namely Qτ = Q + τBd2 , where + stands for Minkowski
addition. Further in the paper, we will consider for any point
x ∈ Q its neighborhood x+τBd2 , therefore next assumption
must hold on larger set Qτ .

Assumption 2 (Lipschitz continuity) Function f : Q →
R is M2-Lipschitz continuous w.r.t. the Euclidean norm on
Qτ , i.e., for all x1, x2 ∈ Qτ

|f(x1)− f(x2)| ≤M2∥x1 − x2∥2.

Next, we make important assumption on symmetric distri-
bution of the noise ϕ(ξ|x, y) conditioned by points x, y.

Assumption 3 (Symmetric noise distribution) For
any pair of points x, y ∈ Q noise ϕ(ξ|x, y) has sym-
metric conditional probability density p(u|x, y), i.e.
p(u|x, y) = p(−u|x, y),∀u ∈ R.

We assume that there exist κ > 0, γ > 0, and scale function
B(x, y) : Rd × Rd → R, such that ∀u ∈ R holds

p(u|x, y) ≤ γκ · |B(x, y)|κ

|B(x, y)|1+κ + |u|1+κ
. (2)

We consider two possible oracles

• One point oracle: ϕ(ξ|x, y) distribution doesn’t de-
pend on points x, y, i.e.

γ ·B(x, y) ≡ ∆. (3)

• Lipschitz oracle:

|γ ·B(x, y)| ≤ ∆ · ∥x− y∥2, (4)

where ∆ > 0 is the Lipschitz constant.

For example, in case random variable ξ has Cauchy distri-
bution, then one can use

• One point oracle: f(x, ξ) = f(x) + ξx, f(y, ξ) =
f(y) + ξy with independent ξx, ξy .

• Lipschitz oracle: f(x, ξ) = f(x) + ⟨ξ, x⟩, f(y, ξ) =
f(y) + ⟨ξ, y⟩, where ξ is d-dimensional random vec-
tor with d independent components ξi (i = 1, . . . , d).
Oracle gives the same realization of ξ for both x and
y.

Remark 1 In works (Dvinskikh et al., 2022; Kornilov et al.,
2023b) different assumption on Lipschitz noise is considered.
For any realization of ξ function f(x, ξ) is M ′

2(ξ)-Lipschitz,
i.e. ∀x, y ∈ Q

|f(x, ξ)− f(y, ξ)| ≤M ′
2(ξ)∥x− y∥2, (5)

and M ′
2(ξ)

κ has bounded κ-th moment (κ > 1), i.e.

[M ′
2]
κ def
= Eξ[M ′

2(ξ)
κ] <∞.

We emphasize that if Assumption 3 holds with κ then one
can find M ′

2(ξ, x, y) such that (5) holds for any 1 < κ′ < κ
with M ′

2 = O(M2 +∆), where constant in O(·) depends
only on κ′.

However, there is slight difference between the assumptions.
In our work for Lipschitz oracle we make Assumption 3 on
variable ϕ(ξ|x, y) with fixed x, y, while in (Kornilov et al.,
2023b) authors make assumption on ξ itself and condition
x, y by it. For the very same reason, we can not generalize
common proof techniques from previous works and in our
upper bounds (13) and (16) we obtain not M ′

2 =M2 +∆,
but M ′

2 =M2 + d∆.

For more details and intuition behind Assumption 3 we refer
to Appendix paragraph A.1.

Randomized smoothing. The main scheme that allows us
to develop batch-parallel gradient-free methods for non-
smooth convex problems is randomized smoothing (Er-
moliev, 1976; Gasnikov et al., 2022b; Nemirovskij & Yudin,
1983; Nesterov & Spokoiny, 2017; Spall, 2005) of a non-
smooth function f(x). The smooth approximation to a
non-smooth function f(x) is defined as

f̂τ (x)
def
= Eu[f(x+ τu)], (6)

where u ∼ U(Bd2 ) is a random vector uniformly distributed
on the Euclidean unit ball Bd2 .

3
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The next lemma gives estimates for the quality of this ap-
proximation. In contrast to f(x), function f̂τ (x) is smooth
and has several useful properties.

Lemma 1 (Theorem 2.1 (Gasnikov et al., 2022b) )
Let there exist a subset Q ⊆ Rd and τ > 0 such that
Assumptions 1 and 2 hold on Qτ . Then,

1. Function f̂τ (x) is µ-strongly convex, Lipschitz with
constant M2 on Q, and satisfies

sup
x∈Q

|f̂τ (x)− f(x)| ≤ τM2.

2. Function f̂τ (x) is differentiable on Q with the follow-
ing gradient

∇f̂τ (x) = Ee

[
d

τ
f(x+ τe)e

]
,

where e ∼ U(Sd2 ) is a random vector uniformly dis-
tributed on unit Euclidean sphere.

3. Function f̂τ (x) is L-smooth with L =
√
dM2/τ on Q.

Our algorithms will aim at minimizing the smooth approxi-
mation f̂τ (x) with the fixed τ during optimization. Given
Lemma 1, the output of the algorithm will also be a good
approximate minimizer of f(x) when τ is sufficiently small.

Gradient estimation. Our algorithms will be based on
randomized gradient estimate of the function f̂τ (x), which
will then be used in a first order algorithm. Following
(Shamir, 2017), the gradient of f̂τ (x) can be estimated by
the following vector:

g(x, e, ξ) =
d

2τ
(f(x+ τe, ξ)− f(x− τe, ξ))e, (7)

where τ > 0 and e ∼ U(Sd2 ) is a random vector uniformly
distributed on the Euclidean unit sphere Sd2 . Moreover, e, ξ
are independent from each other conditionally on x.

Noise ϕ(ξ|x + τe, x − τe) might have unbounded expec-
tation, therefore in order to obtain unbiased estimate of
∇f̂τ (x) we lighten tails of ϕ distribution. For this pur-
pose we use component-wise median operator on the batch
{g(x, e, ξi)}2m+1

i=1 of 2m+ 1 samples with independent ξi

and the same x, e, i.e.

Medm(x, e, {ξ}) def
= Median({g(x, e, ξi)}2m+1

i=1 ). (8)

For large enough m this trick allows Medm(x, e, {ξ}) to
have finite expectation and variance conditionally on x w.r.t.
all emerged variables ξ, e.

In addition, we define batched version of the median es-
timate with smaller second moment in Euclidean norm at
point x.

BatchMedm,b(x, {e}, {ξ}) def
=

1

b

b∑
j=1

Medm(x, ej , {ξ}j),

(9)
where ej are sampled independently from U(Sd2 ).

Lemma 2 Let function f satisfies Assumptions 1, 2 and
symmetric noise ϕ satisfies Assumption 3 with κ > 0. If
median size m > 2

κ with norm q ∈ [2,+∞], then median
estimate is unbiased, i.e.

Ee,ξ[BatchMedm,b(x, {e}, {ξ})|x] = ∇f̂τ (x),

and has bounded second moment, i.e

Ee,ξ[∥Medm(x, e, {ξ})−∇f̂τ (x)∥2q|x] ≤ σ2a2q, (10)

Ee,ξ[∥BatchMedm,b(x, {e}, {ξ})−∇f̂τ (x)∥22|x] ≤
σ2

b
,

where aq = d
1
q−

1
2 min{

√
32 ln d− 8,

√
2q − 1} and for

• One point oracle:

σ2 = 8dM2
2 + 2

(
d∆

τ

)2

(2m+ 1)

(
4

κ

) 2
κ

,

• Lipschitz oracle:

σ2 = 8dM2
2 + (16m+ 8)d2∆2

(
4

κ

) 2
κ

.

Proof of Lemma 2 can be found in Appendix paragraph A.2.

3. Zeroth-order algorithms for non-smooth
optimization problems

In each algorithm below we use clipping technique which
clips tails of gradient estimate distribution and ensures the
algorithm convergence. Let λ > 0 be clipping constant,
parameter q ∈ [2,+∞] for q−norm and g ∈ Rd, then
clipping operator clip is defined as

clipq (g, λ) =

{
g

∥g∥q
min (∥g∥q, λ) , g ̸= 0,

0, g = 0.
(11)
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Fixed during minimization smoothing parameter τ can be
chosen arbitrary. However, its optimal value can be calcu-
lated directly based on desired accuracy ε.

Then we feed the oracle vector BatchMedm,b(x, {e}, {ξ})
that satisfies inequalities from Lemma 2 into various clipped
first-order methods which minimize L =

√
dM2/τ smooth

function f̂τ (x) on set Q.

3.1. ZO-clipped-med-SSTM for unconstrained
problems

Let us suppose that the function f : Rd → R is convex, i.e.,
Assumption 1 is satisfied with µ = 0.

We use first-order Clipped Stochastic Similar Triangles
Method (clipped-SSTM) from (Gorbunov et al., 2020) and
it’s zeroth order version ZO-clipped-SSTM from (Kornilov
et al., 2023b) on the whole space Q = Rd and Euclidean
norm q = 2.

Algorithm 1 ZO-clipped-med-SSTM

Input: Starting point x0 ∈ Rd, number of iterations K,
median size m, batch size b, stepsize a > 0, smoothing
parameter τ , clipping levels {λk}K−1

k=0 .
1: Set L =

√
dM2/τ , A0 = α0 = 0, y0 = z0 = x0.

2: for k = 0, . . . ,K − 1 do
3: Set αk+1 = (k+2)/2aL, Ak+1 = Ak + αk+1.
4: xk+1 = Aky

k+αk+1z
k

Ak+1
.

5: Sample independently sequences {e} ∼ U(Sd2 ) and
{ξ} .

6: gk+1
med = BatchMedm,b(xk+1, {e}, {ξ}) from (9).

7: g̃k+1
med = clip2

(
gk+1
med, λk+1

)
.

8: zk+1 = zk − αk+1g̃
k+1
med.

9: yk+1 = Aky
k+αk+1z

k+1

Ak+1
.

10: end for
Output: yK

Theorem 1 (Convergence of ZO-clipped-med-SSTM)
Let for the function f : Rd → R Assumptions 1, 2 hold with
µ = 0 on Q = Rd and for symmetric noise Assumption 3
holds with κ > 0.

We use notation ∥x0 − x∗∥22 ≤ R2, where x0 is a starting
point and x∗ is an optimal solution to (1).

Suppose we run ZO-clipped-med-SSTM for K iterations
with smoothing parameter τ , batchsize b, probability 1− β
and further parameters m = 2

κ + 1, A = ln 4K/β ≥ 1,
a = Θ(min{A2, σK

2
√
Aτ/

√
bdM2R}), λk = Θ(R/(αk+1A)).

Then, with probability at least 1− β, holds true

f(yk)−f(x∗) = 2M2τ+Õ

(
max

{√
dM2R

2

τK2
,
σR√
bK

})
,

where σ comes from Lemma 2.

Moreover, with probability at least 1− β the iterates of ZO-
clipped-med-SSTM remain in the Euclidean ball with cen-
ter x∗ and radius 2R, i.e., {xk}K+1

k=0 , {yk}Kk=0, {zk}Kk=0 ⊆
{x ∈ Rd : ∥x− x∗∥2 ≤ 2R}.

Proof of Theorem 1 can be found in Appendix paragraph
A.3.

Corollary 1 In order to achieve accuracy ε, i.e. f(yk) −
f(x∗) ≤ ε via ZO-clipped-med-SSTM with probability at
least 1− β, the smoothing parameter τ must be chosen as
τ = ε

4M2
and number of iterations K must be equal

• One point oracle:

Õ

(
d

1
4M2R

ε
∨ (

√
dM2R)

2

b · ε2

(
1 ∨

(
4

κ

) 2
κ d∆2

ε2

))
,

(12)

• Lipschitz oracle:

Õ

(
max

{
d

1
4M2R

ε
,
d(M2

2 + d∆2/κ
2
κ )R2

b · ε2

})
.

(13)

For each iteration one requires (2m+1) ·b = Θ( bκ ) number
of oracle calls.

The first term in bound (13) is optimal in ε for the deter-
ministic case for non-smooth problem (see (Bubeck et al.,
2019)) and the second term in bound (13) is optimal in ε for
zeroth-order problems with finite variance (see (Nemirovskij
& Yudin, 1983)).

In case of one-point oracle, while noise ϕ is “small”, i.e.,

∆ ≤
(κ
4

) 1
κ ε√

d
(14)

optimal convergence rate is preserved. This bound is op-
timal in terms ε upper bound under which convergence is
optimal (Lobanov, 2023; Pasechnyuk et al., 2023; Risteski
& Li, 2016).

Numerical experiments comparing ZO-clipped-med-
SSTM and ZO-clipped-SSTM are located in Appendix
paragraph A.4.
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Remark 2 In this section, as in the whole paper, we
consider the case where the objective function is non-
smooth. However, the estimates presented in Corollary 1
can be improved by introducing a new assumption, namely
the assumption that the objective function f(·) is L-
smooth with L > 0: ∥∇f(y)−∇f(x)∥2 ≤ L∥y − x∥2,
∀x, y ∈ Q. Using this assumption we obtain the fol-
lowing value of the smoothing parameter τ =

√
ε/L

(see Gasnikov et al., 2022a, the end of Section 4.1).
Thus, assuming smoothness and convexity of the func-
tion and assuming symmetric noise (Assumption 3), we
obtain the following estimates for the iteration complex-

ity: Õ
(
max

{√
LR2

ε , (
√
dR)2

b·ε2

(
M2

2 ∨
(
4
κ

) 2
κ dL∆2

ε

)})
and Õ

(
max

{√
LR2

ε ,
d(M2

2+d∆
2/κ

2
κ )R2

b·ε2

})
for one point

oracle and Lipschitz oracle, respectively.

Remark 3 The results of Theorem 1 can be extended to the
case when the function satisfies the Polyak–Lojasiewicz con-
dition: let a function f(x) is differentiable and there exists
constant µ > 0 s.t. ∀x ∈ Q the following inequality holds
∥∇f(x)∥22 ≥ 2µ(f(x) − f(x∗)). The, assuming smooth-
ness (see Remark 2) and Polyak–Lojasiewicz condition for
the function and assuming symmetric noise (Assumption 3),
we obtain the following estimates for the iteration com-

plexity: Õ
(
max

{
L
µ ,

dL
bµ2ε

(
M2

2 ∨
(
4
κ

) 2
κ dL∆2

ε

)})
and

Õ
(
max

{
L
µ ,

dL(M2
2+d∆

2/κ
2
κ )

bµ2ε

})
for one point oracle and

Lipschitz oracle, respectively.

For µ−strongly-convex functions (under µ > 0) with Lip-
schitz oracle or one-point oracle with small noise (14) we
apply restarted version of ZO-Clipped-med-SSTM called
R-ZO-Clipped-med-SSTM. More details and convergence
results are located in Appendix paragraph A.5 and Corol-
lary 3.

3.2. ZO-clipped-med-SMD for constrained problems

To solve convex optimization problems on convex compact
Q ⊂ Rd we use oracle Medb in the zeroth-order algorithm
ZO-clipped-SMD from (Kornilov et al., 2023a) based on
Mirror Gradient Descent.

Let us introduce for this section 1-strongly convex w.r.t.
p-norm differentiable prox-function Ψp. We denote its
Fenchel conjugate and its Bregman divergence respectively
as

Ψ∗
p(y) = sup

x∈Rd

{⟨x, y⟩ −Ψp(x)},

VΨp(y, x) = Ψp(y)−Ψp(x)− ⟨∇Ψp(x), y − x⟩.

Theorem 2 (Convergence of ZO-clipped-med-SMD)
Let for the function f(·) Assumptions 1, 2 hold with µ = 0

Algorithm 2 ZO-clipped-med-SMD
Input: Number of iterations K, median size m, stepsize

ν, prox-function Ψp, smoothing parameter τ , clipping
level λ.

1: x0 = argmin
x∈Q

Ψp(x).

2: for k = 0, 1, . . . ,K − 1 do
3: Sample e from U(Sd2 ) and sequence {ξ}.
4: gk+1

med = Medm(xk+1, e, {ξ}) from (9).
5: g̃k+1

med = clipq
(
gk+1
med, λ

)
.

6: yk+1 = ∇(Ψ∗
p)(∇Ψp(xk)− νg̃k+1

med).
7: xk+1 = argmin

x∈Q
VΨp

(x, yk+1).

8: end for

Output: 1
T

T−1∑
k=0

xk

on convex compactQ and for symmetric noise Assumption 3
holds with κ > 0.

Denote x∗ as an optimal solution to (1).

Suppose we run ZO-clipped-med-SMD for K iterations
with smoothing parameter τ , q−norm with q ∈ [2,+∞],
prox-function Ψp, probability 1− β and further parameters
m = 2

κ + 1, λ = σaq
√
K, ν =

DΨp

λ , where diameter

squared D2
Ψp

def
= 2 sup

x,y∈Q
VΨp(x, y). We guarantee that with

probability at least 1− β

f(yk)− f(x∗) = 2M2τ + Õ
(
σaqDΨp√

K

)
,

where σ comes from Lemma 2.

Proof of Theorem 2 can be found in Appendix paragraph
A.3.

Corollary 2 In order to achieve accuracy ε, i.e. f(yk) −
f(x∗) ≤ ε via ZO-clipped-med-SMD with probability
at least 1 − β smoothing parameter τ must be chosen as
τ = ε

4M2
and number of iterations K must be equal for

• One point oracle:

Õ

(
(
√
dM2aqDΨp)

2

ε2

(
1 ∨

(
4

κ

) 2
κ d∆2

ε2

))
, (15)

• Lipchitz oracle:

Õ

(
d(M2

2 + d∆2/κ
2
κ )a2qD

2
Ψp

ε2

)
. (16)
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For each iteration one requires (2m+ 1) number of oracle
calls.

Bound (16) is optimal in terms of ε for stochastic non-
smooth optimization on convex compact with finite variance
according to (Vural et al., 2022). In case of one-point oracle,
optimal convergence rate is preserved under the same upper
bound (14).

Next, we discuss some standard sets Q and prox-functions
Ψp taken from (Ben-Tal & Nemirovski, 2001). We can
choose prox-functions to reduce aqDΨp

and get better con-
vergence constants. The two main setups are given by

1. Ball setup, p = 2, q = 2:

Ψp(x) =
1

2
∥x∥22,

2. Entropy setup, p = 1, q = ∞:

Ψp(x) = (1 + γ)

d∑
i=1

(xi + γ/d) log(xi + γ/d).

We consider unit balls Bdp′ and standard simplex △d
+ as

Q. For Q = △d
+ or Bd1 , the Entropy setup is preferable.

Meanwhile, for Q = Bd2 or Bd∞, the Ball setup is better.

For strongly-convex functions with Lipschitz oracle or one-
point oracle with small noise (14) we apply restarted version
of ZO-Clipped-SMD called R-ZO-Clipped-SMD. More
details and convergence results are located in Appendix
paragraph A.5 and Corollary 4.

4. Application to the multi-armed bandit
problem with heavy tails

In this section, we present the Clipped-INF-med-SMD
algorithm for multi-armed bandit problem with heavy-tailed
rewards.

The stochastic multi-armed bandit problem (MAB) with d
arms and horizon T can be viewed as an online optimization
problem with regret compared to a fixed competitor strategy
u defined as

E[RT (u)] = E

[
T∑
t=1

l(xt)−
T∑
t=1

l(u)

]
,

with linear loss function l(xt) = ⟨µ+ ξt, xt⟩, with noise ξt,
E[ξt] = 0 and unknown fixed vector of expected rewards
µ ∈ Rd. Heavy noise assumption usually require that there
is κ ∈ (1, 2], such that E[∥µ + ξt∥κ] ≤ σκ. Decision
variable xt ∈ ∆d

+ can be viewed as player’s mixed strategy
(probability distribution over arms), that he use to sample

arms with the aim to maximize expected reward. Loss
function is the expected reward (with minus) conditioned
by xt, but the player observe only sampled reward for the
chosen arm, i.e. the (sub)gradient g(x) ∈ ∂l(x) is not
observed in the MAB setting, and one must use inexact
oracle instead.

Bandits with heavy tails were first introduced in (Bubeck
et al., 2013) along with lower bounds on regret
Ω
(
Md

κ−1
κ T

1
κ

)
and nearly optimal algorithmic scheme

Robust UCB. Recently few optimal algorithms were pro-
posed (Lee et al., 2020; Zimmert & Seldin, 2019; Huang
et al., 2022; Dorn et al., 2024) with online mirror descent
(OMD) as the main ingredient. Currently, these types of
algorithms are referred to as best-of-two-worlds algorithms.
In this work we consider HTINF and APE as the main
benchmark.

In this section we assume that the noise ξ satisfy Assump-
tion 3 for some positive κ and follow the same path and
construct Clipped-INF-med-SMD based on online mir-
ror descent, but we show that in case of symmetric noise
we can improve regret upper bounds and make it O(

√
Td)

which corresponds to lower bound for stochastic MAB with
bounded variance of rewards.

In our algorithm we use an importance-weighted estimator:

ḡt,i =

{
gt,i
xt,i

if i = At

0 otherwise
,

where At is the index of the chosen (at round t) arm.

This estimator is unbiased, i.e. Ext [ḡt] = gt. The main
drawback of this estimator is that in the case of small xt,i
the value of ḡt,i can be arbitrarily large. In the case when the
distribution of the noise gt−µ has heavy tails (i.e. ∥gt−µ∥∞
can be large with high probability), this drawback can be
amplified.

Theorem 3 Let there exists κ > 0 such that conditional
probability density function for each reward satisfies As-
sumption 3, and R2 ≥ ∥µ∥22. Then for period T the se-
quence {xt}Tt=1 generated by Clipped-INF-med-SMD with

parameters K = T
2m+1 , ν =

√
2(2m+1)d1/4

√
18σ2+R2

√
T

,λ =

σ
√

T
2m+1 , m = 2

κ + 1, prox-function Ψp = ψ(x) =

2(1 −
∑n
i=1 x

1
2
i ), p = 2, q = 2 satisfies for any fixed

u ∈ ∆d
+:

1

T
E [RT (u)] ≤ 2

√
2(2m+ 1)1/2T−1/2γ, (17)

with γ = 2σ + d1/4
√
18σ2 +R2, and high probability

bounds from Theorem 2 hold.

Proof is located in Appendix paragraph A.6.
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Figure 1: Average expected regret and probability of optimal arm picking mean (aggregated with average filter) for 100
experiments and 30000 samples with 0.95 and 0.05 percentiles for regret and ± std bounds for probabilities

Algorithm 3 Clipped-INF-med-SMD
Input: Time period T , median sizem, number of iterations

K =
⌈
T−1
2m+1

⌉
, stepsize ν, prox-function Ψp, clipping

level λ.
1: x0 = arg min

x∈∆d
+

Ψp(x).

2: for k = 0, 1, . . . ,K do
3: Sample e from U(Sd2 ).
4: Draw At for 2m + 1 times (t = (2m + 1) · k +

1, . . . , (2m + 1) · (k + 1)) with P (At = i) = xk,i,
i = 1, . . . , d and observe rewards gt,At .

5: For each observation construct estimation ĝt,i ={
gt,i
xk,i

if i = At

0 otherwise
,

i = 1, . . . , d.
6: gk+1

med = Median({ĝt}(2m+1)·(k+1)
t=(2m+1)·k+1).

7: g̃k+1
med = clipq

(
gk+1
med, λ

)
.

8: yk+1 = ∇(Ψ∗
p)(∇Ψp(xk)− νg̃k+1

med).
9: xk+1 = arg min

x∈∆d
+

VΨp
(x, yk+1).

10: end for

Output: 1
T

T−1∑
k=0

xk

Note that σ2 depends linearly on d. Same holds true for

R2 ≃ ∥µ∥22 ≤ d · ∥µ∥2∞. Thus 1
T E [RT (u)] ≤ O

(√
d
T

)
which corresponds to lower bound for stochastic MAB with
bounded variance on reward and in general is better then
lower bound for MAB with heavy tails.

For non-linear loss function l(x) we apply ZO-clipped-
med-SMD with one-point oracle. We refer to Remark 7 in
Appendix paragraph A.6 for more details.

5. Numerical Experiments
We conducted experiments to demonstrate the superior per-
formance of our Clipped-INF-med-SMD algorithm in spe-
cific stochastic Multi-Armed Bandit (MAB) scenarios with
heavy tails when compared to HTINF and APE. To show-
case this, we focus on an experiment involving only two
available arms (d = 2). Each arm i generates random losses
gt,i ∼ ξt + βi. Here parameters β0 = 3, β1 = 3.5 are
fixed and independent random variables ξt have the same
pdfξt (x) =

1

3·
(
1+( x

3 )
2
)
·π

.

In this experimental setup, individual experiments are sub-
ject to significant random deviations. To enhance the in-
formativeness of the results, we conduct 100 individual
experiments and analyze aggregated statistics.

By design, we possess knowledge of the conditional proba-
bility of selecting the optimal arm for all algorithms, which
remains stochastic due to the nature of the experiment’s
history.

To mitigate the high dispersion in probabilities, we apply
an average filter with a window size of 30 to reduce noise
in the plot. APE and HTINF can’t handle cases when noise
expectation is unbounded, so we modeled this case with a
low value of α = 0.01, where 1 + α is the moment that
exists in the problem statement for APE and HTINF.

As can be seen from the graphs, HTINF and APE do not
have convergence in probability, while Clipped-INF-med-
SMD does, which confirms the efficiency of the proposed
method.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Appendix
A.1. Remarks about the assumption on the noise.

Remark 4 (Standard oracles examples) To build noise ϕ(ξ|x, y) satisfying Assumption 3 with κ > 0 we will use indepen-
dent random variables {ξk} with symmetric probability density functions pξk(u)

pξk(u) ≤
|γk∆k|κ

|∆k|1+κ + |u|1+κ
, ∆k, γk > 0,

such that for any real numbers {ak}nk=1 and sum
n∑
k=1

akξk it holds

p n∑
k=1

akξk
(u) ≤

(
n∑
k=1

|γkak∆k|
)κ

(
n∑
k=1

|ak∆k|
)1+κ

+ |u|1+κ
. (18)

Moreover, using Cauchy-Schwarz inequality we bound

n∑
k=1

|γkak∆k| ≤ ∥(γ1∆1, . . . , γn∆n)
⊤∥2 · ∥(a1, . . . , ak)⊤∥2. (19)

For example, ξk could have Cauchy distribution with κ = 1 and p(u) = 1
π

∆k

∆2
k+u

2 parametrized by scale ∆k. For the

independent Cauchy variables with scales {∆k}nk=1 and any real numbers {ak}nk=1 sum
n∑
k=1

akξk is the Cauchy variable

with scale
n∑
k=1

|ak|∆k. Therefore, inequality (18) for Cauchy variables holds true.

• One point oracle:
f(x, ξ) = f(x) + ξx, f(y, ξ) = f(y) + ξy, ϕ(ξ|x, y) = ξx − ξy , where ξx, ξy are independent samples for each point
x and y.

• Lipschitz oracle:
f(x, ξ) = f(x) + ⟨ξ, x⟩, f(y, ξ) = f(y) + ⟨ξ, y⟩, ϕ(ξ|x, y) = ⟨ξ, x − y⟩, where ξ is d-dimensional random vector
with independent components ξk. Oracle gives the same realization of ξ for both x and y.

In that case, we have γ and B(x, y) from Assumption 3 equal to

ak = xk − yk,

γ = max
k=1,...,d

γk,

B(x, y) =

d∑
k=1

|∆k(x− y)k|
(19)
≤ ∥(∆1, . . . ,∆d)

⊤∥2||x− y||2.

Remark 5 (Relation between two definitions of M ′
2) Let noise ϕ(ξ|x, y) satisfies Assumption 3 with Lipschitz oracle and

κ > 1, then it holds

|f(x, ξ)− f(y, ξ)| = |f(x)− f(y) + ϕ(ξ|x, y)|
≤ |f(x)− f(y)|+ |ϕ(ξ|x, y)|

As 2
≤ M2∥x− y∥2

+
|ϕ(ξ|x, y)|
∥x− y∥2

∥x− y∥2.
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Let us denote M ′
2(ξ, x, y)

def
= M2 +

|ϕ(ξ|x,y)|
∥x−y∥2

and show that for any 1 < κ′ < κ random variable M ′
2(ξ, x, y) has bounded

κ′-th moment which doesn’t depend on x, y. We notice that

Eξ[|ϕ(ξ|x, y)|κ
′
] =

+∞∫
−∞

|u|κ
′
p(u|x, y)du

≤
+∞∫

−∞

|u|κ′
γκ|B(x, y)|κ

|B(x, y)|1+κ + |u|1+κ
du.

After substitution t = u/|B(x,y)| we get

Eξ[|ϕ(ξ|x, y)|κ
′
] ≤ γκ|B(x, y)|κ

|B(x, y)|κ−κ′

+∞∫
0

|t|κ′

1 + |t|1+κ
dt

(4)
≤ γκ−κ

′
∆κ′

∥x− y∥κ
′

2

+∞∫
0

|t|κ′

1 + |t|1+κ
dt.

Integral I(κ′) =
+∞∫
0

γκ−κ′
|t|κ

′
dt

1+|t|1+κ converges since κ′ < κ but its value tends to ∞ as κ′ → κ− 0. Finally, we have

Eξ[M ′
2(ξ, x, y)

κ′
]

= Eξ

[∣∣∣∣M2 +
|ϕ(ξ|x, y)|
∥x− y∥2

∣∣∣∣κ′]
Jensen inq, κ′ > 1

≤ 2κ
′−1

Mκ′

2 +
Eξ
[
|ϕ(ξ|x, y)|κ′

]
∥x− y∥κ′

2


≤ 2κ

′−1
[
Mκ′

2 + I(κ′)∆κ′
]
.

Therefore, M ′
2 = (Eξ[M ′

2(ξ, x, y)
κ′
])

1
κ′ = O(M2 +∆), where constant in O(·) depends only on κ′.

Remark 6 (Role of the scale function B(x, y)) In inequality (2) due to normalization property of probability density we
must ensure that

+∞∫
−∞

γκ|B(x, y)|κ

|B(x, y)|1+κ + |u|1+κ
du ≥

+∞∫
−∞

p(u|x, y)du = 1.

One can make substitution t = u/|B(x, y)| and ensure that for κ ≤ 2

+∞∫
−∞

γκ|B(x, y)|κdu
|B(x, y)|1+κ + |u|1+κ

= γκ
+∞∫

−∞

dt

1 + |t|1+κ
κ=1
≥ γκπ.

Hence, γ is sufficient to satisfy

γ ≥
(
1

π

) 1
κ

.

As scale value |B(x, y)| decreases, quantiles of p(u|x, y) gets closer to zero. Therefore, |B(x, y)| can be considered as
analog of variance of distribution p(u|x, y).

13



Zeroth-order Median Clipping for Non-Smooth Convex Optimization Problem with Heavy-tailed Symmetric Noise

A.2. Proof of Lemma 2.

First, we notice from our construction of the oracle

f(x, ξ)− f(y, ξ) = f(x)− f(y) + ϕ(ξ|x, y), ∀x, y ∈ Q,

that

g(x, e, ξ) =
d

2τ
(f(x+ τe, ξ)− f(x− τe, ξ))

=
d

2τ
[f(x+ τe)− f(x− τe)]e+

d

2τ
ϕ(ξ|x+ τe, x− τe)e

and for Med(x, e, {ξ}) we have

Med(x, e, {ξ}) = Median
({
g(x, e, ξi)

}2m+1

i=1

)
= Median

({
d

2τ
[f(x+ τe)− f(x− τe)]e+

d

2τ
ϕ(ξi|x+ τe, x− τe)e

}2m+1

i=1

)

=
d

2τ
[f(x+ τe)− f(x− τe)]e (20)

+
d

2τ
Median

({
ϕ(ξi|x+ τe, x− τe)

}2m+1

i=1

)
e. (21)

Finite second moment:

Further, we analyze two terms: gradient estimation term (20) and the noise term (21).

Following work (Kornilov et al., 2023a) [Lemma 2.3.] we have an upper bound for the second moment of (20)

Ee

[∣∣∣∣∣∣∣∣ d2τ [f(x+ τe)− f(x− τe)]e

∣∣∣∣∣∣∣∣2
q

]
≤ da2qM

2
2 , (22)

where aq = d
1
q−

1
2 min{

√
32 ln d− 8,

√
2q − 1} is a special coefficient, such that,

Ee[∥e∥2q] ≤ a2q. (23)

See Lemma 2.1 from (Gorbunov et al., 2022b) and Lemma 8.4 from (Kornilov et al., 2023a) for more details.

Next, we deal with noise term (21). For symmetric variable ϕ(ξ|x, y) for all x, y ∈ Q under Assumption 3 it holds

p(u) ≤ γκ|B(x, y)|κ

|B(x, y)|1+κ + |u|1+κ
.

Further, we prove that for large enough m noise term has finite variance. For this purpose we denote Y
def
=

Median
({
ϕ(ξi|x, y)

}2m+1

i=1

)
and cumulative distribution function of Y

P (t)
def
=

t∫
−∞

p(u)du.

Median of 2m+ 1 i.i.d. variables distributed according to p(u) is (m+ 1)-th order statistic, which has probability density
function

(2m+ 1)

(
2m
m

)
P (t)m(1− P (t))mp(t).
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The second moment E[Y 2] can be calculated via

E[Y 2] =

+∞∫
−∞

(2m+ 1)

(
2m
m

)
t2P (t)m(1− P (t))mp(t)dt

≤ (2m+ 1)

(
2m
m

)
sup
t
{t2P (t)m(1− P (t))m}

+∞∫
−∞

p(t)dt

≤ (2m+ 1)

(
2m
m

)
sup
t
{t2P (t)m(1− P (t))m}.

For any t < 0 we have

P (t) =

t∫
−∞

p(u)du ≤
t∫

−∞

|γB(x, y)|κ

|B(x, y)|1+κ + |u|1+κ

≤
t∫

−∞

|γB(x, y)|κ

|u|1+κ
≤ |γB(x, y)|κ

κ
· 1

|t|κ
.

Similarly, one can prove that for any t > 0

1− P (t) =

∞∫
t

p(u)du ≤ |γB(x, y)|κ

κ
· 1

tκ
.

Since for any number a ∈ [0, 1] holds a(1− a) ≤ 1
4 we have for any t ∈ R

P (t)(1− P (t)) ≤ min

{
1

4
,
|γB(x, y)|κ

κ
· 1

|t|κ

}
along with

t2P (t)m(1− P (t))m ≤ min

{
t2

4m
,

(
|γB(x, y)|κ

κ

)m
· 1

|t|mκ−2

}
. (24)

If mκ > 2 first term of (24) increasing and the second one decreasing with the growth of |t|, then the maximum of the
minimum (24) is achieved when

t2

4m
=

(
|γB(x, y)|κ

κ

)m
· 1

|t|mκ−2
,

|t| = |γB(x, y)|
(
4

κ

) 1
κ

.

Therefore, we get for any t ∈ R

t2P (t)m(1− P (t))m ≤ |γB(x, y)|2

4m

(
4

κ

) 2
κ

,

and, as a consequence

E[Y 2] ≤ (2m+ 1)

(
2m
m

)
|γB(x, y)|2

4m

(
4

κ

) 2
κ

.
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It only remains to note (
2m
m

)
=

(2m)!

m! ·m!
=

m∏
j=1

2j

j
·
m∏
j=1

2j − 1

j
≤ 4m.

Since Y has the finite second moment, it has finite math expectation

E[Y ] =

+∞∫
−∞

(2m+ 1)

(
2m
m

)
tP (t)m(1− P (t))mp(t)dt.

For any t ∈ R due to symmetry of p(t) we have P (t) = (1− P (−t)) and p(t) = p(−t) and, as a consequence,

E[Y ] =

+∞∫
−∞

(2m+ 1)

(
2m
m

)
tP (t)m(1− P (t))mp(t)dt = 0.

Finally, we have an upper bound for (21)

Ee,ξ

∣∣∣∣∣∣∣∣ d2τ Med
({
ϕ(ξi|x+ τe, x− τe)

})
e

∣∣∣∣∣∣∣∣2
q

=

(
d

2τ

)2

Ee[Eξ[Y 2|e] · ∥e∥2q]

≤
(
d

2τ

)2

(2m+ 1)

(
4

κ

) 2
κ

· Ee[|γB(x+ τe, x− τe)|2∥e∥2q]. (25)

In case of one-point oracle from Assumption 3 and (3) we simplify

Ee[|γB(x+ τe, x− τe)|∥e∥2q] ≤ ∆2Ee[∥e∥2q]
(23)
≤ ∆2a2q. (26)

In case of Lipschitz oracle we use (4) and get

Ee[|γB(x+ τe, x− τe)|∥e∥2q] ≤ 4∆2τ2Ee[∥e∥22∥e∥2q]
(23)
≤ 4∆2τ2a2q. (27)

Combining upper bounds (22) and (26) or (27) we obtain total bound

Ee,ξ[∥Med(x, e, {ξ})∥2q] ≤ 2 · (22) + 2 · (26)/(27).

For the batched gradient estimation BatchMedm,b(x, {e}, {ξ}) and q = 2 we use Lemma 4 from (Kornilov et al., 2023b),
that states

Ee,ξ[∥BatchMedm,b(x, {e}, {ξ})∥22] ≤
1

b
· Ee,ξ[∥Med(x, e, {ξ})∥22].

For the bound of the centered second moment we use Jensen inequality for any random vector X

E[||X − E[X]||2q] ≤ 2E[||X||2q] + 2||E[X]||2q ≤ 4E[||X||2q].
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Unbiasedness:

According to Lemma 1 term (20) is unbiased estimation of the gradient ∇f̂τ (x). Indeed, the distribution of e is symmetrical
and we can derive

Ee

[
d

2τ
[f(x+ τe)− f(x− τe)]e

]
= Ee

[
d

τ
[f(x+ τe)]

]
= ∇f̂τ (x).

Since Y has the finite second moment, it has finite math expectation

E[Y ] =

+∞∫
−∞

(2m+ 1)

(
2m
m

)
tP (t)m(1− P (t))mp(t)dt.

For any t ∈ R due to symmetry of p(t) we have P (t) = (1− P (−t)) and p(t) = p(−t) and, as a consequence,

E[Y ] =

+∞∫
−∞

(2m+ 1)

(
2m
m

)
tP (t)m(1− P (t))mp(t)dt = 0.

Hence, we obtained, that Ee,ξ[Med(x, e, {ξ})] = ∇f̂τ (x) along with Ee,ξ[BatchMedm,b(x, {e}, {ξ})] = ∇f̂τ (x) as the
batching is the mean of random vectors with the same math expectation.

A.3. Proof of Convergence Theorems 1 and 2.

We might consider BatchMedm,b(x, {e}, {ξ}) to be the oracle for the gradient of f̂τ (x) that satisfies Assumption 4.

Assumption 4 Let G(x, e, ξ) be the oracle for the gradient of function f̂τ (x), such that for any point x ∈ Q it is unbiased,
i.e.

Ee,ξ[G(x, e, ξ)] = ∇f̂τ (x),

and has bounded second moment, i.e.

Ee,ξ[∥G(x, e, ξ)−∇f̂τ (x)∥2q] ≤ Σ2
q, (28)

where Σq might depend on τ .

Thus, in order to prove convergence of ZO-clipped-med-SSTM and ZO-clipped-med-SMD we use general convergence
theorems with oracle satisfying Assumption 4 for ZO-clipped-SSTM (Theorem 1 from (Kornilov et al., 2023b) with α = 2)
and ZO-clipped-SMD ( Theorem 4.3 from (Kornilov et al., 2023a) with κ = 1).

Next, we take BatchMedm,b(x, {e}, {ξ}) Medm(x, e, {ξ}) as the necessary oracles and substitute Σq from (28) with σ or
σaq from Lemma 2. But each call of median operator requires (2m+ 1) calls of zeroth-order oracle δ(x, ξ).

Theorem 4 (Convergence of ZO-clipped-SSTM) Let for the function f Assumptions 1, 2 hold with µ = 0 on Q = Rd
and for oracle Assumption 4 holds with Σ2.

Let be ∥x0 − x∗∥22 ≤ R2, where x0 is a starting point and x∗ is an optimal solution to (1).

Suppose ZO-clipped-SSTM is run for K iterations with smoothing parameter τ and batch size b, probability 1− β and
further parameters A = ln 4K/β ≥ 1, a = Θ(min{A2,Σ2K

2
√
Aτ/

√
dbM2R}), λk = Θ(R/(αk+1A)). We guarantee that with

probability at least 1− β

f(yk)− f(x∗) = 2M2τ + Õ

(
max

{√
dM2R

2

τK2
,
Σ2R√
bK

})
.

Moreover, with probability at least 1− β the iterates of ZO-clipped-SSTM remain in the Euclidean ball with center x∗ and
radius 2R, i.e., {xk}K+1

k=0 , {yk}Kk=0, {zk}Kk=0 ⊆ {x ∈ Rd : ∥x− x∗∥2 ≤ 2R}.
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Theorem 5 (Convergence of ZO-clipped-SMD) Let for the function f Assumptions 1, 2 hold with µ = 0 on convex
compact Q and for oracle Assumption 4 holds with Σq .

We use notation x∗ as an optimal solution to (1).

Suppose we run ZO-clipped-SMD for K iterations with smoothing parameter τ , norm q ∈ [2,+∞], prox-function Ψp,

probability 1− β and further parameters λ = Σq
√
K, ν =

DΨp

λ , where squared diameter D2
Ψp

def
= 2 sup

x,y∈Q
VΨp

(x, y). We

guarantee that with probability at least 1− β

f(yk)− f(x∗) = 2M2τ + Õ
(
ΣqDΨp√

K

)
.

A.4. Additional Numerical Experiments

Following (Kornilov et al., 2023b) we conducted experiments on the following problem

min
x∈Rd

∥Ax− b∥2 + ⟨ξ, x⟩,

where ξ is a random vector with independent components sampled from the symmetric Levy α-stable distribution with
α = 3/2, A ∈ Rl×d, b ∈ Rl (we used d = 16 and l = 200). For ZO-clipped-med-SSTM we used median size
m = 3. Figure 2 presents the comparison of convergences averaged over 9 launches with different noise, and we see
ZO-clipped-med-SSTM outperforming ZO-clipped-SSTM.

0.0 0.2 0.4 0.6 0.8 1.0
samples 1e7

10 1

100

101

102

f(x
)

f(x
)

ZO-clipped-med-SSTM
ZO-clipped-SSTM

Figure 2: Convergence of ZO-clipped-SSTM and ZO-clipped-med-SSTM in terms of a gap function w.r.t. the number of
consumed samples from the dataset

A.5. Restarted algorithms R-ZO-clipped-SSTM and R-ZO-clipped-SMD.

The restart technique is to run in cycle algorithm A taking the output point from the previous run as the initial point for the
current one.

Algorithm 4 R-ZO-clipped-A

Input: Starting point x0, number of restarts Nr, number of iterations {Kt}Nr
t=1, algorithm A, parameters {Pt}Nr

t=1.
1: x̂0 = x0.
2: for t = 1, . . . , Nr do
3: Run algorithms A with parameters Pt and starting point x̂t−1. Set output point as x̂t.
4: end for

Output: x̂Nr
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Strong convexity of function f with minimum x∗ implies upper bound for the distance between point x and solution as

µ

2
∥x− x∗∥22 ≤ f(x)− f(x∗).

Considering upper bounds from Corollary 1, 2 for f(x) − f(x∗) one can construct a relation between ∥x0 − x∗∥2 and
∥x− x∗∥2 after K iterations. Based on this relation one can calculate iteration after which it is more efficient to start a new
run rather than continue with slow convergence rate current one.

We apply the general Convergence Theorem 2 from (Kornilov et al., 2023b) for R-ZO-clipped-SSTM and Theorem 5.2
from (Kornilov et al., 2023a) for R-ZO-clipped-SMD with oracle satisfying Assumption 4. However, oracle couldn’t
depend on, τ which means that we consider either Lipschitz oracle or one-point oracle with small noise, i.e.,

∆ ≤
(κ
4

) 1
κ ε√

d
. (29)

In the Convergence Theorems minimal necessary value of τ = ε
4M2

, hence

σ2 = 8dM2
2 + 2

(
d∆

τ

)2

(2m+ 1)

(
4

κ

) 2
κ

≤ 32(2m+ 1) · dM2
2 .

Theorem 6 (Convergence of R-ZO-clipped-SSTM) Let for the function f(x) Assumptions 1, 2 hold with µ > 0 on
Q = Rd and for oracle Assumption 4 holds with Σ2.

Let be ∥x0 − x∗∥2 ≤ R2, where x0 is a starting point and x∗ is the optimal solution to (1).

Let ε be desired accuracy, 1 − β be desired probability and Nr = ⌈log2(µR
2
/2ε)⌉ be the number of restarts. Sup-

pose at each stage t = 1, ..., Nr ZO-clipped-SSTM is run with batch size bt, τt = εt/4M2, Lt = M2

√
d/τt,Kt =

Θ̃(max{
√
LtR

2
t−1/εt, (Σ2Rt−1/εt)2/bt}), at = Θ̃(max{1,Σ2K

3
2
t /

√
btLtRt}) and λtk = Θ̃(R/αt

k+1), whereRt−1 = 2−
(t−1)

2 R,
εt = µR2

t−1/4, ln 4NrKt/β ≥ 1, β ∈ (0, 1]. Then to guarantee f(x̂Nr )− f(x∗) ≤ ε with probability at least 1− β, R-ZO-
clipped-SSTM requires

Õ

max


√
M2

2

√
d

µε
,
Σ2

2

µε


 (30)

total number of oracle calls.

Corollary 3 Let Assumption 3 holds with κ > 0 for Lipschitz oracle.

In order to achieve accuracy ε, i.e. f(x̂Nr )− f(x∗) ≤ ε via R-ZO-clipped-med-SSTM with probability at least 1− β
median size must be m = 2

κ + 1, other parameters must be set according to Theorem 6 (Σ2 = σ from Lemma 2). In that
case R-ZO-clipped-med-SSTM requires for

• One point oracle under (29):

Õ

(2m+ 1) ·max


√
M2

2

√
d

µε
,
dM2

2

κµε


 , (31)

• Lipschitz oracle:

Õ

(2m+ 1) ·max


√
M2

2

√
d

µε
,
d(M2

2 + d∆2/κ
2
κ )

µε


 (32)
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total number of oracle calls.

Similar to the convex case, the first term in bounds (32), (31) is optimal in ε for the deterministic case for non-smooth
strongly convex problems (see (Bubeck et al., 2019)) and the second term in is optimal in ε for zeroth-order problems with
finite variance (see (Nemirovskij & Yudin, 1983)).

Theorem 7 Let for the function f Assumptions 1, 2 hold with µ > 0 and for oracle Assumption 4 holds with Σ2 on convex
compact Q.

We set the prox-function Ψp and norm p ∈ [1, 2]. DenoteR2
0

def
= supx,y∈Q 2VΨp(x, y) for diameter of setQ andRt = R0/2

t.

Let ε be desired accuracy and N = Õ
(

1
2 log2

(
µR2

0

2ε

))
be the number of restarts. Suppose at each stage t = 1, . . . , Nr

ZO-clipped-SMD is run with Kt = Õ

([
Σq

µRt

]2)
, τt =

ΣqRt

M2

√
Kt

, λt =
√
KtΣq and νt = Rt

λt
.

Then to guarantee f(x̂Nr )− f(x∗) ≤ ε with probability at least 1− β, R-ZO-clipped-SMD requires

Õ

(
Σ2
q

µε

)
total number of oracle calls.

Corollary 4 Let Assumption 3 holds with κ > 0 for Lipschitz oracle.

In order to achieve accuracy ε, i.e. f(x̂Nr ) − f(x∗) ≤ ε via R-ZO-clipped-med-SMD with probability at least 1 − β
median size must be m = 2

κ + 1, other parameters must be set according to Theorem 7 (Σq = σaq from Lemma 2). In that
case R-ZO-clipped-med-SMD requires for

• One point oracle under (29):

Õ

(
(2m+ 1) ·

dM2
2 a

2
q

κµε

)
, (33)

• Lipschitz oracle:

Õ

(
(2m+ 1) ·

d(M2
2 + d∆2/κ

2
κ )a2q

µε

)
(34)

total number of oracle calls, where aq = d
1
q−

1
2 min{

√
32 ln d− 8,

√
2q − 1}.

A.6. Proof of Theorem 3

Lemma 3 Let f(x) be a linear function and random vector u satisfies Eu[u] = 0, then ∇f(x) = ∇f̂τ (x).

Proof:

∇f̂τ (x) = ∇Eu[f(x+ τu)] = ∇Eu[⟨µ, x+ τu⟩]
= ∇⟨µ, x+ τEu[u]⟩ = ∇⟨µ, x⟩ = ∇f(x).

Lemma 4 Suppose that Clipped-INF-med-SMD with 1/2-Tsallis entropy

ψ(x) = 2

(
1−

d∑
i=1

x
1/2
i

)
, x ∈ ∆d

+
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as prox-function generates the sequences {xk}Kk=0 and {g̃kmed}Kk=0, then for any u ∈ ∆d
+ holds:

K∑
k=0

2m+1∑
s=1

⟨g̃kmed, xk − u⟩

≤ (2m+ 1)

[
2
d1/2 −

∑d
i=1 u

1/2
i

ν
+ ν

K∑
k=0

d∑
i=1

(⟨g̃kmed)2i · x
3/2
k,i

]
.

Proof:

By definition the Bregman divergence Vψ(x, y) is:

Vψ(x, y) = ψ(x)− ψ(y)− ⟨∇ψ(y), x− y⟩

= 2

(
1−

d∑
i=1

x
1/2
i

)
− 2

(
1−

d∑
i=1

y
1/2
i

)
+

d∑
i=1

y
−1/2
i (xi − yi)

= −2

d∑
i=1

x
1/2
i + 2

d∑
i=1

y
1/2
i +

d∑
i=1

y
−1/2
i (xi − yi).

Note that the algorithm can be considered as an online mirror descent (OMD) with batching and the Tsallis entropy used as
prox:

xk+1 = arg min
x∈∆d

+

[
νxTg̃kmed + Vψ(x, xk)

]
.

Thus standard inequation for OMD holds:

⟨g̃kmed, xk − u⟩ ≤ 1

ν
[Vψ(u, xk)− Vψ(u, xk+1)− Vψ(xk+1, xk)] + ⟨g̃kmed, xk − xk+1⟩. (35)

From Tailor theorem we have

Vψ(z, xk) =
1

2
(z − xk)

T∇2ψ(yk)(z − xk) =
1

2
∥z − xk∥2∇2ψ(yk)

for some point yk ∈ [z, xk].

Hence we have

⟨g̃kmed, xk − xk+1⟩ −
1

ν
Vψ(xk+1, xk)

≤ max
z∈Rd

+

[
⟨g̃kmed, xk − z⟩ − 1

ν
Vψ(z, xk)

]
=

[
⟨g̃kmed, xk − z∗k⟩ −

1

ν
Vψ(z

∗
k, xk)

]
≤ ν

2
∥g̃kmed∥2(∇2ψ(yk))−1 +

1

2
∥z∗ − xk∥2∇2ψ(yk)

− 1

ν
Vψ(z

∗, xk)

=
ν

2
∥g̃kmed∥2(∇2ψ(yk))−1 ,

where z∗ = argmaxz∈Rd
+

[
⟨g̃kmed, xk − z⟩ − 1

νVψ(z, xk)
]
.

Proceeding with (35), we get:

⟨g̃kmed, xk − u⟩ ≤ 1

ν
[Vψ(u, xk)− Vψ(u, xk+1)] +

ν

2
∥g̃kmed∥2(∇2ψ(yk))−1 .
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Sum over k gives

K∑
k=0

⟨g̃kmed, xk − u⟩

≤ Vψ(x0, u)

ν
+
ν

2

K∑
k=0

(g̃kmed)
T
(
∇2ψ(yk)

)−1
g̃kmed

= 2
d1/2 −

∑d
i=1 u

1/2
i

ν
+ ν

K∑
k=0

d∑
i=1

(g̃kmed)
2
i y

3/2
k,i , (36)

where yk ∈ [xk, z
∗
k] and z∗k = argmaxz∈Rd

+

[
⟨g̃kmed, xk − z⟩ − 1

νVψ(z, xk)
]
.

From the first-order optimality condition for z∗k we obtain

−ν(g̃kmed)i + (xk,i)
1/2 = (z∗k,i)

1/2

and thus we get z∗k,i ≤ xk,i.

Thus (36) becomes
K∑
k=0

⟨g̃kmed, xk − u⟩ ≤ 2
d1/2 −

∑d
i=1 u

1/2
i

ν
+ ν

K∑
k=0

d∑
i=1

(g̃kmed)
2
i · x

3/2
k,i

and concludes the proof.

Lemma 5 [Lemma 5.1 from (Sadiev et al., 2023)] Let X be a random vector in Rd and X̄ = clip(X,λ) = X ·
min

{
1, λ

∥X∥2

}
, then

∥X̄ − E[X̄]∥2 ≤ 2λ. (37)

Moreover, if for some σ ≥ 0

E[X] = x ∈ Rn, E[∥X − x∥22] ≤ σ2

and ∥x∥2 ≤ λ
2 , then

∥∥E[X̄]− x
∥∥
2
≤ 4σ2

λ
, (38)

E
[∥∥X̄ − x

∥∥2
2

]
≤ 18σ2, (39)

E
[∥∥X̄ − E[X̄]

∥∥2
2

]
≤ 18σ2. (40)

Lemma 6 Suppose that Clipped-INF-med-SMD with 1/2-Tsallis entropy as prox-function generates the sequences
{xk}Kk=0 and {g̃kmed}Kk=0, and for each arm i random reward gt,i at any step t has bounded expectation E[gt,i] ≤ λ

2 and the
noise gt,i − µi has symmetric distribution, then for any u ∈ ∆d

+ holds:

Exk,e[k],ξ[k]

[
d∑
i=1

(g̃kmed)
2
i · x

3/2
k,i

]
≤ 18σ2 + ∥µ∥22. (41)

Proof:

Exk,e[k],ξ[k]

[
d∑
i=1

(g̃kmed)
2
i · x

3/2
k,i

]
≤ E[∥g̃kmed∥22] ≤ E[∥g̃kmed − µ∥22 + ∥µ∥22]

Lemma 6 + Lemma 2︷︸︸︷
≤ 18σ2 + ∥µ∥22.
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Proof of Theorem 3:

Firstly, for any x, y ∈ △d
+ we have

∥x− y∥2 ≤
√
2. (42)

Next we obtain

E [RT (u)] = E

[
T∑
t=1

l(xt)−
T∑
t=1

l(u)

]
≤ E

[
T∑
t=1

⟨∇l(xt), xt − u⟩

]

≤ E

[
T∑
t=1

⟨µ− g
k(t)
med, xk(t) − u⟩

]
+ E

[
T∑
t=1

⟨gk(t)med − g̃
k(t)
med, xk(t) − u⟩

]
+ E

[
T∑
t=1

⟨g̃k(t)med, xk(t) − u⟩

]

= E

[
T∑
t=1

⟨gk(t)med − g̃
k(t)
med, xk(t) − u⟩

]
+ E

[
T∑
t=1

⟨g̃k(t)med, xk(t) − u⟩

]

≤

[
T∑
t=1

∥E[gk(t)med]− E[g̃k(t)med]∥2 · ∥xk(t) − u∥2⟩

]
+ E

[
T∑
t=1

⟨g̃k(t)med, xk(t) − u⟩

]
Lemma 5, (42)︷︸︸︷

≤ 4σ2T

λ
·
√
2 + (2m+ 1)E

[
K∑
k=0

⟨g̃kmed, xk − u⟩

]
Lemma 4︷︸︸︷
≤ 4

√
2σ2T

λ
+ 2(2m+ 1)

d1/2 −
∑d
i=1 u

1/2
i

ν
+ ν(2m+ 1)E

[
K∑
k=0

d∑
i=1

(g̃kmed)
2
i · x

3/2
k,i

]
Lemma 6︷︸︸︷
≤ 4

√
2σ2T

λ
+ 2(2m+ 1)

√
d

ν
+ νT (18σ2 + ∥µ∥22)

≤ 4
√
2σ(2m+ 1)1/2T 1/2 + 2

√
2d1/4(2m+ 1)1/2T 1/2

√
18σ2 + ∥µ∥22

= 2
√
2(2m+ 1)1/2T 1/2

(
2σ + d1/4

√
18σ2 + ∥µ∥22

)
.

Remark 7 Following work (Dorn et al., 2024) let us considerM2-Lipschitz non-linear loss function l(x) defined on complex
compact set Q ⊂ Rd, which absolute value is bounded by constant ∆l, i.e.,

|l(x)| ≤ ∆l, ∀x ∈ Q.

Values of l(x) are available via one point oracle l(x, ξ) = l(x) + ξ, where ξ is symmetric noise satisfying Assumption 3
with κ > 0.

In that case, we build one-point analog of gradient estimation (7), namely,

g(x, e, ξ) =
d

τ
l(x+ τe, ξ)e.

Then it is guaranteed that Medm with m = 2
κ + 1 samples has bounded second moment, i.e.,

Ee,ξ[∥Medm(x, e, {ξ})∥2q|x] ≤ σ2
l a

2
q,

where σ2
l = 2

(
d∆l

τ

)2
+ (4m+ 2)

(
4
κ

) 2
κ
(
d∆
τ

)2
.

Therefore, we apply the algorithm ZO-clipped-med-SMD to solve MAB problem with σl instead of σ. In order to achieve
average regret accuracy 1

T E [RT (u)] ≤ ε for the sequence of points zt = xt + τet generated by ZO-clipped-med-SMD
at each oracle call one requires horizon
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T = O

(
1

κ

d2M2
2 (∆l +∆/κ

1
κ )2a2qD

2
Ψp

ε4

)
.
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