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Abstract. Variational inequalities offer a versatile and straightforward
approach to analyzing a broad range of equilibrium problems in both
theoretical and practical fields. In this paper, we consider a composite
generally non-monotone variational inequality represented as a sum of Lq-
Lipschitz monotone and Lp-Lipschitz generally non-monotone operators.
We applied a special sliding version of the classical Extragradient method
to this problem and obtain better convergence results. In particular, to
achieve ε-accuracy of the solution, the oracle complexity of the non-
monotone operator Q for our algorithm is O

(
L2

p/ε
2
)

in contrast to the
basic Extragradient algorithm with O

(
(Lp + Lq)

2/ε2
)
. The results of

numerical experiments confirm the theoretical findings and show the
superiority of the proposed method.

Keywords: Variational inequality · Extragradient · Composite problem
· Sliding · Minty assumption

1 Introduction

Variational inequalities (VIs) are a popular class of optimization problems, which
despite its relative youth has an extensive history of research, both in terms of
different formulations, and of effective methods of their solution. The variational
inequalities paradigm has gained particular popularity due to its generality
and its ability to describe and represent various optimization problems in a
unified way [1,2]. Nowadays VI problems can be found in a large number of
fields from economics, game theory, physics and modelling of transport flows to
machine learning and rapidly developing deep learning [3,4,5]. For instance, the
development of optimization methods aimed at solving variational inequalities has
recently attracted the attention of many researchers in the context of optimizing
loss functions of generative adversarial networks [6] and reinforcement learning
[7].

The most straightforward and widely known method for dealing with problems
posed as variational inequalities is Gradient Descent-Ascent [8,9,10] developed
by analogy with methods of optimization of a single objective [11]. Its serious
drawbacks [12], which include weaker convergence compared to ordinary gradient
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descent and the problem of rotation around the optimum [11,12] led researchers to
create more advanced methods. One of the most well-known of these algorithms is
Extragradient, proposed by G. Korpelevich [13]. Over time, the research around
this method evolved and there are now various modifications (e.g. Optimistic
Gradient with one oracle call per iteration [14,15]) and generalizations to an
arbitrary Bregman setup (e.g. Mirror-Prox [16]). Moreover, for the monotone
variational inequalities, the optimality of the Extragradient method was also
shown. Meanwhile, there is a large body of theoretical studies related to various
kinds of relaxations of monotonicity and transition to non-monotone operators
[17,18,19,20,21]. The aim of this paper is also to delve into the non-monotone
setting, but to look deeper into it and consider composite operators, i.e., operators
that are represented as the sum of two operators. It seems that using the additional
structure of the target problem can give improvements in terms of convergence
theory. For monotone and strongly monotone operators such approaches already
exist and indeed give theoretical and practical improvements [22,23,24].

Our contribution. We consider the variational inequality with a composite op-
erator R := P + Q, both components of which are Lipschitz-continuous and
only one of the component Q is monotone (the operator P can be generally non-
monotone). We additionally assume that the whole target operator R satisfies
Minty assumption [25] – by far the most common and well-known relaxation of
non-monotonicity. For this kind of problem, the classical Extragradient method
requires [17]

O
(
(Lp + Lq)

2∥x0 − x∗∥2

ε2

)
computations of the operator P,

where Lp and Lq are Lipschitz constants of P and Q, x0 is a starting point, x∗

is a solution of the VI problem, ε is required accuracy of the obtained numerical
solution. On the other hand, motivated by the fact that the non-monotone
operator P is likely to be more computationally expensive than Q, we consider
a modification of Extragradient using the sliding technique [24], which allows
to take into account the composite structure of the problem. This makes it
possible to compute one of the operators less frequently. In particular, we obtain
improvements on the estimate of operator P calls. For our method it is

O

(
L2
p∥x0 − x∗∥2

ε2

)
,

which can be much better for some relations on Lp and Lq compared to the
Extragradient method. To support the theoretical results, a series of experiments
are set up and the results confirm the improvements.

Notation. We use ⟨x, y⟩ :=
∑d

i=1 xiyi to introduce inner product of x, y ∈ Rd,
where xi corresponds to the i-th component of x in the standard basis in Rd. It
induces ℓ2-norm in Rd according to ∥x∥ :=

√
⟨x, x⟩.
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2 Problem setting

We consider the composite variational inequality in the following form:

Find x∗ ∈ Rd : R(x∗) = 0 with R(x) := Q(x) + P (x), (1)

where Q(x), P (x) : Rd → Rd are operators.
Many known problems can be reformulated using the language of composite

variational inequalities. Let us consider two common use cases for VIs:

1. Minimization problem. One can notice, that solving minx∈Rd r(x), where
r(x) := q(x)+p(x) is a convex function, is equivalent to solving the VI problem
(1) with Q(x) := ∇q(x), P (x) := ∇p(x), R(x) := ∇r(x) = ∇q(x) +∇p(x).

2. Saddle point problem. Let us consider the saddle-point problem:

min
y∈Rdy

max
z∈Rdz

[r(y, z) := q(y, z) + p(y, z)]. (2)

If we take x = [y, z], Q(x) := Q(y, z) = [∇yq(y, z),−∇zq(y, z)], P (x) :=
P (y, z) = [∇yp(y, z),−∇zp(y, z)], then it can be proved for the convex-
concave function r(y, z) that x∗ = (y∗, z∗) is a solution for (1) if and only if
the following inequality holds

r(y∗, z) ≤ r(y∗, z∗) ≤ r(y, z∗) ∀y ∈ Rdy , z ∈ Rdz .

Equivalently, it means that x∗ = [y∗, z∗] is a solution for (2).

Despite the fact that a minimization problem is a special case of variational
inequalities, they are usually studied separately. This is due to the fact that a
more optimistic convergence theory can be constructed for minimization problems
[11,26] compared to the general results for variational inequalities. Meanwhile,
the study of saddle point problems is often conducted through the prism of
variational inequalities [16,27], particularly in recent years, theoretical studies of
variational inequalities have been associated with solving the practical minimax
learning problem of GANs training [28,20,29].

We study problem (1) under the following commonly used assumptions:

Assumption 1 R(x) satisfies Minty assumption:

∃ x∗ ∈ Rd : ∀x ∈ Rd ↪→ ⟨R(x), x− x∗⟩ ≥ 0.

This assumption, also called the variational stability condition is considered as
an option to structurally constrain a non-monotone problem. Minty assumption
is widely used in the literature [17,30,31,32,19,33].

Next, we also introduce two standard assumptions for the analysis of varia-
tional inequalities.

Assumption 2 Q(x) is Lq-Lipschitz and monotone:

∀ x1, x2 ∈ Rd ↪→ ∥Q(x1)−Q(x2)∥ ≤ Lq∥x1 − x2∥,

∀ x1, x2 ∈ Rd ↪→ ⟨Q(x1)−Q(x2), x1 − x2⟩ ≥ 0.
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Assumption 3 P (x) is Lp-Lipschitz:

∀ x1, x2 ∈ Rd ↪→ ∥P (x1)− P (x2)∥ ≤ Lp∥x1 − x2∥.

Once again we emphasize the key detail that only the operator Q, but not P ,
is monotone, and hence the full operator R can be non-monotone in general.

3 Algorithm

The algorithm studied in this paper is a version of the Extragradient algorithm,
but with additional sliding technique [24]:

Algorithm 1 Extragradient Sliding

1: Input: starting point x0 ∈ Rd

2: Parameters: stepsizes η, θ > 0, number iterations K ∈ N
3: for k = 0, 1, 2, . . . ,K − 1 do
4: Find uk ≈ ũk where ũk is solution for

Find ũk ∈ Rd : Bk
θ (ũ

k) = 0 with Bk
θ (x) := P (xk) +Q(x) + 1

θ
(x− xk)

5: xk+1 = xk − ηR(uk)
6: end for

Let us give a high-level intuition of how the above algorithm works. The main
idea of this algorithm is to move away from equal number of calls of P and Q,
as it happens in the classical Extragradient method. The more computationally
expensive P is called twice per iteration of the algorithm, when selecting the
optimal ũk in line 4 and when computing R in line 5. In turn, the computationally
simpler Q is called some number of times in the inner problem (line 4) and also
when computing R. This is the idea behind the sliding technique: fix one of the
operators and vary the other due to its cheapness. Thus in line 4 the full operator
R(x) is approximated by Q(x) and a slightly outdated version P (xk).

4 Convergence analysis

Theorem 1. Consider Algorithm 1 for the problem (1) under Assumptions 1–3,
with the following tuning:

θ =
1

2Lp
, η =

θ

2
.

Assume that uk (line 4) satisfies:

∥Bk
θ (u

k)∥2 ≤
L2
p

3
∥xk − ũk∥2. (3)

Then, we have the following convergence estimate:

min
0≤j≤K−1

∥R(uj)∥2 ≤
16L2

p∥x0 − x∗∥2

K
.
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This results means sublinear convergence. To prove the theorem we first deal
with the auxiliary lemma.

Lemma 1. Consider Algorithm 1. Let θ be defined as θ = 1
2Lp

. Then, under
Assumptions 1, 2, 3, the following inequality holds:

2⟨x∗ − xk, R(uk)⟩ ≤ −θ∥R(uk)∥2 + 3θ

(
∥Bk

θ (u
k)∥2 −

L2
p

3
∥xk − ũk∥2

)
. (4)

Proof of Lemma 1. Using Assumption 1, we get

2⟨xk − x∗, R(uk)⟩ = 2⟨x∗ − uk, R(uk)⟩+ 2⟨uk − xk, R(uk)⟩

≤ 2⟨uk − xk, R(uk)⟩ = 2θ

〈
1

θ
(uk − xk), R(uk)

〉
.

The definition of Bk
θ (x) (line 4 of Algorithm 1) gives

2θ

〈
1

θ
(uk − xk), R(uk)

〉
= θ

∥∥∥∥1θ (uk − xk) +R(uk)

∥∥∥∥2 − 1

θ
∥uk − xk∥2 − θ∥R(uk)∥2

= −1

θ
∥uk − xk∥2 − θ∥R(uk)∥2

+θ∥Bk
θ (u

k)− P (xk) + P (uk)∥2.

Using the Cauchy-Schwarz inequality and Lp-Lipschitzness of P (x) (Assumption
3), we get

2θ

〈
1

θ
(uk − xk), R(uk)

〉
≤ −1

θ
∥uk − xk∥ − θ∥R(uk)∥2 + 2θ∥Bk

θ (u
k)∥2

+2∥P (uk)− P (xk)∥2

≤ −1

θ
∥uk − xk∥ − θ∥R(uk)∥2 + 2θ∥Bk

θ (u
k)∥2

+2θL2
p∥uk − xk∥2

= −1

θ

(
1− 2θ2L2

p

)
∥uk − xk∥2 − θ∥R(uk)∥2 + 2θ∥Bk

θ (u
k)∥2.

With θ = 1
2Lp

and the Cauchy-Schwarz inequality in the form −∥a∥2 ≤ ∥b∥2 −
1

2
∥a+ b∥2, one can obtain

2⟨x∗ − xk, R(uk)⟩ ≤ −θ∥R(uk)∥2 + 2θ∥Bk
θ (u

k)∥2 − 1

2θ
∥uk − xk∥2

≤ −θ∥R(uk)∥2 + 2θ∥Bk
θ (u

k)∥2

+
1

2θ
∥uk − ũk∥2 − 1

4θ
∥xk − ũk∥2.

Additionally, we can observe that Bk
θ (x) is 1

θ -strongly monotone. It follows
from the definition of the operator: the operator Bk

θ (x) is a sum of the monotone
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operator Q (Assumption 2) and the strong monotone linear operator 1
θ (x− xk).

Together with the Cauchy-Schwarz inequality, it gives that

∥uk − ũk∥2 ≤ θ⟨Bk
θ (u

k)−Bk
θ (ũ

k), uk − ũk⟩ ≤ θ∥Bk
θ (u

k)−Bk
θ (ũ

k)∥ · ∥uk − ũk∥.

With Bk
θ (ũ

k) = 0 (ũk is the solution of the subproblem from line 4), we get

∥uk − ũk∥2 ≤ θ2∥Bk
θ (u

k)∥2.

Applying this to the upper inequality, we finalize the proof:

2⟨x∗ − xk, R(uk)⟩ ≤ −θ∥R(uk)∥2 + 5

2
θ∥Bk

θ (u
k)∥2 − 1

4θ
∥xk − ũk∥2

≤ −θ∥R(uk)∥2 + 3θ∥Bk
θ (u

k)∥2 − 3θ

12θ2
∥xk − ũk∥2

= −θ∥R(uk)∥2 + 3θ

(
∥Bk

θ (u
k)∥2 −

L2
p

3
∥xk − ũk∥2

)
.

Here we substitute θ = 1
2Lp

. □
Now we are ready to prove the main theorem.

Proof of Theorem 1. Line 5 of Algorithm 1 gives

∥xk+1 − x∗∥2 = ∥xk+1 − xk∥2 + 2⟨xk+1 − xk, xk − x∗⟩+ ∥xk − x∗∥2

= ∥xk+1 − xk∥2 + ∥xk − x∗∥2 − 2η⟨R(uk), xk − x∗⟩.

Using the results of Lemma 1 and the condition (3) on ∥Bk
θ (u

k)∥2, we get

∥xk+1 − x∗∥2 ≤ ∥xk+1 − xk∥2 + ∥xk − x∗∥2 − ηθ∥R(uk)∥2

+3ηθ

(
∥Bk

θ (u
k)∥2 −

L2
p

3
∥xk − ũk∥2

)
≤ ∥xk+1 − xk∥2 + ∥xk − x∗∥2 − ηθ∥R(uk)∥2.

Again from line 5 it follows that

∥xk+1 − x∗∥2 ≤ η2∥R(uk)∥2 + ∥xk − x∗∥2 − ηθ∥R(uk)∥2.

Let us substitute the choice of parameters: θ = 1
2Lp

, η = θ
2 :

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − η(θ − η)∥R(uk)∥2

≤ ∥xk − x∗∥2 − θ2

4
∥R(uk)∥2.

Summing from 1 to K − 1, one can obtain

K−1∑
j=0

θ2

4
∥R(uj)∥2 ≤

K−1∑
j=0

(
∥xj − x∗∥2 − ∥xj+1 − x∗∥2

)
= ∥x0 − x∗∥2 − ∥xK − x∗∥2

≤ ∥x0 − x∗∥2.
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Thus, we have
K−1∑
j=0

∥R(uj)∥2 ≤ 16L2
p∥x0 − x∗∥2,

and finally,

min
0≤j≤K−1

∥R(uj)∥2 ≤
16L2

p∥x0 − x∗∥2

K
.

This ends the proof. □

Corollary 1. Under the assumptions of Theorem 1, to achieve a ε-solution in
terms ε ∼ ∥R(u)∥, Algorithm 1 needs

O

(
L2
p∥x0 − x∗∥2

ε2

)
computations of the operator P.

As noted in Section 1, this result is better than for the Extragradient method,
which provides an estimate: O

(
(Lp+Lq)

2∥x0−x∗∥2

ε2

)
.

Remark 1. Meanwhile, line 4 of the algorithm requires an additional algorithm
to efficiently solve the resulting subproblem. The Extra Anchored Gradient
algorithm proposed in [34] can be used for these purposes. In fact, any method
of solving variational inequalities with a Lipschitz monotone operator can be
used here, but the method from [34] has convergence guarantees necessary for
our theoretical analysis (see (3)). Moreover, it is also shown in [34] that these
guarantees are optimal and unimprovable.

5 Numerical Experiments

In this part, we conduct three experiments: with a generated bilinear problem,
with a logarithmic logistic regression, and with non-convex least squares (NLLSQ)
on the mushrooms dataset from LibSVM [35,36]. It turns out we evaluate the
performance of the algorithm on both synthetic and real data.

5.1 Bilinear problem

A bilinear problem is a classical and keystone example of the saddle:

min
x∈[−1;1]d

max
y∈[−1;1]d

[
f(x, y) := (x− bx)

TA(y − by) +
1

2
∥x− bx∥2 −

1

2
∥y − by∥2

]
.

(5)
In this setting, P refers to the main part (x− bx)

TA(y− by) of the gradient while
Q represents the gradient from the regularization terms 1

2∥x− bx∥2 − 1
2∥y− by∥2

(see the second example from Section 2).
For the purposes of the experiment, a random bilinear saddle point problem

is generated. The dimension d of the problem is set equal to 1000. The matrix A
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are sampled as a positive definite matrix with uniformly distributed eigenvalues
from µ to L, where µ and L are chosen as 0.1 and 100 correspondingly. Biases bx
and by are both sampled from U(−1, 1) as well as the starting point. In Figure
1, one can see the plots comparing the convergence of the algorithm presented
in this paper and Extragradient in terms of the number of iterations and oracle
calls.

Fig. 1: Comparison of Extragradient and Extragradient Sliding for the generated bilinear
saddle point problem (5).
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5.2 Logarithmic loss problem

The second experiment uses the mushrooms dataset and a more complex to
compute logarithmic regression problem. To create a saddle point problem, the
adversarial noise [37] technique is used. In this setting, the model weights are
adjusted in parallel with the trained noise, which makes the model more robust.
The resulting problem is formulated as follows:

min
x∈Rd

max
∥yi∥≤δ

[
f(x, y1, . . . yi, . . . yN ) :=

1

N

N∑
i=1

ln
(
1 + exp(−bix

T (Ai + yi))
)

+
βx

2
∥x∥2 − βy

2
∥y∥2

]
.

(6)

Here A, b are data, x represents the model’s weights, yi stands for adversarial
noise, βx and βy determine the degree of regularization, δ defines the constraint
imposed on adversarial noise. As in the previous case, the starting point is
sampled from a uniform distribution U(−1, 1). βx and βy are both set to 0.1, δ
is set to 0.1.

Plots showing comparison of the convergence for Algorithm 1 and Extra-
gradient are presented in Figure 2. As can be seen, the algorithm presented in
the paper outperforms baseline simultaneously in terms of P and Q oracle calls,
despite the fact that solving the inner subproblem involves more Q oracle calls
than in the standard Extragradient.
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Fig. 2: Comparison of Extragradient and Extragradient Sliding for the log loss saddle
point problem (6)
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5.3 NLLSQ loss problem

The last experiment is performed on a non-convex loss function in order to
demonstrate the success of the method for the non-monotone operator P . As
in the case of the logistic loss function, a saddle problem with adversarial noise
adding robustness is posed:

min
x∈Rd

max
∥yi∥≤δ

[
f(x, y1, . . . yi, . . . yN ) :=

1

N

N∑
i=1

(
bi −

1

1 + exp(−xT (Ai + yi))

)2

+
βx

2
∥x∥2 − βy

2
∥y∥2

]
.

(7)

The mushrooms dataset is used again for the experiment. The notation used in
the formula is similar to the previous case. The starting point is sampled from a
uniform distribution U(−1, 1). βx and βy are both set to 0.1, δ is set to 0.1.

The comparison of algorithms in this setting, presented in Figure 3, emphasizes
the practical value of the considered algorithm. In this experiment it again wins
the baseline on the calls of both oracles.

Fig. 3: Comparison of Extragradient and Extragradient Sliding for the NLLSQ loss
saddle point problem (7)
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