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Abstract

Distributed optimization has a rich history. It has demonstrated its effectiveness
in many machine learning applications, etc. In this paper we study a subclass
of distributed optimization, namely decentralized optimization in a non-smooth
setting. Decentralized means that m agents (machines) working in parallel on
one problem communicate only with the neighbors agents (machines), i.e. there
is no (central) server through which agents communicate. And by non-smooth
setting we mean that each agent has a convex stochastic non-smooth function,
that is, agents can hold and communicate information only about the value of the
objective function, which corresponds to a gradient-free oracle. In this paper, to
minimize the global objective function, which consists of the sum of the functions
of each agent, we create a gradient-free algorithm by applying a smoothing scheme
via lz randomization. We also verify in experiments the obtained theoretical
convergence results of the gradient-free algorithm proposed in this paper.
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1 Introduction

Modern machine learning models often give rise complex high-dimensional learning
problems that can be computationally very expensive to optimization. Therefore, to
reduce computational costs, it becomes more important to use optimization algorithms
that have the properties of parallelism [1, 2], which can reduce the time required
for training. Because of this property, there are modern state-of-the-art generative
models [3, 4], language models [5, 6], and many others [7]. However, it is worth noting
that modern machine learning algorithms with the property of parallelism are often
based on Stochastic Gradient Descent (SGD) [8], which uses the stochastic gradient
estimation approach of the objective function, which causes a variance component that
can affect convergence (when the variance is large). As a rule, the convergence result of
such algorithms can be improved by batching the stochastic gradient estimates, which
are just easily distributed on several computing resources (machines). That is why
in the last 5 years algorithms with the property of parallelism for solving federated
optimization problems [9-11] and distributed optimization problems (centralized [12—
14] and decentralized [15-17] approaches) have been actively developed.

Distributed decentralized optimization arises when there is no central server that
receives information (e.g. gradient of objective function), performs updates, and
returns updated data to each agent (machine), as for example in distributed central-
ized optimization or federated optimization problems. In a decentralized setting, all
agents are connected via a communication network and each agent can make local
updates or communicate only its neighbors. Such decentralized optimization problems
appear in many applications, for example, network resource allocation [18], distributed
statistical inference and machine learning [19, 20], cooperative control [21], distributed
averaging [22, 23], estimation by sensor networks [24], training deep neural networks
[25-27] and many others. A special interest in decentralized optimization arises in
time-varying networks [28, 29]: this is the situation where the links in a communication
network are allowed to change over time. This network concept has direct relevance
to many applications, such as future-generation federated learning systems [30, 31],
where the communication pattern among pairs of mobile devices will be determined
by their physical proximity, which naturally changes over time.

Solving such problems requires calculating the gradient of the objective function.
But what if the gradient is not available because the objective function is non-smooth?
Before answering this question, let us note that such optimization problem, when
the oracle returns only the value of the objective function at the requested point, is
called black-box optimization problem [32, 33]. And this class of problems has been
actively developing lately [34-42]. For example, the review [43] on creating gradient-
free randomized algorithms to solve the black-box problem considers techniques for
creating zero-order algorithms for cases where the objective function is non-smooth



[44], smooth [45], or has increased smoothness [46]. The efficiency of such algorithms
is usually determined by three optimality criteria: by the number of consecutive iter-
ations, by the total number of calls to the gradient-free oracle, and by the maximum
allowable noise level at which a certain accuracy can be guaranteed. Where the lat-
ter may seem unexpected, but this criterion is really important because there are
often situations in practice where adversarial noise affects the cost of calling to the
gradient-free oracle [47].

In this paper, we focus on solving the problem of minimizing sums of strongly
convex functions stored decentralized in nodes of a communication network whose
connections may change over time. To use the smoothing technique via lo randomiza-
tion, we generalize the ADOM+ algorithm [48] to a stochastic setting, developing a
new algorithm Stochastic Accelerated Decentralized Optimization Method (SADOM).
Based on stochastic SADOM and using the smoothing technique, we provide, to
the best of our knowledge, the first gradient-free algorithm for solving a stochastic
non-smooth distributed decentralized optimization problem: Zero-Order Stochastic
Accelerated Decentralized Optimization Method (ZO-SADOM). We demonstrate the
convergence of the proposed ZO-SADOM algorithm in practice using a model example.

1.1 Main Contributions

Our main contributions can be summarized as:

® We prove the convergence of the Stochastic Accelerated Decentralized Opti-
mization Method (SADOM, see Theorem 1), obtaining the same communication
complexity as the state of the art algorithm ADOM [49] and ADOM+ [48]. We
show that by adding a batching, the term responsible for stochasticity is reduced
and the SADOM algorithm can have the same convergence rate as ADOM+.

® For a non-smooth regime of decentralized strongly convex optimization over
time-varying graphs, we present a novel Zero-Order Stochastic Accelerated Decen-
tralized Optimization Method (ZO-SADOM, see Theorem 2). We show that
this algorithm is robust for both deterministic setting and stochastic setting of
the problem. We derive optimal estimates on the total number of calls to the
gradient-free oracle that correspond to lower bounds.

® We demonstrate the convergence of the proposed algorithm Zero-Order Stochastic
Accelerated Decentralized Optimization Method (ZO-SADOM) in practice using
a model example. We show how the convergence of novel accelerated decentralized
gradient-free algorithm in a decentralized setting on time-varying graphs depends
on the type of graph: geometric graphs and ring & star graphs.

1.2 Paper Organization

This article has the following structure. In Section 2 we give the related works. We
describe the main assumptions and notations as well as the known results in Section 3.
We give the convergence result for the Stochastic Accelerated Decentralized Optimiza-
tion Method in Section 4. Section 5 contains the main result of this work. While in
Section 6 we discuss the theoretical results obtained. In Section 7, we present numerical



experiments. Section 8 concludes the article. All supplementary materials, including
proofs of theorems, are presented in the Appendix.

2 Related Works

Decentralized optimization. Our work is closely related to decentralized opti-
mization algorithms working on time-varying networks. The development of such
algorithms has been actively pursued in recent years [48-54]. For example, in [50] the
authors proposed the DIGing algorithm, which achieves communication complexity
O (n1/2X2R3/2 log %) Further, the authors of [51] improved this estimate by getting
rid of the total number of nodes n, proposing the PANDA algorithm O (x?x%/2log 1).
The following works [53, 54] proposed algorithms that improved the communication
complexity to a near-optimal estimate accurate to the logarithm: O (xx'/2log” 1)
APM [53], O (xx'/?log(x) log 1) Mudag [54]. Finally, in [49] and [48] the authors
presented algorithms ADOM and ADOM+ that achieve optimal estimates for com-
munication rounds O (Xlil/ 2log %) The difference of these algorithms is that in the
ADOM [49] algorithm one has to compute the gradient of the dual function. In our
work, we also solve a decentralized optimization problem on time-varying networks,
only in a non-smooth setting. Therefore, to create a new algorithm that solves this
problem in a non-smooth setting, we will be based on an optimal algorithm (ADOM+)
that uses the gradient of the primal objective function.

Randomized approximation. In many works [11, 55-60] various randomized tech-
niques are actively used to create gradient-free algorithms. For example, in [59] authors
applied a smoothing technique via Iy randomization (based on the accelerated condi-
tional gradient method), thus creating an optimal algorithm in terms of the number of
oracle calls, which is robust in both non-smooth and smooth settings and significantly
outperforms its counterparts in the class of Frank-Wolfe type algorithms. The authors
in [11] presented a smoothing technique via I; randomization to create gradient-free
algorithms for solving non-smooth convex optimization problems. This smoothing
scheme is theoretically superior to the smoothing scheme via l5 randomization in the
simplex space, but the authors showed that in practice the advantage is impercep-
tible. In another series of works [42, 46, 61, 62], the authors developed gradient-free
algorithms using randomization with kernel (Kernel approximation). Because of the
kernel there is a bias in the estimates of the gradient-free oracle, but due to this kernel
it is possible to take into account the advantages of the increased smoothness of the
objective function. In our work, we use a smoothing scheme with /5 randomization to
create a gradient-free algorithm. Since randomization in turn introduces stochasticity,
it is important to base the algorithm on the stochastic version. Therefore, we base on
the stochastic version of the ADOM+ algorithm, namely SADOM (this result may be
of independent interest) and apply a smoothing technique already to it, which allows
us to create as far as we know the first gradient-free algorithm to solve a non-smooth
decentralized optimization problem on a time-varying graphs.



3 Background

In this paper we study a standard decentralized optimization problem:

min »  fi(x), (1)
i=1

r€eRd £

where each function f; : R? — R? is stored on a compute node i € {1,...,n}. Nodes
are connected by a communication network. Each nodes is an independent computa-
tional agent (machine) that can perform computations based on its local state and
data, and can directly communicate with its neighbors only. Next, to clarify the class
of problems to be solved, we introduce a basic definitions and assumptions on the
objective function, decentralized communication and gossip matrices.

3.1 Definitions and Assumptions on the Objective Function

Throughout this article we use the following definitions.
Definition 1 (Convex function). Function f is convex if for any x,y € R? it holds

fy) = f@) +(Vf(x),y —x).

Definition 2 (Strongly convex). Function f is p-strongly convex if for any x,y € R?
it holds

1) = f(2) + (Vf(@)y— ) + S lly — >
Definition 3 (L-smooth). Function f is L-smooth if for any x, y € R? it holds

Fw) < F@) + (V)y - )+ y -l

Next, to prove the theoretical results, we need standard assumptions on the
objective function of problem (1).
Assumption 1. For alli=1,...,n, function f; is convez (see Definition 1).
Assumption 2. Foralli = 1,...,n, function f; is pu-strongly convez (see Definition 2).
Assumption 3. For alli=1,...,n, function f; is L-smooth (see Definition 3).

These assumptions on functions are basic and are often used in the literature (see,
for example, [63, 64]). The combination of Assumptions 2 and 3 naturally leads to a
value of kK = %, known as the conditionality number of the function f;. And strong
convexity implies that problem (1) has a unique solution.

3.2 Decentralized Communications

We now introduce the necessary notation and definition that we will use in describing
our algorithm. Let V = {1, ..., n} denote the set of the compute nodes. We assume that
distributed communication is performed through a series of communication rounds.
At each rounds ¢ € {0,1,2, ...}, the nodes interact through a network represented by
an communication graph G7 = (V,£9), where €1 C {(i,j) € V x V : i # j} is the set



of links at round ¢. The nodes can only communicate to their immediate neighbors in
the corresponding network. This type of communication is commonly referred to in
the literature as decentralized communication (see, e.g., [49, 50]).

Decentralized communication between nodes is usually represented through the
matrix - vector multiplication with the gossip matrix. The following are assumptions
for the matrix that is usually considered for each decentralized communication round.
Assumption 4. For any decentralized communication round q € {0,1,2,...} matriz
W (q) € R™*™ satisfies the following properties:

1. W(q) is symmelric and positive semi-definete;
2. W(q)i; =0ifi#j and (i,j) € £
3. ker W(q) = {(w1,29,...,7,) ERY 10y =29 = ... = 2, };
4. There exists x > 1, such that |[Wz — z|* < (1 —x~ 1) ||lz||®
forallw € {(z1,...,2,) €R": 30 2, =0} .
Throughout this article we will refer to this matrix W (q) as a gossip matrix. Note

that the condition number of time-varying network y defined by x = sup, M

min(@(a)’
where Amax(L(q)) and A\ (L(g)) denote the largest and the smallest positive eigen-

value L(q) respectively, and L(q) is the Laplacian of an undirected connected graph G9.
A typical example of this matrix is W(q) = AL (L(q)) - L(q) (see [48, 64]).

max

3.3 Convergence result of ADOM-+

In this subsection we present the convergence results of the optimal algorithm ADOM+
from [48], which we will need in the sections below. For this purpose, we provide a
sequence of reformulations of the problem (1), like the authors of [48] did.

Reformulation via Lifting

Consider function F : (Rd)v — R defined by

F(z) = filx),

uS%

where x = (x1,...,2,) € (Rd)v. Then F is L-smooth p-strongly convex since the

individual functions f; are. Consider also the consensus space £ C (Rd)v defined by

1%
L= {J; = (X1,..,Tpn) € (Rd) 1Ty = ... = xn}
Using this notation, we arrive at the equivalent formulation of problem (1):

Since the Function F(z) is strongly convex (see Definition 2 and Assumption 2), this
problem also has a unique solution, which we denote as x* € L.



Saddle Point Reformulation

Next, we introduced a equivalent formulation of problem (2) using a slack variable
da\V

w e (R ) and a parameter v € (0, u):

. 14 2V 2
min | F(z) ~ 5 ol + 5 ]l
x,wE(]Rd)
w=z,weLl

It is worth noticing that the function F'(z) — & |z||? is (1 — v)-strongly convex since

v < p. The latter problem is a minimization problem with linear constraints. Hence,
it has the equivalent saddle-point reformulation:

. v s v ,
min max max F(z) — = ||lz||” + < [[w]|” + (y,w — ) + (z,w) ,
z,we(R)Y ye(RY)Y 2L+ (z) 2 ] 9 lwl” + (y Y+ (z,w)

where £+ C (Rd)v is an orthogonal complement to the space £, defined by

Lt = {(zl, vy 2n) € (]Rd)v : izi = 0}.
i=1

Minimization in w gives the final saddle-point reformulation of the problem (2):

. 14 2 ]_ 9
min  max max F(x) — = ||z||" — {(y,x) — — |ly + z||”. 3
z€(RD)Y ye(RA)Y zeLL ( ) 2 ” ” <y > 2w Hy ” ( )

Further, by E we denote the Euclidean space E = (Rd)v X (Rd)v x L+, It can be
shown that the saddle-point problem (3) has a unique solution (z*,y*, z*) € E, which
satisfies the following optimality conditions:

0=VF(z") —va* —y*, (4)
0=v7(y" +2) +2", (5)
Loy"+ 2" (6)

Monotone Inclusion Reformulation

Consider two monotone operators A, B : E — E, defined via

VF(x) - -y
Alz,y,z) = 1(y Z) . Bmuyz)=|xz|, (7)
vy + 2) 0

where P is an orthogonal projection matrix onto the subspace £. Matrix P is given as

1
P= (In - Elnll) & Ida



where I, denotes p x p identity matrix, 1, = (1,...,1) € R”, and ® is the Kronecker
product. Then, solving problem (3) is equivalent to finding (z*,y*, z*) € E, such that

Aty =) + By, 2) = 0, ®)

Optimality condition (6) is equivalent to proj,. (y* + 2z*) = 0 or Pv—1(y* + 2z*) = 0.
It is clear that (8) is another way to write the optimality conditions for problem (3).
Now, by performing successive reformulations of the problem (1) and prelimi-
narily replacing the last component Pv~!(y + z) of the operator A from (7) with
(W(q) ®I3)v~!(y + 2), we can write down the convergence results of the ADOM+
algorithm proposed in [48].
Lemma 1 (Convergence of ADOM+, [48]). To reach precision HxN —;v*”2 < ¢,
Algorithm ADOM+ requires the following number of iterations

N=0O (X\/Elog1>.
I €

This result can be rewritten in terms of the rate of convergence. Then there exists

C > 0, such that
)\min N
TRV AL o

N _ ZL’*
32)\max\/Z

|

4 Stochastic Smooth Setting

In this section we generalize the results of the paper [48] to the stochastic setting. To
do this, the original problem (1) of decentralized optimization should be reformulated
into a stochastic problem as follows:

n
min Z{f,(m) = Eefi(z,8)}. (10)
zeRd —

A stochastic problem statement is quite common in community. Then by performing
a similar reformatting procedure for the original stochastic problem (10), as shown in

Subsection 3.3, we can present our Stochastic Accelerated Decentralized Optimization
Method (see Algorithm 1).



Algorithm 1 Stochastic Accelerated Decentralized Optimization Method (SADOM)

1: input: 2%, 4% m® € (RY)Y, 2 € £+
2: x‘} =29, y?c =99, z?c =20
3: for k=0,1,2,... do

4: 1']; = 7'1$k + (1 — Tl)xl}:-
5. l.k+1 — (Ek + na(xlg _ .’Ek+1) - lig(xlg’ékr) _ sz: _ yk+1]

xl;+1 = 2k 4 (b - by

yy =y + (1= 0)yf

P = 4 09((ak, &) — vl — y+1) — 0 [y 4 28) 4 0]
C oyt =yl e (T — o)

10: Zh =92+ (1- 191)2’;5

1 2P = 2R (k= 2F) — (W(k) @ 1a) st (yk + 28) + mF]

12: mFt = Yk 4 28) + mP — (W(k) @ La) [0~ (yh + 25) + m”]

13: ZIJ?‘H = zg —(¢(W(k)® Id)(y_’; + z’;)
14: end for

6
7:
8:
9

Next, we assume that we have access to the gradient oracle and the variance is
bounded.
Assumption 5. For all x € R we have gradient oracle:

Elg(z,§)] = VF(z) + w(z). (11)
And exists constant A < 0 such that for all x € R?
lw(a)||* < A% (12)
Assumption 6. There exists constant 02 >0, such that Va € R?:
E|lg(,€) - VF@)|*] <o (13)

These Assumptions 5 and 6 on the stochastic gradient oracle are standard in the
stochastic optimization literature [65, 66]. We can now present the convergence result
of Stochastic Accelerated Decentralized Optimization Method (Algorithm 1).
Theorem 1 (Convergence of SADOM). Let Assumptions 1-4 be satisfied and Assump-
tions 5, 6 on the gradient oracle be satisfied, then there exist such parameters
T1, T2, M, @, %, 0,v,3¢,7,( and B < 1/(2L) that the Stochastic Accelerated Decentralized
Optimization Method (Algorithm 1) has the following convergence rate

3]

EleN—x* |2—|—%(F(x?)—F(x*)—%Hx}v—x*



VB 64x , 128x o
<|(1-X2) ¢ A2
< < 32x o+ 730 VB+ L2

For a detailed proof of Theorem 1, see Appendix B. The result of Theorem
1 shows the quite expected results for the stochastic algorithm, namely, the con-

32x
which fully matches the convergence of ADOM+, the stochastic and bias terms

X 2 L X 2 . .
Vi° VB (1 + \/: ) and NI A< which can affect the final convergence in case the

second or third term dominates. This convergence result can be improved by adding
a batch procedure. Then the convergence rate will be as follows.

Corollary 1 (SADOM with batching). Let the conditions of Theorem 1 hold, then
Stochastic Accelerated Decentralized Optimization Method with the gradient oracle
gz, &) = % ZZB:1 g(x,&;) has the following convergence rate:

N
vergence of SADOM consists of three terms: the deterministic term ( — @) ,

2 2 2

VB 64y o2 128y o
<(1-Y2E) ¢ 7 A2,
< < 32x 0o+ 5 B VB+ B2
2

Corollary 1 is correct, because when paralleling (batching) the variance o? is
reduced by a factor of B, where B is the batch size. The convergence estimate from
Theorem 1 contains a stochastic term, the influence of which can be reduced by the 8
parameter, thus making it as small as possible. By careful tuning of the 8 parameter,
one can obtain convergence results similar to [67].

Corollary 2 (§ tuning). Let the conditions of Theorem 1 hold, then it is possible to
choose the value of B in such a way that the following convergence is realised

2‘|
~ /. VN } x20? A2N>

=0 (Cye — + + .
( ° Xp[ 32VoxVL|  BuN ' JLul/2

For a detailed proof of Corollary 2, see Appendix B.

E

M 12 * I *
§HxN—as —l—F(xij)—F(q:)—Zijcv—x

5 Zero-Order Methods

In this section, we present the main result of this work. Namely, a gradient-free
optimization algorithm solving a non-smooth stochastic decentralized optimization
problem on time-varying graphs. First, let us formally reformulate the optimization

10



problems (2), (10):

min F(z) :=E;

i ; (14)

> Filwi6)

US%

where F : (Rd)v — R is a non-smooth strongly convex. It follows from the fact that
each function f; is non-smooth strongly convex function. Then our approach to solving
this problem is to create a gradient-free algorithm using different smoothing schemes
(see details below) and based on Stochastic Accelerated Decentralized Optimization
Method (the ADOM+ algorithm is not suitable as a basis for a gradient-free algorithm,
because approximation of the gradient g(x*,&*) from line 5 will create stochasticity,
but the batched SADOM algorithm leads to optimal estimates of the ADOM+ algo-
rithm). Now, before presenting the main convergence results of this paper, let us define
additional assumptions and definitions of the gradient-free oracle and the gradient
approximations for new algorithm.

Definition 4 (Gradient-free oracle). Gradient-free oracle returns a function value

F(x,€) at the requested point x with some adversarial noise 8, i.e. for all x € (Rd)v

F(;(x,ﬁ) = F(JC,&) + 5($,§)

Assumption 7 (Lipschitz continuity of objective function). The function F(x,§) is

an Ms Lipschitz continuous function in the lo-norm, i.e for all x,y € (Rd)v we have

[F(y,§) — F(z,8)] < Ma(§)lly — =]

Moreover, there is a positive constant My, which is defined as follows

Ee [|M2(£)?|] < M3

We also assume that adversarial noise is bounded.

Assumption 8 (Boundedness of noise). For all z € (Rd)v and for all £, it holds
5(a,€)| < A,

Since problem (14) is non-smooth, we must smooth the original function F', and
apply our Algorithm 1 to this approximation. The smoothed function F' is presented
below.

Fy(z) := Ee ¢ [F(z +7€,8)], (15)
where v > 0 is smoothing parameter, € is random vector uniformly distributed on
a d-dimensional Euclidean ball B¢(1). The following lemma provides the connection
between non-smooth function F' and smoothed function F,.

Lemma 2 (Lemma 1, [11]). For the u strongly convex function F the smoothed func-
tion F, is also p-strongly convex. Moreover, let Assumptions 7 and 8, holds, then for

all v € (Rd)v we have
F(z) < Fy(z) < F(z) + vMo.

11



Function F, is Ma-Lipschitz continuous function in the lo-norm:
P
|Fy(y) = Fy(2)] < Mally — || for allz,y € (RY) .

F,(x) has Lp, = @-Lipschitz gradient

%
IVE(y) ~ VE, (@) < Ly lly — || for all 2,y € (RY)” .

To apply Algorithm 1 to the smoothed function F, (15) we need to approximate
its gradient using the original function. We must replace the exact gradient g(z,¢)
from line 5 with its approximation g(z, ¢, e). In this paper, we will look at 3 types of
gz, & e).

Two-point feedback [11, 43, 68-71]:

Ry + e, €) — Fy(x — e, ) e. (16)

g(iﬂ,f, 6) = g

One-point feedback via single realization of £ [11, 43]:

g(r.6,¢) = %(Fm F e 6)e. (17)

One-point feedback via double realization of £ [46, 61, 70, 72]:

gz, 67,6 e) = % (Fs(z +e,67) — Fs(z —ye,€7)) e. (18)

Here Fj(z,§) is gradient-free oracle from Definition 4, e is a random vector
uniformly distributed on a d-dimensional Euclidean sphere Sg(1).

The key difference between approximations (16) and (18) is that Scheme (16) is
more accurate, but it is difficult to implement in practice because we have to get the
same realization of £ at two different points = + vye and 2 — ~e, then Scheme (18) is
more interesting from a practical point of view. Scheme (17) uses to compute g(z, &, e)
only one call of the Fjs function, which makes it faster than the other approximations.

We can also apply the batching technique to all three gradient approximations:

B
1 .
g(xV 517 "'7£B7 617 "'76B) = E ;g(‘r’ 517 67‘)’

B are independent and chosen with equal

where B is the batch size and e, ...,e
probability from Sg(1).

Then to obtain a gradient-free algorithm: Zero-Order Stochastic Accelerated
Decentralized Optimization Method, we need to apply Stochastic Accelerated Decen-

tralized Optimization Method (Algorithm 1) to new smoothed problem

i F(z), (19)

12



using one of the gradient approximations (16), (17), (18) or their batched versions
we should substitute them in instead of g(m’;,é) in the SADOM algorithm in line 5.
If we want to get en e-solution to the initial problem (14), i.e. |F(z) — F(z*)| < e,
then, according to Lemma 2, using v = ¢/(2M2), an (¢/2)-solution to (19) will be an
eg-solution to the initial problem (14). This approach is similar to [43].

For further estimates of convergence we need to introduce the following assumption
Assumption 9 (Boundedness of the function F(z,£) on Q). For all x € Q, it holds

Ee [|F(z, )] < 62
The following lemmas will help us in estimating the convergence of the method

Z0O-SADOM when using different ways of approximating the gradient.
Lemma 3 (Lemma 2, 3 from [11], Lemma 3.1 from [72]). It is true that

Ee¢ [llg(z, & e)[3] < a2 (20)
where
e [f Assumptions 7, 8 are hold for two-point feedback (16):

dA2
~2 _ 2
o = 2\/§d <M2 + \/W)

o If Assumptions 9, 8 are hold for one-point feedback via single realization of & (17):

G2 A?
~2 2
o =2d <72+v2>

o [f Assumptions 7, 8 are hold for one-point feedback via double realization of &
(18):

2
5* = 3d° <3M22 + Mﬁ)

This Lemma allows us to say that Assumption 6 is fulfilled for all gradient approx-
imation methods (16) - (18), since according to [43] the following inequality is true:
o? <52
Lemma 4. Let Assumption 8 holds, then for all approximations of gradient Assump-
tion 5 is fulfilled with

A 0B
Y

For a detailed proof of Lemma 4, see Appendix C.1.

We now have estimates for all the constants we need and all Assumptions are
satisfied to apply our Algorithm 1 to the non-smooth problem (14) using one of the
three gradient approximation methods (16) - (18). In the result of Corollary 2 we need
to substitute L from Lemma 2, ¢ from Lemma 3 and A from Lemma 4 to get the
convergence of the ZO-SADOM method.

Theorem 2 (Convergence of ZO-SADOM). Let Assumptions 1-/ be satisfied, also let
Assumptions from Lemma 3 be satisfied. Then based on the SADOM (Algorithm 1)

13



and applying different approzimation schemes (16) - (18) the gradient-free algorithm
Zero-Order Stochastic Accelerated Decentralized Optimization Method requires in the
Fuclidean setup has converge rate

_ 1/4 222 _ 5/2,1/2
N = O [ max M;XU Ao R )
VEL ' eBu d"/AMsN

*

where € is accuracy, i.e. E {‘2‘ HxN — | + F(a:jcv) —F(z*) - §& ijcv —z*

2
B
and & is defined in Lemma 3 for (16) - (18).

It is not hard to see that the ZO-SADOM algorithm is slower to converge than
SADOM, which is the cost of using gradient-free algorithms, but it is worth noting
that neither SADOM nor ADOM-+ can solve non-smooth problems, which is why this
result is really important. For a detailed proof of Theorem 2, see Appendix C.2.

In our paper, we use three gradient approximations (16) - (18), for them we can
clarify the convergence estimates for the ZO-SADOM method, by substituting &2 from
Lemma 3.

Corollary 3 (TPF, (16)). Let Assumptions from Theorem (2) be satisfied, then ZO-
SADOM algorithm with two point feedback gradient approximation (16) has converge
rate

N = O ( max d1/4M2X' X2dM22 A2 = O ( min 65/2M1/2 'B'Ung
JVERL ' eBu ’ d/AMyN’ x2M3d | )~

We now can get estimates on the communication and oracle complexity of the ZO-
SADOM Algorithm 1 with two point feedback gradient approximation (16). Consider
2 options for selecting the bach size B:

e If we take B = 1, when we obtain such estimates on communication and oracle
complexity of the ZO-SADOM algorithm

B 1/4M 2002
Noracle:N.B:(’)<max{d 2X;Xd 2})
VEL e

N, =N=0 (max { d1/4M2X' deM22 }) .
VEIL T e

But this choice B gives poor estimates on Ngpacle, also we can improve the
estimate on Neomm with multi-gossip step, similarly to what was done in the
paper [17, 73]. Then xes = O(1), but we need to do more communication in
[xIn(2)] times. Let us write out the estimates on Noyacle and Nopale in this case

2 / . . . . .
e [f we take B = dEMf : dlﬂz = dS\/;:b and with using multi-gossip step, we obtain
such estimates on communication and oracle complexity of the ZO-SADOM
algorithm

~ (dM?
Noracle:N'B:O< 2>a
ep
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~ [ d/4 M2X>
Neomm =N - [xIn(2)] =0 ( N .

Now we clarify the convergence estimates for the ZO-SADOM method with
using one point feedback methods. Similar results are obtained in [74], but for fixed
communication networks.

Corollary 4 (OPF via single realization of &, (17)). Let Assumptions from Theorem
(2) be satisfied, then ZO-SADOM algorithm with one point feedback via single
realization of & gradient approzimation (17) has converge rate

_ dY4A M. 242 M2G2
N = O (| max 2X; X 2G ,
VER e3Bu
. 5/2,,1/2 BuN 3
A% = O | min ‘K ; o 28 .
d7/AMyN’ x2 M3z d?
Corollary 5 (OPF via double realization of &, (18)). Let Assumptions from Theorem
(2) be satisfied, then ZO-SADOM algorithm with one point feedback via double
realization of & gradient approzimation (18) has converge rate

~ d1/4M 2402 M2
N = O | max 2X; X 2 ,
Ve eBu
. 5/2,,1/2 BuN 3
A% = O | min ‘K ; H; .
dT/AMyN’ x2M3d?
Similar to what we did after Corollary 3, for these two gradient approximations
(17) and (18) we can obtain estimates on communication and oracle complexity.

6 Discussion

We introduced an algorithm to extend the result of Lemma 1 to the stochastic case.
In Theorem 1 we can see that the convergence of the deterministic term coincides
completely with the convergence of ADOM+-, while the stochastic term can be reduced
using a batch procedure, so that this term will not affect the convergence. Thus, we
can formally say that our approach to create a gradient-free algorithm is based on an
optimal accelerated decentralized optimization method. This trick makes it possible to
create a gradient-free, decentralized algorithm that works on time-varying graphs for
any problem setting: deterministic or stochastic. In any case we are forced to use the
results of Theorem 1, since the smoothing scheme artificially generates stochasticity via
l> randomization. However, if we want to solve the stochastic setting of the problem,
the approximation of the gradient used in the gradient-free algorithm will take the
following form: g(z},£%) = & Zf;l glah, &F) = & Zil g(ah, &F ef), where € means
real £ and artificial e stochasticity obtained by lo randomization: &; = {&;,e;}. Then,
having done all the procedures described in Section 5, the convergence result for the
stochastic setting will remain the same as described in Theorem 2. Further, in order
to confirm the results of Theorem 2, we implement in practice a model experiment
(see Section 7), where we will investigate the convergence of the Zero-Order Stochastic
Accelerated Decentralized Optimization Method on graphs with different structures.
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7 Experiments

In this section, we demonstrate the operation of the ZO-SADOM algorithm in which
the gradient is approximated with a finite difference with l; randomization on the
sphere. Minimization of the logistic regression loss function is considered as a task.
The network is simulated by a sequence of randomly generated graphs.

7.1 Logistic regression loss function

We consider the loss function of logistic regression with /5 regularization

1« T r 2
fiw) = — 3" log(1 + exp(bijalye)) + ],

Jj=1

where a;; € R? and b;; € {—1,1} are data points and labels, r > 0 is a regularization
parameter, m is the number of data points stored on each node. Lipschitz constant of
the function is L = 1. Using the regularization parameter r, the value of the strong
convexity constant y is selected so that the condition number becomes x = 10%. The
data is taken from the covtype LIBSVM [75] dataset. We take 10000 samples and
divide them into n = 100 nodes of the graph with 100 samples for each node.

7.2 Network

We are considering two different time-varying networks. The first network is emitted by
a sequence of randomly generated geometric graphs with x ~ 30.The second network
is emitted by a sequence of randomly generated ring and star graphs with x =~ 1000.

Fig. 1 Example of a geometric, ring and star graphs in a sequences

7.3 Approximation of the gradient
The gradient of the function is approximated by the central difference scheme (16)

flz+e) = flz —e)

g(z,e)=d o

)

Where v > 0, e ~ (S9), d - the dimension of the problem. In our experiments, the
parameter is selected on the order of 10~%. When calculating the gradient, batching
is used with the size of the batch = 55, with the dimension of the problem d = 54.
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7.4 Operation of the algorithm

geom graphs geom graphs
2 2
10 —— ZO-SADOM 10 —— ZO-SADOM
101 101
10° \\ 10° \
0 1000 2000 3000 4000 5000 ) 20000 40000 60000 80000
# of gradient-free oracle calls # of communication rounds

Fig. 2 Operation of the ZO-SADOM method on a sequence of geometric graphs

ring_star graphs ring_star graphs
2 2
10 —— ZO-SADOM 10 —— ZO-SADOM
10! 10!
100 \\ 100 \\
0 1000 2000 3000 4000 5000 0 1000000 2000000 3000000
# of gradient-free oracle calls # of communication rounds

Fig. 3 Operation of the ZO-SADOM method on a sequence of ring and star graphs

Figures 2 and 3 show the convergence of the decentralized algorithm ZO-SADOM
on time-varying graphs, depending on the number of communication rounds and the
total number of calls of the gradient-free oracle. Figure 2 uses a geometric graph as
the starting network, which varies over time. A Figure 3 uses a ring or star as the
starting network, alternating over time. The results obtained show that in order to
achieve the same value in both cases, it takes approximately same number of gradient-
free oracle calls. However, in the second case, the Zero-Order Stochastic Accelerated
Decentralized Optimization Method has to make much more communication rounds,
which is why it works longer.
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8 Conclusion

In this paper we proposed a new algorithm for solving a non-smooth strongly convex
decentralized optimization problem on time-varying graphs. Our approach to creating
a gradient-free algorithm was to generalize the convergence results of the ADOM+
algorithm to a stochastic setting (which may be of independent interest) to apply a
smoothing technique with lo randomization. We verified our theoretical results on a
model experiment, showing the convergence of the algorithms using different types of
network. We have shown that the developed algorithm is robust both for deterministic
setting and for stochastic setting of the problem.
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Appendix

Appendix A Auxiliary Facts and Results

In this section we list auxiliary facts and results that we use several times in our proofs.

A.1 Squared norm of the sum

For all ay, ..., a, € R?, where n = {2,3}
lar + ... + anll® < nllar|* + ... + nllan > (A1)

A.2 Fenchel-Young inequality
For all a,b € R* and A > 0

||Cl||2 /\||b||2
a < + . A2

A.3 Inner product representation
For all a,b € R4

(a,b) = 5 (la+01* = llaf* — [|b]*) - (A3)

1
2
A.4 Fact from concentration of the measure

Let e is uniformly distributed on the Euclidean unit sphere, then, for d > 8, Vs € R?¢

s

Eo ((s.)°) < 15 (A4)

Appendix B Proof of Theorem

By Dp(z,y) we denote Bregman distance Dp(z,y) = F(x) — F(y) — (VF(y),x — y).
Lemma 5. Let 7o be defined as follows:

T =+\/p/L. (B5)

Let T be defined as follows:
n =1/ +1/2)"". (B6)

Let n be defined as follows:
n=(1/B+1I] )" (B7)
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Let o be defined as follows:
a=p/d (B8)

Let v be defined as follows:

v=p/2. (B9)
Let UF¥ be defined as follows:

ok = (1 —|—oc> ka —z"
n

Then the following inequality holds:

2) (B10)

2 2 v
Z (D k ook _ 7 k.
+ - ( s(xf,x") 5 ||z —

E [UF] <max {1 — 75/2,1/(1 4+ na)} vk

+2E [(y*+! — o —2%)] - (Dp(af, ) - 2 ok - o*

2) +0—2+éA2.
I

g9’ T
(B11)
Proof.
1 ||mk+1 ot |2 _ 1 Hl,k 2 4 2<xk+1 — gk gkt z*) — 1 kaﬂ . ka?
n n n n
Let Gy = g(:v’g‘”', €*) then using Line 5 of Algorithm 1 we get
Ly kgt 2 _ Lk |2 k k41 k+1 *
= ||la"tt = a*||” = = ||2F — 2" + 20l — M M —2)
U U .
_ 2<Gk _ ng _ yk+1,xk+1 _ m*> _ % ka+1 - ka2
= % Hﬂfk | + 201(1‘]; — ¥ —gFT g R )
_ 2<Gk _ ng _ yk+1,xk+1 _ x*> _ % ka+1 _ kaZ
<L lot = =l -
—2(Gy, — VZ'Z _ yk+1,xk+1 — ") — % ka+1 _ kaQ

Using optimality condition (4) we get

ot -

k k+1

1 w2 w112 «[12
o L ] e I L
% ka+1 — l‘k||2 — 2(Gy — VF(z*), 2" — 2%)

+ 2u<x§ N A e S 1 (L LA A
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Using Line 6 of Algorithm 1 we get

Lt - < - x*||2 el o

H k1l _ —2(Gy — VF(z*), 2" — 2*)

+ 21/<x9 - x*,xk — ) 2y — g )

—%<Gk—VF(LE) ];'H )—i—%(zlg—x x?fl—xl;)
= % o =" = afla* ! — || + e — ||
1 2 * *
—n—7_22Hx’Jf+1 —x’;H —2(Gy, — VF(z*), 2" — z¥)
+ 21/(3:’; —a* b — ) 4 20y -y 2R )
2 *
—T—2<Gk—VF(a:) ’;H x’;>
v *
S AR R EREr S PR
< a2 -l = 2| o - o
n .
1

2
- — Hx’}“ — ka —2(Gy, — VF(z*), 2" — 2*)

+ 21/<],‘k o Z‘*,l‘k _ $*> + 2<yk+1 y* k+1 J)*>

— = o = || -

)

2 . Ey k41 k
T2<Gk VF(zg), z} xg>
@
_3 k+1 k
- <VF( ) - VF(a*), 2% xg>
@

Find the upper estimate for the term @:

*%<Gk*VF((£) ’;H x’;> = 7_—22<Gk7VF(x)m};fx’;+l>
(a2 2( Gk — VG| + 215“30’}*1—3@’;“2)-

-
Find the upper estimate for the term @:

VF(xf) — VF(z*), 2™ — af S VF(zF), 2"t — gk
Ly f

7-2 g T g g
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2 2
< — <F(m§)—F(w’;+1 3 H Rl x’;H >

T2

Substituting the obtained estimates we get:

!
n

—xwzsinﬂ—wwz—awmﬂ—fW+un%—xw2

2
3 H g~ 2(Gy - VF (@), 2" — 2
+2V< —z* wk—x*>+2<yk+1 y*, Pt — x*)
R
% <F(x?;) - PGty 4 L a1
I5) 2
+ |Gk — VF(z})]|
=1||$k x* 2—a||xk+1—x* 2
n
a2, (YBFL 1
rallat —o |+ (FEEE - ) [k -
T2 n72

—2(Gy — VF(z*), 2" —x>+21/a:’; z*, zk —ac)

F2(M -yt M - + 72 |G~ V@)

o (o = i)

+% (—F( T+ F(a )j:F(x*)+<VF(x*), - ’;+1>

—<VF(x , T —xlg“>)
= 2o — P — afjat*t -
n
o ||t - o 2, 1/5+L—V_7 H k+1 kaQ
g Ty 7]7’ 9

—2(Gy — VF(z*), 2" — %) + 21/<xg — 2k — %)
2
F2y T~y b =) - = (Dy(ahh) - Dy(ah))

T2 g
2
(H B

o~ 1) + 2 e - vEE
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Taking expectation on &€* we have:

1IE {Hx’“’l —z*

2] —aoE U|xk+1 —z* 2]

| - 2E[(Gr — VF(a"), 2" — )]

Q]S%EMﬁ—x*

+alE [ka —a*

+2VE [<xk —z* 2k —x >] +2E [<yk+1 BT A ;v*>]

—v@PA%>m%m

o (el - )

+(”“L‘”—¥>E{l!ﬂ:ﬂ—xs 2

T2 nr.

k *
= |lzg —=

- HGk - V()|
(11)(15) g 2
a* - 2]

faE[Hxh“—fwﬂi}4faE[kafafH1
—2(VF(z}) + w(a}) — VF(a*),2" — 2*)

+21/<x’;f:r* zF — z* >+2E [< Rl ¢ bt f:c*ﬂ

2 (B [Ds(f)] B [Dy(ah)])

D(UPH o] - e -]

1/B+L—v E+1 5;‘2
+< T2 177'2> [H H } Ty

Using

4
2(w(ap),at =) < oI+ g - o

And Line 4 of Algorithm 1 we get

2] S%ka—x* 2—04E[Hl‘k+1—$* 2}—&-04“ ';

N (1/5 ‘:—QL—V ) [H k+1 _x];HQ]

— 2(VF(2f) — VF(2*),af — 2*) + 2v |2}

207 (g p(ahy - V@), 2 - o)

lE [kaH -z

+

T1
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T2

2 ,
- = (B[Dstaf*a)] - Dylapa)

V(IE [H kbl _ :|_Hx]{; o 2)
Ty I ’

I
= 1 ka —z*|? - ok “|1}k+1 -z 2}

n

]2 1/64+L—v

R R e I e
—2(VF(x ) VF(x )Ig—z>+21/||x —x ||
+2(177_17—1)<VF(xg)—VF(x*),xf—x’;>

v(l—m) 2 12 ]2

— (Il = 251" + fla = o*|I” = |5 )

2E <yk+1 y T k+1 $*>]

2 (o] )

T
y2 2 Bo?
( |: k+1 _ z* :|_ng_ * )+T
2
407 L2
+T+Z||xg_ .

Using p-strong convexity of Dg(x,2*) in x, which follows from u-strong convexity of
F(x), we get

2

| <

(Ui L)y
2 nT3

= play =t 2w e -
2(1 -
+ 2 . ") (D (o 2*) — Do) — 2 |l — )

n v(l—m) (Hx,gc . 2)

!
+2E [(yF ! — y* 2P — )]

1

E [kaH —x* —aE [kaH —x*

2
:E’}H - x’;H } - 2Dp(x’;,x*)

2 2
— 2§+ [lag — 27" — [l
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(E {Df(xl;"'l,o:*)} — Df(a?]g“,x*)>

T2
2 2
2 (s [l ] et )+ 22
= % ka —2*||? — aE [kaH —z" ﬂ

* v * 2
-2 (B [osyon)] - 5B o -0

+ To _T7-22 zf I!]
A=) =) & 2
S IEY
o 4N g .2
+%+7+1H o=

Using 7 defined by (B7), 71 defined by (B6) and the fact that v < u we get

1g {ka“ —x*HQ} < e 2% — 2*
n n

* ok o+t o]
+ 2(1;7272/2) |2)

_2 Kt } v H 1o
. (E[Df(a:f ,x™) 2E Ty x

(Dp(z’},x*) - g Ha:l;c —z*

+ 2 [<yk+1 _ y*,$k+1 _ x*ﬂ

1)
k. 3v H « 2
D a) + (o pt Dl b a4 2042
Using « defined by (B8) and v defined by (B9) we get
1 %112 1 w112 w2
B[l =t < et =t - ok [t ]

L 2-n/2)

* v *
2 (Dp (o)~ § o -

)
_ T% (E [Df(xl;+l,x*):| _ gE [Hxl}ﬂ e

)

+ 2 [<yk+1 _ y*,$k+1 _ J)*H
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2
~ (Detabat) = g ok - ") + B

After rearranging and using ¥* definition (B10) we get
E [UFH] <max {1 — 7/2,1/(1 + na)} % + 2E [(y* T — y*, 2! — 2*)]

2
—(DFu;xﬂ—gnﬁ—wﬂF)+ﬁi+%A2

T2
O
Lemma 6. The following inequality holds:
1—9 2
Sl B - -5 Hyk“ v
! (B12)

+ (92— 01) Hyk-H _ ka?

Proof. Lines 7 and 9 of Algorithm 1 imply
yitt = yp + 026" — )

9
= gk 4 oyt 19—? (y* — (1= 91)yk)

U2\ g k1, (VU2 k
p— 1 — — — — .
( 191> vy 0y (=0 ) of

After subtracting y* and rearranging we get

W5 =)+ (51 O =) =0t =)+ (502 6 ),

Multiplying both sides by 2 o gives

o =i -y + (1 - Q91) (wy — ") =" =y + (1 =) (f —v").

g Ja
-5 (- )H Ty
(1_?91 Hyf

< ¥y ||yk+1 _ y*

Squaring both sides gives

s -

Rearranging gives

11 1—9
— |l -y < - ( - ) v — || + a=-9) gk — o

|2
191 ’192 '191
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k+1 |«

1 2 I\ rer k2
o RN (e T
B Hyf +192< 192> Yo T

Using Line 9 of Algorithm 1 we get

2 (1—1) Hyk y*2
b

S AN (1911— 1912> lvs = v II" + =
— 19% Hy'}“ | (95 —01) [Jy* = ¥
O
Lemma 7. Let 3 be defined as follows:
B <1/(2L). (B13)
Let 91 be defined as follows:
¥y = (192 +1/2)7 1. (B14)
Then the following inequality holds:
(5+3) Bl =]+ 552 o+ -]
< gl =P+ PO 22— Dt %)
- % 2 — 2*||* = 2B [(&"+1 — &%, g+ — y7)]
=207 E [{yy + 25 — (" +27), " =y - g Iy — ||
+ (ﬁfg - ;) E [l - *[*] +o%8. (B15)
Proof.
R 1 (= A R 1 TASet's

0
Using Line 8 of Algorithm 1 we get

% ly™* =y C= % ly* —y* * 4 28(Gy — vak — yF L g gy
— 20Ny + 2E) 2y ) - % [+ - kaQ '
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Using optimality condition (4) we get

* 2 1 * 2
+ 2IB<G]€ - VxlgC - (VF(J:*) - I/.’E*) —|— y* — yk+1’yk+1 _ y*>

— 2T Yk ) £t Ry - % [k

4
) Yy

= é Hyk -y gt 28(Gy, — ym’; _(VF(2*) = va), yF 1 — )
-2 Hyk+1 oy 2 2<V_1(y§ + zg) + mk+17yk+1 _ y*)

_ % ||ylc+1 _ ka2

< % Hyk oyt 2

Q—BHka—y* 2

— 2T Yk + 2y 2 R gy - 1 [y — |

+0 HGk - Z/CL'I; —(VF(z") —va™)

0
1
< sl =y +BllGe - VFEH|
+ ||VF($];) — V{,E’; — (VF(z*) — va*) 2 3 Hyk_H Ly 2
_ 2(1/*1(y'gC + z;f) e y*) — % Hka 7 kaz

Function F(z) — & |||? is convex and L-smooth, which implies

|2 +25L (Dp(x];,x*) - % |k — 1:*”2)

1 2 1 X
AL AN - Tl
— Bl — || = 20 2R + 2 g =)

2

1
=5 I =+ Bl - VRS
Using 8 definition (B13) we get

1 1
=y < 5 19* = v * + Drah.a®) = 5 ok — |
-8 ||ykJrl - y*H2 — 2(1/*1(y]gC + z;f) B AR T TR
1
) Hka - kaQ + HGk - VF(xS)HQ.

Using optimality condition (5) we get

1 1
[ [ R R LR
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Bl =y + Bl - VR
=2 N yg 2y — (" + 270 =)
—2<’Ik“—z*,yk“—y")—%”ykﬂ—y’“HQ.

Using (B12) together with ¢, definition (B14) we get

1 1
G I =P < 5l = vl + Drehat) - 3 [l — |
1—-195/2
By G- R - S
2 P9 — 1
_25 Joft =] = Sl = v 2+M”yk+l—ykﬂ2
— v~ <yg + Zlqc _ (y* + z*),yk+1 _ y*> _ 2<xk+1 _ x*7yk+1 _ y*>
Lk k2
gl =
1 ko _ % 2_@ k+1 ) * 2
<glly" =y =3I —v
1—1495/2 2
+ﬂ(T@;/)Hyk*y*H2** PAREE RSN
v B9 1 2
~ b=l = k= I (B ) I )

- 2V_1<y’gC + z’; —(y + 27,y =)
. 2<Ik+1 o :E*,yk+1 . y*> + 8 ||Gk _ VF(J;Z)HZ .

]+ g ot =[]

2 B( —192/2 112
+ S0
—9R ka—&-l _ l‘*,yk—H _ y*>] _ 21/_1E Ryl; + Zlqc _ (y* + z*),ka _ y*>]

Rearranging and taking expectation wrt & gives

(5+5)=lb -

1
< lyF -y

| 2

+ DF(xlg,x*) - % ||ac’gC —z*

B |2 pY3 1 2
L R R G Y [P G e
O
Lemma 8. The following inequality holds:
[m* |5 < 8325202 |yl + 28| + 4x(1 — (4x) ™) [mP g — dx |m* |5 . (B16)
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Proof. Using Line 12 of Algorithm 1 we get

[ 5 = o (g + =)+ m* — (W (k) @ 1) [ (s + 25) + m*] 5
=P [y + 20) + m"] = (W(k) @ Lg)P [0~ (yg+z)+m]||2.

Using property (4) we obtain
g < (=) [l 40 (4 2
Using inequality [ja + b||* < (14 ¢) |la||* + (1 + ¢ 1) [|b]|* with ¢ = m we get
1
5 < =) [(1 # ey ) Il + (o 2= )2 ot 4 221

< 0= @07 [l + 20202 lv5 + 25 -

Rearranging gives

[ [ < 85202y + 24l + 41 = (407 [|m” [ = x[|m** 5
O
Lemma 9. Let 3% be defined as follows:
P =2 —Pmk. (B17)
Then the following inequality holds:
Lok a2 4 k)2
Lt o L2
<(z-7)hr-op
P
+ (1 -4+ 3?) L Im* |5 (B15)
— 2u_1<y]; + z;“ — (y* +2"), 2k ") + 2 (1+6x) Hy’; + ZSHQP
+2m||of — 2"+ (20em® — ) || 26 - 2|
Proof.

1 2 1
- Zf\,k _ Z* 2 + 7<2k+1 _ 2k 2k _ Z*> - Hék—‘rl _ Zf\,k
Ve »

)

i

|Ak+1 *

Lines 11 and 12 of Algorithm 1 together with 2% definition (B17) imply

shtl _ 2k — %W(zg e %u_lP(yg + z;f)
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Hence,

1 1
- 2/6-‘1—1_2* 2 _ —Hék—z* 2+27r<z§—zk,2k—z*>
> >
. . 1. N2
—2V_1<P(y§+z§),zk -2+ — gkl —zk|

»

*

2+7er§—Pmk—z* 2

=l
r

2 T Hz§ — zkH2 — 2V_1<P(y§ + z;f), sk 2*)

—7THék—z*

+ HW(Z'S — zk) — V_lP(y]gC + zS)H2

< (1 —7T) Hék—z*
”

+ 27 sz — 2 ? + 27 Hmk

2

2 2
p—llzg — 2"l

— 2 Pk + 2h), 2 = 27) + 2sem? |2 — 2|

+ 2 HzflP(y’; + z’;)||2

<(1-7) |2

+ (23em® — ) ||z’gC - zkH2 - 21/_1<P(y§ + z;f),zk —z")

Ak_Z*

2 |2+27r|‘z§—z*

+ 3 HuflP(y’; + z§)||2 + 27 ||mk||f, + 21/*1<P(ylgC + z;f),mk>.

Using the fact that z* € £+ for all k = 0,1,2... and optimality condition (6) we get

Lo < (i _w) 2% = 2P 4 2w |2k — 2| (20em? — ) |2 — 2
— 2w Nyl 2h = (" + 27,2 — ) R gk 2
+ 27 Hmka) + 21/71<P(y§ + z;f),mk>.
Using Young’s inequality we get
% | ghtl _ ox 2 < (JI{ — 7T> Hék -z 2 + 27 Hzg -z 2 + (2%71'2 — 7T) Hzg — zkHQ

— 2w gk 2k (7 2), 2 = ) R gk 2
1

k2
@Hm Ip -

+ 2 || m* |5, + 3o 2 ||k + 2|1 +

Using (B16) we get

=

4

~ 2 1 N 2 2 2
R I e e R e e I EER
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S (R S (TR N R A
+2m [|m¥|[5, + G5e[|y + 25,

41— (4™ 2 4 2
S VS lm*|lp — 3 [l

= <1—7T) Hék—z*
%

— * * * — 2
— 2 gk 2k — (), 2R = ) s (L 6x) ||y 2

_ 3xm\ 4 2 4 2
# (1= @07+ 57 ot - 5

* 2w b — 2" (2 ) [ - 2

2 3z
O
Lemma 10. The following inequality holds:
2yg +2g — " +27) 9" + 25 = (" +27)
k k * %12
ZQHyg"_Zg_(y +27) (B19)

(1—19/2) RN e 2
R e (R R | e R R A B
Proof.

2yl + 25 — (v +2%), 0  + 2 = (v +2%)
L2k = (2 2 - (2R,

oyt ko )
Using Lines 7 and 10 of Algorithm 1 we get

2yl + 25 — (v +27), 0 + 2 - (v + 7))
* * 2

:2Hy’;+z§—(y +2%)
T W E = (T ) 2 — (=)
=2|jys + 25 — (" +2%)
(1—-14)

U1

—|lyf + 2 — (" +27)

2

I

(llgh + 25 = @+ 2" + [l + 2% = (w5 + 25)
)
> 2lyk + 25— (" + )|

(1—11)
U

+

+

).

B [ R B A

(Il +25 = (v +2)
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Using ¢; definition (B14) we get
2yy +zg — (" +27)y" + 25 = (" +2Y)
* (2
2 2|lyg + 2 = (" +27)]
1 - 792 2 * *
+(7/) (||y’;+z;f—(y +2")

)

[l 2 = =)

P
O
Lemma 11. Let  be defined by
¢=1/2. (B20)
Then the following inequality holds:
_ 2<yk+1 _ yk’ys + Zs _ (y* + Z*)>
1 * * * * 2
SEH95+Z§—(Z/ +z )H —*Hylﬁrl kH—(y +z )H (B21)
2
202l =M = gl + 2 -

Proof.

2
Hy’““ 2 = (" +2%) ‘ = [k + 2k = v+ o)

+ 2(y¥ A4 zkH (e + 285,08 + 25 — (v +2%))

2
n Hyk+1 k+1 _ (ylgc +Z-§)H

* * 2
<|lwh+ 28—+ 2
F 2y 2 = () s 2 — (Y )
2
‘k+1 ZSH

w2l - 42

Using Line 9 of Algorithm 1 we get

2

Hyk+1 l;+1 (" + 2%)

* % (12 * *
<|lwh 428 =+ 29|+ 20205 —yF oyl 42k — (T + 7))

2, k+1 k|2
+205 [y — o]
+2(z k+1fzg,yg+z — (y* +2") +2H k+1 z;f

I
Using Line 13 of Algorithm 1 and optimality condition (6) we get

k+1 k+1 _ (y* —‘y—Z*) 2

o5+
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<yt + 2k — 7+ 2|+ 22y -y - ()

+ 203 ||y — yF[* — 20((W (k) @ La) () + 25), 9k + 25 — (y7 + =)
+ 262 (W) @ La) (gl + 20|

= |luk + 25 = (" + 29|

+ 200y — b b 2 (o 2) 4+ 203 [ - o

= 2U(WR) @ L) + 2§ +25) + 2 (W) © Ta) i + 2]

Using ¢ definition (B20) we get

2
Hyk—‘—l +Zl;+1 (y* +Z*)

* * 2 * *
<|lyh + 25 — (v +2%) 2y =yl 2 — (4 2)
2
+ 20 ||y — kH - W(k)@Id)(y’;+z§),y’;+z’;>

+ 5 low ) e Ly + =)

= |lyk+zF - (v + z*)l} + 20, (T — s+ 2l — (gt 4 2)

£ 203 [y — o P S Wk @ T + )|

5l + z’“uﬂlH<W<k>®1d><y§+z§>—<y’;+z§>H2
*H k) @ L)k + 25|

< ||yg+zgf(y +27)|°

+ 205 (P — F g 2 — (g 4 27) + 203 o — o

— 5 Nk 4 211+ 5 W () @ Lok + 26) — il + ) 3.

2y =+ 2y — (v 4 27))

= llv§ + 25 — @+ =)
+ 203 [+ — ot

1 1
=5 v + =41l + 5 IOWR) @ TP +25) - Pl +25)]

Using Assumption 4 we get

2
Hykﬂ +ZI;+1 (4 2)

< ||y’g“+zkf( ot |}2+219 (yFrt — gk, y§+z§f(y*+z*))
+203 [|y™ = o* | = 207 [Jh + 255
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Rearranging gives

=20y — gkl 2 - (T 2Y))

k+1 k+1

1 * *
< 5, v +25 - (v +Z) —*Hy

2
+ 20 ||y =t - 219 — s+ =5

Lemma 12. Let 7 be defined as follows:

Let 3 be defined as follows:
Let 6 be defined as follows:

Let 95 be defined as follows:

T
16x
Let \I/’;Z be the following Lyapunov function

1
v= (55 vl

4 2 vt N N
35 It lle + =5 lwf + 25 = (07 +27)

9y =

2 1
-yl + -

B
205 Hyf

Then the following inequality holds:

E[‘I’ZfK(l g)wk + Dr(ag,2%) —

—9E [<$k+1 _ JL‘*,ykJrl _ y*>] —|—O’2,B.

]

Proof. Combining (B15) and (B18) gives

< )E 5t = 3] }Jri [Hka vt

P 4
R R e

g
N

2

*

-z

41

*

-y +2")

2

2

(B22)

(B23)

(B24)

(B25)

(B26)

(B27)



3xm\ 4 6112
+<1_<4 - +2>3%Hm I+

1—1,/2
+ P2 s -

- 2u*1<y§ + z;f — (Y + 2%,y 4 2R

- +2)

—wWTIE [y + 28 — (2,0 = )] s (14 6x) [Juh + 2B

93 1 2
(B -5l =] em st

k _*
(mg7x )_ 2

B
3 v

—2E [(z" — 2% " — )] + (23em® — ) HZS - zku2 + a?B.

Using (B19) and (B21) we get

} é k+1 % 2:| H k+1 * 2
(9+2>E[Hy vl yi =y
Liksr _ e2 i k+1
e L L e
< (1—7r>|2k—z* 2
x
3 1
+(1— (10" 1+Z7T)H “lp + Hy'“—y*H2
+51_192/2 vy — 2w ||k 4 2k = (4 2
1—15/2)
+ % (Hyf +2f =+~ vk + 2 - +Z*)||2)

—1 -1
14 2 14
+1972||y§+2’§—(y*+z*)” _ Tz]E |:"yl;+1+21;+1 ( *+z*)

s+ 74lle

+ 20710 [l - oF|P] -

+ 272 (1+6x) ||y§ + z;in

2
+ <ﬁ192 — 1) E {Hyk-&-l _ kaQ} P HZS _ 2

2
1 5 +0°8

— 2 llws = v |" + Dr(af, )
2l = P 2R [ — ey )] (2oem® = ) [ - 2|
:(i—w)!ék—z*HQ
3um P’
+ (1= @07+ ) Lt 5 )

42
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vL(1 — 05/2)
Vo

2] + 27 Hz;f —zF

1—-195/2
L I+ 24— 0+ =)

(-

Vﬁl]E k+1 k+1 * *

— 1972 ”y + 2y —(y* 42" n
1 1—1395/2

+v7t (192—( 1922/ ) —2) ||y’g“—|—z’g“—(y*+z*)}|2

v 1 k k 2
+< 2(1+6x) - 219) Hyg +ZQHP

+ (ﬂ 2 491y, — 9) E [Hy’“+1 — y’“llz}

(2%71' —7r) Hz —zkH +DF(J: T )—nglg—x*HQ

—2E [(z" — 2%, " —y*)] + 028
:(1—7r> 2k |2
n
3
e P e e
1—199/2) 1—-19,/2
—|—7ﬂ( 50, 2/ Hy’f—y* 2—&-%”%—?—2’}—@*4—?) ’

2 2
+ 27

* * * 2 6 *
*ﬁw“+4“—w+z> -l

31/

2
I

Hyg—l—z — (y* +z) (2%7r2—7r) HZS—Z
1
+ ( *(1+6x) - w) vk + =515

(5 2 49, —1192_0)E[Hyk+1_yk”2}

+ Dp(xg,x*) - g ||:c’gC - sc*||2 —2E [(mkﬂ — ozt — y")] + B

Using S definition (B13) and v definition (B9) we get

( )E[HykJrl . } |:Hyk+1 y 2]
1 w2 4
SVl R +3;Hm’““HP
<(-w)ll#-
e
3xm\ 4 2 1 w2
+(1- o+ 2)&Amwp+gwk
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-1 B
B(1 —192/2) H kiy*H?JrV (1—-172/2) Hyl;Jer;

2192 792
v k41 k+1 * ol k |2
_TQE U’yf +25 = (Y +27) +2m ||z — 2|
B 2 3 v en2
-7 llvg B R R

+ (2em® — ) ||2F = 2

+ (o o0 - 2 ) s+l
B2 _ 1 2
( PV 4o, 1192_0>]E{||yk+1_yk“:|

+ Dp
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Using 6 definition together with (B9), (B13) (5 < 16/(uv2)) and (B25) gives
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After rearranging and using \I!’;Z definition (B26) we get
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Smcel—yg/Q—l—L 1—sr=1-1/L and
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This inequality holds since
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Proof of Theorem 1. Using 75 definition (B5) and combining (B11) and (B27) gives
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This inequality follows from /8 definition (B13) (5 < 1/(2L)) and a fact that x > 1:

(+1;\mf>(l 32\\;ﬁf)>1

This inequality is true since p/L < 1.
This implies
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Using U¥ definition (B10), we have
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Proof of Corollary 2. Write out the convergence rate of the SADOM algorithm from
Theorem 1:
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Let us introduce notations for shortness:
N w2 2 N * M N %2
ry =E| 2" -2 —l—;(DF(a?f,x)—Zfo—x )]7
_ 64x 128y
ro = (/L) H(W0 + w0 ), a::ﬂ, b:= , = .
The equation (B28) takes the form
N 2 cA?
rn < ro(1—ay/B)Y + bo \/B+W
(B29)

2
<rpexp [—a\/BN] +bo%\/B + ng

Consider two( cas?s "
° 1 In(max{2,aroN/(bo
It 75 2 aN

8] , then choose

_ In(max{2,aroN/(bo?)})
Vi = aJ\?

And Equation (B29) becomes

~ [ bo?
= — AZN
ry =0 (aN + ac )

o If L < ln(’nax{Z’C;%N/(bUQ)}), then choose

V2L —
1
\/Bziﬁ

And Equation (B29) becomes

~ N bo?
ry =0 <7"0 exp [;ﬁ} + aLN + acA2N>

After substituting the notations a, b, ¢ we obtain
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This finishes the proof.

Appendix C Proof of Theorem 2

C.1 Proof of Lemma 4
Proof. First lets consider TPF smoothing scheme (16):

g(x.6,¢) = L (Fy(x 4+ 7e) — Fy(e —ve))e

2y
- %(F(fc + ve) — F(z —ve))e + %(5(3? +e) = o(z —7e))

According to [43] the first summand is an unbiased gradient estimator, let us
consider the second one:

o) = [20(s 10080, | < 2 23— B

Similar results are obtained for the two remaining schemes (17) and (18). For OPF
via single realization of £ (17):

wz) = [djwu +ve,5>} H < df

For OPF via double realization of £ (18):

Hw(x) =E [;ij(é(x +ve,&1) —o(x — 76752))] H < d’yﬁ

C.2 Proof of Theorem 2

Proof. Write out converge result from Corollary 2:
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Consider the first summand

Co exp {— VN ] <e/6

32xVL
So
I .
N > 32v2x, |~ log <600>
I €
From Lemma 2: Lg = % and v = 2]@2. So Lp, = 2\/‘ZM22, and we obtain
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Consider the second summand
2 2
x‘o
<e/6
BN =</
So with o2 = 2
2~9
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~ eBpu

Finally we obtain
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Consider the third summand
A2N
NPT <e/6

So

A< NIEE _ V2Mad Apt/?,\ Je
- 6N 6N

dA

From Lemma 4: A = =

SO

X2 < 265/ 172
= 3d7/AMyN

A2— 0 22
d7/AMs N

Finaly we obtain
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