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ABSTRACT
This paper focuses on the distributed optimization of stochastic saddle point problems.
The first part of the paper is devoted to lower bounds for the centralized and
decentralized distributed methods for smooth (strongly) convex-(strongly) concave
saddle point problems, as well as the near-optimal algorithms by which these bounds
are achieved. Next, we present a new federated algorithm for centralized distributed
saddle-point problems – Extra Step Local SGD. The theoretical analysis of the new
method is carried out for strongly convex-strongly concave and non-convex-non-
concave problems. In the experimental part of the paper, we show the effectiveness
of our method in practice. In particular, we train GANs in a distributed manner.

KEYWORDS
distributed optimization; saddle point problems; lower and upper bounds; local
methods; convex optimization; stochastic optimization

1. Introduction

Distributed algorithms have already become an integral part of solving many applied
tasks, including machine learning problems [33, 35, 52]. This paper also deals with
distributed methods, we study the saddle point problem (SPP):

min
x∈X

max
y∈Y

f(x, y) :=
1

M

M∑
m=1

fm(x, y), (1)

where parts of the function f are distributed among M devices/nodes/workers/machines,
while the function fm corresponds to the device with number m. SPPs, including
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distributed ones, have many applications. Here we can mention the already classical and
long-established applications in equilibrium theory, games and economics [12], as well
as new and recent trends in image deconvolution [6, 11], reinforcement and statistical
learning [1, 20], adversarial training [32] and GANs [17]. In particular, a number of
papers [7, 8, 15, 28, 36, 48] showed the connection of the theory for convex SPPs with
the training of GANs and provided insights and useful hints for the GANs community.
From a machine learning point of view, it can be interesting if fm is an empirical loss
function of the model on the local data of the mth device. Therefore, we consider the
statement of the problem (1) when we have access only to the local stochastic oracle
of fm(x, y) := Eξm∼Dm

[fm(x, y, ξm)], where the data ξm follow unknown distributions
Dm.

However, the main problem of distributed learning tasks is not the stochasticity,
but the separation of the problem. The mth device only has access to information
about the nature of its local distribution Dm. We assume that on the mth node it is
possible to sample online from Dm or to interdependently work with already prepared
data from this distribution. It is important that all other devices do not know Dm,
moreover, transferring local data to other devices may be inefficient or impossible for
privacy reasons. Therefore, to solve (1), it becomes necessary to construct a distributed
algorithm that combines local computation on each of the devices and communication
between them. Such an algorithm can be organized as follows: all devices communicate
only with the main device (server). This approach is called centralized. The main
problem is the importance of the server – it can crash and interrupt the whole process.
Therefore, along with the centralized approach, the decentralized [14] one is also popular.
In this case, all devices are connected by a network, communication occurs along the
edges of this network.

Both centralized and decentralized methods are well developed for minimization
problems. However, the direction of distributed algorithms for SPPs has been much
less studied. Our work makes the following contribution to this area.

1.1. Our contributions

• Lower bounds. We present lower bounds for distributed stochastic smooth
strongly convex-strongly concave and convex-concave1 SPPs in both distributed settings:
centralized and decentralized. In particular, for a given budget on the number of
communications and on the number of local computations for each node, we provide
the lower bound on the resulting accuracy. From such kind of estimates, given the
accuracy, we can solve the opposite problem and obtain estimates on the number of
communications and local oracle calls.

• Optimal algorithms. Next, we get the near-optimal algorithms. They are near-
optimal from a theoretical point of view because the upper bounds on their convergence
rates reach lower estimates up to numerical constants and logarithmic factors. For the
centralized problem, we construct our method based on the Extra Step method [21, 26]
(classical and optimal method for non-distributed SPPs) with the correct batch size. In
the decentralized case, we also use the Extra Step method as a basis, but communication
is done using the accelerated (gossip) consensus procedure [29].

For the summary and comparison of the lower and upper convergence rate bounds,
we refer to Table 1.

1For convex-concave problems, we only give intuitions for obtaining lower bounds from corresponding results
for strongly convex-strongly concave problems.
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lower upper

centralized

sc Ω
(
R2

0 exp
(
−32µmin{K;T}

L∆

)
+ σ2

µ2MT

)
Õ
(
R2

0 exp
(
−µmin{K;T}

4L∆

)
+ σ2

µ2MT

)
c Ω

(
LΩ2∆
K + σΩ√

MT

)
O
(

LΩ2
z∆

min{K;T} + σΩ√
MT

)
decentralized

sc Ω
(
R2

0 exp
(
−128µmin{K;T}

L
√
χ

)
+ σ2

µ2MT

)
Õ
(
R2

0 exp
(
−µmin{K;T}

8L
√
χ

)
+ σ2

µ2MT

)
c Ω

(
LΩ2√χ

min{K;T} + σΩ√
MT

)
Õ
(

LΩ2√χ
min{K;T} + σΩ√

MT

)
Table 1. Lower and upper bounds for distributed smooth stochastic strongly convex-strongly concave (sc) or
convex-concave (c) saddle point problems in the centralized and decentralized cases. Notation: L – smoothness
constant of f , µ – strong convexity-strong concavity constant, R2

0 = ∥x0 − z∗∥22 + ∥y0 − y∗∥22, Ω – diameter of
the optimization set, ∆, χ – diameter and condition number of the communication graph (condition number of
the gossip matrix), K – number of communication rounds, T – number of local calls of the gradient oracle on
each node. In the convex-concave case, the bounds are in terms of the gap function (see (13)), in the strongly
convex-strongly concave case – in terms of the (squared) distance to the solution.

• Local method. We also present an extra-step modification of Local SGD [34, 54],
one of the most popular methods in federated learning [22, 25]. More recently, other
versions of the Local SGD methods for SPPs have appeared [9, 18]. All of the methods
presented in these papers are based on gradient descent-ascent, but it is known that
such methods, even in the non-distributed case, diverge for the most common SPPs
[8, 16]. Our method is based on the classic method for smooth SPPs – Extra Step
algorithm, which makes it stand out from the competitors.

• Non-convex-non-concave analysis. We analyze our new algorithms: near-
optimal and local, not only in the convex-concave case, but even in the non-convex-
non-concave case under the Minty assumption [10, 37]. Minty is the weakest additional
assumption for a non-convex-non-concave problem found in the literature. Under this
weak assumption only a few results on distributed methods for SPPs are available in the
literature [30, 31]. In particular, our analysis covers the estimates of the decentralized
but deterministic method from [31], and also generalizes and overlaps the estimates for
the stochastic method for homogeneous data (fm = f) from [30].

• Experiments. The first part of our experiments on the classical bilinear problem
is devoted to the comparison of the optimal centralized method and the method based
on Local SGD, as well as the comparison of our local method with competitors [9, 18].
The second part is devoted to the use of Local SGD and Local Adam techniques for
training GANs in a homogeneous and heterogeneous cases.

1.2. Related works

• SPPs. First, we highlight two main non-distributed algorithms for SPPs. The
first algorithm – Mirror Descent [4], it is customary is usually used in the non-smooth
case. For smooth problems, Extra Step/Mirror Prox is applied [21, 26, 42]. Also, the
following methods [19, 44, 56] can be noted as popular for smooth SPPs.

• Lower bounds. In the non-distributed case, the lower bounds for smooth strongly
convex-strongly concave case SPPs are given in [59], for convex-concave – in [46]. In
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smooth stochastic convex optimization, we highlight works on lower bounds [13, 43]. It
is also important to note the works devoted to the lower bounds for centralized and
decentralized distributed convex optimization [2, 51].

• Distributed SPPs. The following works are devoted to decentralized SPPs: in
the deterministic case [31, 40, 50], in the stochastic case [30]. Let us also highlight the
local methods for SPPs [9, 18] already noted earlier in Section 1.1.

2. Settings and assumptions

We consider the problem (1), where the sets X ⊆ Rnx and Y ⊆ Rny are closed convex
sets. For simplicity, we introduce the set Z = X × Y, z = (x, y) and the operators F
and Fm:

F (z) := F (x, y) :=

 ∇xf(x, y)

−∇yf(x, y)

 , Fm(z) := Fm(x, y) :=

 ∇xfm(x, y)

−∇yfm(x, y)

 . (2)

As noted above, we consider stochastic formulations of the problem (1), where each fm
is of the form where fm(x, y) = Eξ∼Dm

[fm(x, y, ξ)] with an unknown distribution Dm.
Similar to (2), one can also introduce Fm(z, ξ). We assume that we do not have access
to oracles of fm(x, y) and Fm(z), but can only call fm(x, y, ξ) and Fm(z, ξ), where ξ is
some sample from the distribution Dm.

Next, we introduce the following assumptions:

Assumption 1(g). f(x, y) is L - smooth, i.e. for all z1, z2 ∈ Z

∥F (z1)− F (z2)∥ ≤ L∥z1 − z2∥. (3)

Assumption 1(l). For all m, fm(x, y) is Lmax-smooth, i.e. for all z1, z2 ∈ Z

∥Fm(z1)− Fm(z2)∥ ≤ Lmax∥z1 − z2∥. (4)

Assumption 2(sc). f(x, y) is strongly convex-strongly concave with constant µ, i.e.
for all z1, z2 ∈ Z

⟨F (z1)− F (z2), z1 − z2⟩ ≥ µ∥z1 − z2∥2. (5)

Assumption 2(c). f(x, y) is convex-concave, i.e. f(x, y) is strongly convex-strongly
concave with µ = 0.

Assumption 2(nc). f satisfies the Minty assumption, i.e. there exists z∗ ∈ Z such
that for all z ∈ Z

⟨F (z), z − z∗⟩ ≥ 0. (6)

Assumption 3. Fm(z, ξ) is unbiased and has bounded variance, i.e. for all z ∈ Z it
holds that

Eξ∼Dm
[Fm(z, ξ)] = Fm(z), Eξ∼Dm

[∥Fm(z, ξ)− Fm(z)∥2] ≤ σ2. (7)
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Assumption 4. Z is compact, i.e. for all z, z′ ∈ Z

∥z − z′∥ ≤ Ωz. (8)

Hereinafter, we use the standard Euclidean norm ∥·∥. We also introduce the following
notation projZ(z) = minu∈Z ∥u− z∥ – the Euclidean projection onto Z.

We also assume that all devices are connected to each other in a network, which
can be represented as an undirected graph G(V, E), where V is a set of vertices and
E is a set of edges. We introduce the graph diameter ∆ as the maximum distance
between the pair of vertices. As mentioned earlier, we are interested in several cases of
distributed optimization: centralized, and decentralized. It is important to mention one
of the most popular communication procedures in the decentralized setup – the gossip
protocol [5, 23, 41]. This approach uses a particular matrix W . The devices pass their
local variables to their neighbors along the edges of the graph, and each node computes
a new value of the local variable by averaging its own variable and the information
received from its neighbors according to the weights in the matrix W . Therefore, the
convergence of decentralized algorithms is determined by the properties of this matrix.
Therefore, we introduce its definition:

Definition 2.1. We call a M ×M matrix W a gossip matrix if it satisfies the following
conditions: 1) W is symmetric and positive semi-definite, 2) the kernel of W is the
set of constant vectors (vectors with equal components): ker(W ) = span(1), 3) W is
defined on the edges of the network: Wij ̸= 0 if and only if i = j or (i, j) ∈ E .

Let λ1(W ) ≥ . . . ≥ λM (W ) = 0 be the spectrum of W , and the condition number
defined as χ = χ(W ) = λ1(W )

λM−1(W ) . Note that in many works [5, 29, 51, 58], the authors
do not use the matrix W , but W̃ = I− W

λ1(W ) . To describe the convergence, we introduce

λ2(W̃ ) = 1− λM−1(W )
λ1(W ) = 1− 1

χ(W ) = 1− 1
χ .

The next definition is necessary to describe a certain class of distributed algorithms,
for which we will obtain lower bounds. We use a definition quite similar to [2, 51].

Definition 2.2. Let us introduce a procedure with two parameters T and K, which
we call Black-Box Procedure(T,K) or BBP(T,K). Each worker m has its own local
memories Mx

m and My
m for the x- and y-variables, respectively–with initialization

Mx
m = My

m = {0}. Mx
m and Mx

m are updated as follows.
• Local computation: By each local computation the mth device can independently

sample a random variable ξm from the distribution Dm and adds to its Mx
m and My

m

a finite number of points x, y, satisfying

x ∈ span
{
x′,∇xfm(x′′, y′′, ξm)

}
, y ∈ span

{
y′,∇yfm(x′′, y′′, ξm)

}
(9)

for given x′, x′′ ∈ Mx
m and y′, y′′ ∈ My

m. We also assume that devices make projections
for free, i.e., mth can add to Mx

m and My
m a finite number of points x, y, satisfying

x ∈ span
{
projX (x

′)
}
, y ∈ span

{
projY(y

′)
}

for x′ ∈ Mx
m and y′ ∈ My

m. (10)

• Communication: Based upon communication rounds among neighbouring nodes,
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Mx
m and My

m are updated according to

Mx
m := span

 ⋃
(i,m)∈E

Mx
i

 , My
m := span

 ⋃
(i,m)∈E

My
i

 . (11)

• Output: The final global output is calculated as:

x̂ ∈ span

{
M⋃

m=1

Mx
m

}
, ŷ ∈ span

{
M⋃

m=1

My
m

}
.

We assume that each node makes no more than T local iterations (for simplicity, that
exactly T ) during the operation of the algorithm. The number of communication rounds
is also limited to a certain number of K < T .

3. Lower bounds

Following the classical results on obtaining lower bounds, it is sufficient to give an
example of a «bad» function [45], and the «bad» partitioning of this function between
nodes [51]. We start with the «bad» function. The first important point in constructing
of our «bad» function is that it consists of two independent parts: deterministic and
stochastic. Consider fm(x, y) = fdeter

m (xdeter, y) + f stoch(xstoch), where the vectors
xdeter and xstoch together give the vector x = (xdeter, xstoch). At the same time we have
access to Fm(x, y, ξ) = F deter

m (xdeter, y) +∇fstoch(xstoch, ξ). This means that we have
a deterministic oracle for fdeter

m and a stochastic one – for fstoch. Such fm helps to
rewrite the original problem (1) as follows:

min
xdeter∈X deter

max
y∈Y

1

M

M∑
m=1

fdeter
m (xdeter, y) + min

xstoch∈X stoch
f stoch(xstoch). (12)

Therefore, we separately prove the estimates for each of the problems, and then combine.

3.1. Deterministic lower bounds

In this part, we provide lower bounds for the centralized (Theorem 3.1) and decentralized
(Theorem 3.2) cases.

Theorem 3.1. For any L > µ > 0 and any ∆ ∈ N, there exists a distributed saddle
point problem satisfying Assumptions 1(g) and 2(sc) on X × Y = Rn × Rn (where n is
sufficiently large) with x∗, y∗ ̸= 0 over a fixed network with a diameter ∆, such that for
any output x̂, ŷ of any procedure satisfying Definition 2.2, the following estimate hold:

∥x̂− x∗∥2 + ∥ŷ − y∗∥2 = Ω

(
exp

(
− 4µ

L− µ
· K
∆

)
∥y0 − y∗∥2

)
.

Theorem 3.2. For any L > µ > 0 and any χ ≥ 1, there exists a distributed saddle
point problem satisfying Assumptions 1(g) and 2(sc) on X × Y = Rn × Rn (where
n is sufficiently large) with x∗, y∗ ̸= 0 over a fixed network characterized by a gossip
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matrix (Definition 2.1) with a condition number χ, such that for any output x̂, ŷ of any
procedure satisfying Definition 2.2, the following estimate hold:

∥x̂− x∗∥2 + ∥ŷ − y∗∥2 = Ω

(
exp

(
− 32µ

L− µ
· K
√
χ

)
∥y0 − y∗∥2

)
.

Convex-concave case. Note that in the convex-concave case the problem is usually
considered on a bounded set (see Assumption 4). Moreover, the convergence criterion
for algorithms is formulated in terms of the following gap function:

gap(z) :=gap(x, y) := max
y′∈Y

f(x, y′)− min
x′∈X

f(x′, y). (13)

Therefore, the lower bounds are also needed in terms of (13). Following the inequality
6 of [59], we can rewrite the estimates from Theorems 3.1 and 3.2 as follows

gap(x, y) ≥ µ

2
∥x− x∗∥2 + µ

2
∥y − y∗∥2. (14)

In Table 1, the lower bounds for the convex-concave case are already diclared. Let us
give an intuition how these estimates can be obtained from Theorems 3.1 and 3.2.

One way to get the lower estimates is to prove by contradiction and assume that
the estimate given in Table 1 is not valid: there exists an algorithm that converges
better than the given bound, namely for some numerical constant C the output of this
method after k communications satisfies

gap(x̂k, ŷk) <
CL∆(∥x0 − x∗∥2 + ∥y0 − y∗∥2)

k
. (15)

Using (14), we have

∥x̂k − x∗∥2 + ∥ŷk − y∗∥2 < 2CL∆(∥x0 − x∗∥2 + ∥y0 − y∗∥2)
µk

.

It follows that for some k < 2CL∆
µ one can guarantee that (∥x̂k − x∗∥2 + ∥ŷk − y∗∥2) <

(∥x0 − x∗∥2 + ∥y0 − y∗∥2)/2. Using the restarts idea, specifically running the algorithm
for k communications several times from the output of the previous run, after

K = k · log2
∥x0 − x∗∥2 + ∥y0 − y∗∥2

ε

<
2CL∆

µ
· log2

∥x0 − x∗∥2 + ∥y0 − y∗∥2

ε
communications

one can find some ε-solution of the strongly convex-strongly concave problem. But this
contradicts the results of Theorem 3.1, which states that

K = Ω

(
L∆

µ
log2

∥y0 − y∗∥2

ε

)
.

Similar considerations can be made for Theorem 3.2. But this reasoning has a drawback
due to the fact that in the lower bounds from Table 1 (and further in the upper bounds
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from Section 4), Ωz appears, while in (15) we used (∥x0−x∗∥2+ ∥y0− y∗∥2). Therefore,
this reasoning is not completely correct.

Another way to obtain the result is to consider the same line as in the proofs of
Theorems 3.1 and 3.2, but replace µ with ε

Ω2
z
. For any µ > 0, a strongly convex-strongly

concave function is also convex-concave. Therefore, this substitution of µ can serve as
an example of a convex-concave function.

3.2. Stochastic lower bounds

Due to our choice of fm from (12), one can note that in order to obtain lower stochastic
bounds, we consider the minimization problem rather than the SPP, and moreover, this
problem is the same for each node. Therefore, it is suggested that we are in an ideal
situation when each node communicates to each and collectively minimizes the same
function. Then the total number of stochastic oracle calls is MT . It may seem that
such a formulation simplifies the problem and may not yield the most advanced lower
bounds. But in the next section, we will give upper bounds that coincide with the lower
bounds, and this will verify that considering such an idealistic setting is sufficient.

Let us formulate two theorems for the convex and strongly convex cases of f stoch.

Theorem 3.3. For any L > µ > 0, there exists a stochastic minimization problem with
L-smooth and µ-strongly convex function (i.e., satisfying Assumptions 1(g) and 2(sc)),
such that for any output x̂ of any BBP(T,K) (Definition 2.2) with M workers, one can
obtain the following estimate:

E
[
∥x̂− x∗∥2

]
= Ω

(
σ2

MTµ2

)
.

Theorem 3.4. For any L > 0 and any M,T ∈ N, there exists a stochastic minimization
problem with L-smooth and convex function (i.e., satisfying Assumptions 1(g) and 2(c))
on a bounded X stoch with a diameter Ωz (i.e., satisfying Assumption 4), such that for
any output x̂ of any BBP(T,K) (Definition 2.2) with M workers, one can obtain the
following estimate:

E
[
f stoch(x̂)− f stoch(x∗)

]
= Ω

(
σΩz√
MT

)
.

3.3. Connection of lower bounds

The connecting of deterministic and stochastic bounds follows from (12). The results
for the centralized and decentralized cases are shown in Table 1. See Appendix B for
complete proof of this part. To verify the tightness of our lower bounds, the next section
designs algorithms that reach such bounds.

4. Optimal algorithms

This section focuses on theoretically near-optimal algorithms. It is easy to check that
our algorithms satisfy the BBP definition.
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4.1. Centralized case

We design our algorithm based on MiniBatch SGD and Extra Step. For this algorithm
we introduce r as a maximum distance from nodes to server. It is easy to note that r is
upper bounded by the diameter ∆.

Algorithm 1 Centralized Extra Step Method
Parameters: Stepsize γ ≤ 1

4L ; communication rounds K, number of local steps T .
Initialization: Choose (x0, y0) = z0 ∈ Z, k =

⌊
K
r

⌋
and batch size b =

⌊
T
2k

⌋
.

for t = 0, 1, 2, . . . , k − 1 do
Generate batch ξtm on each machine independently

Each machine m computes gtm = 1
b

b∑
i=1

Fm(zt, ξt,im ) and sends gtm to server

Server computes zt+1/2 = projZ(zt−
γ
M

M∑
m=1

gtm) and then sends zt+1/2 to machines

Generate batch ξ
t+1/2
m on each machine independently

Each machine m computes g
t+1/2
m = 1

b

b∑
i=1

Fm(zt+1/2, ξ
t+1/2,i
m ) and sends g

t+1/2
m to

server

Server computes zt+1 = projZ(zt−
γ
M

M∑
m=1

g
t+1/2
m ) and then sends zt+1 to machines

end for

Theorem 4.1. Let {zt}t≥0 denote the iterates of Algorithm 1 for solving the problem
(1). Let Assumptions 1(g), 3 be satisfied. Then if γ ≤ 1

4L , we have the following estimates
in

• the µ-strongly convex-strongly concave case (Assumption 2(sc)):

E[∥zk − z∗∥2] = Õ
(
∥z0 − z∗∥2 exp

(
− µK

4L∆

)
+

σ2

µ2MT

)
,

• the convex-concave case (Assumptions 2(c) and 4):

E[gap(zkavg)] = O
(
LΩ2

z∆

K
+

σΩz√
MT

)
,

• the non-convex-non-concave case (Assumptions 2(nc) and 4):

E

[
1

k

k−1∑
t=0

∥F (zt)∥2
]
= O

(
L2Ω2

z∆

K
+

σ2K

MT∆

)
,

where zkavg = 1
k

k−1∑
t=0

zt+1/2.

4.2. Decentralized case

The idea of Algorithm 2 combines three things: Extra Step, accelerated consensus –
FastMix (see Algorithm 4 in Appendix C or [29, 58]) and the right size of batches.
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Algorithm 2 Decentralized Extra Step Method
Parameters: Stepsize γ ≤ 1

4L ; communication rounds K, number of local calls T ,
number of FastMix steps P .
Initialization: Choose (x0, y0) = z0 ∈ Z, z0m = z0, k =

⌊
K
P

⌋
and batch size b =

⌊
T
2k

⌋
.

for t = 0, 1, 2, . . . , k − 1 do
Generate batch ξtm on each machine independently

Each machine m computes ẑ
t+1/2
m = ztm − γ · 1

b

b∑
i=1

Fm(ztm, ξt,im )

Communication: z̃t+1/2
1 , . . . , z̃

t+1/2
M =FastMix(ẑt+1/2

1 , . . . , ẑ
t+1/2
M , P )

Each machine m computes z
t+1/2
m = projZ(z̃

t+1/2
m )

Generate batch ξ
t+1/2
m on each machine independently

Each machine m compute ẑt+1
m = ztm − γ · 1

b

b∑
i=1

Fm(z
t+1/2
m , ξ

t+1/2,i
m )

Communication: z̃t+1
1 , . . . , z̃t+1

M =FastMix(ẑt+1
1 , . . . , ẑt+1

M , P )
Each machine m compute zt+1

m = projZ(z̃t+1
m )

end for

Theorem 4.2. Let {ztm}t≥0 denote the iterates of Algorithm 2 for solving the problem
(1). Let Assumptions 1(g), 1(l), 3 be satisfied. Then if γ ≤ 1

4L and P = O
(√

χ log 1
ε

)
,

we have the following estimates in
• the µ-strongly convex-strongly concave case (Assumption 2(sc)):

E[∥z̄k − z∗∥2] = Õ
(
∥z0 − z∗∥2 exp

(
− µK

8L
√
χ

)
+

σ2

µ2MT

)
,

• the convex-concave case (Assumptions 2(c) and 4):

E[gap(z̄kavg)] = Õ
(
LΩ2

z
√
χ

K
+

σΩz√
MT

)
,

• the non-convex-non-concave case (Assumptions 2(nc) and 4):

E

[
1

k

k−1∑
t=0

∥F (z̄t)∥2
]
= Õ

(
L2Ω2

z
√
χ

K
+

σ2K

MT
√
χ

)
,

where z̄t = 1
M

M∑
m=1

ztm and z̄k+1
avg = 1

Mk

k−1∑
t=0

M∑
m=1

z
t+1/2
m .

Discussions. Let us make some comments on our Algorithms:
• It is easy to see that our Algorithms are near-optimal in the strongly convex-

strongly concave and convex-concave cases – see Table 1 for details. However, there are
several practical drawbacks of these Algorithms. The first is related to the fact that in
Algorithm 2 we have to take multi consensus steps at each iteration. This approach does
not always pay off in practice. On the other hand, the optimal decentralized algorithms
for minimization problems also use FastMix – see literature review in [53]. Second, if
T ≫ K, we collect a very large batch at each iteration, in practice such batches do

10



not make sense. Therefore, the idea arises to use these local computations of gradients
more efficiently, e.g. by doing local steps. This brings us to Section 5.

• One can note that in the non-convex-non-concave case, we do not guarantee the
convergence if T ≈ K. However, the method converges sublinearly when σ = 0. In
this case, we cover the deterministic results of [31]. In the stochastic case (σ > 0),
convergence is also not guaranteed in [3, 30]. Therefore, we cover and even overlap their
analysis, since they consider only the homogeneous case (fm = f).

5. New local algorithm

In this section, we work on sets X = Rnx and Y = Rny . Additionally, we introduce the
following assumption:

Assumption 5. The values of the local operator are considered sufficiently close to
the value of the mean operator, i.e. for all z ∈ Z

∥Fm(z)− F (z)∥ ≤ D. (16)

This assumption is often called D - heterogeneity.
Our algorithm is a combination of Local SGD and Extra Step. One can note that

such an algorithm is BBP(T,K).

Algorithm 3 Extra Step Local SGD
Parameters: stepsize γ ≤ 1

21HLmax
; number of local steps T , sets I of communications

steps (|I| = K).
Initialization: Choose (x0, y0) = z0 ∈ Z, for all m, z0m = z0 and ẑ = z0.
for t = 0, 1, 2, . . . , T − 1 do

Generate random variable ξtm on each machine independently
Each machine m computes z

t+1/2
m = ztm − γFm(ztm, ξtm)

Generate random variable ξ
t+1/2
m on each machine independently

Each machine m computes zt+1
m = ztm − γFm(z

t+1/2
m , ξ

t+1/2
m )

if t ∈ I do
Each machine sends zt+1

m to server

Server computes ẑ = 1
M

M∑
m=1

zt+1
m , sends ẑ to machines

Each machine gets ẑ and sets zt+1
m = ẑ

end for
Output: ẑ.

Theorem 5.1. Let {ztm}t≥0 denote the iterates of Algorithm 3 for solving the problem
(1). Let Assumptions 1(l), 3 and 5 be satisfied. Also let H = maxp |kp+1 − kp| be a
maximum distance between moments of communication (kp ∈ I). Then we have the
following estimates in

• the µ-strongly convex-strongly concave case (Assumption 2(sc)) with γ ≤ 1
21HLmax

:

E[∥z̄T−z∗∥2] = Õ
(
∥z0 − z∗∥2 · exp

(
− µT

42HLmax

)
+

σ2

µ2MT
+

L2
maxH

µ4T 2

(
HD2 + σ2

))
,

11



• the non-convex-non-concave case (Assumption 2(nc) and with assumption that for
all t, ∥z̄t∥ ≤ Ω) with γ ≤ 1

4Lmax
:

E

[
1

T

T−1∑
t=0

∥F (z̄t)∥2
]
= O

(
L2
maxΩ

2

T
+

[
HLmaxΩ

(
HD2 + σ2

)]2/3
T 1/3

+
σ2

M
+ LmaxΩ

√
H (HD2 + σ2)

)
,

where z̄t = 1
M

M∑
m=1

ztm.

Discussions. Let us add some remarks about obtained results:
• Compared to Algorithm 1, Algorithm 3 gives worse convergence guarantees. Why

then Algorithm 3 is needed? For practical reasons. Local SGD or FedAvg is a fairly
well-known and popular federated learning concept. We extend this concept to min-max
problems, including non-convex-non-concave ones. In particular, the theory states that
for Algorithm 1 step γ ∼ 1

Lmax
, and for Algorithm 1 γ ∼ 1

HLmax
, but in practice one

can use the same steps (learning rates) for both Algorithms. It seems natural that
Algorithm 3 can outperform Algorithm 1 in some regimes, simply because it takes more
steps (see Section 6).

• As noted in Section 1.1, there are two other methods of the Local SGD type for
SPPs [9, 18]. However, these methods use Descent-Ascent instead of Extra Step as
a base. Also, the stepsize of these methods is confusing, even in the strongly convex-
strongly concave case, it is proposed to take γ = µ

HL2
max

, which in practice is a very
small number and provides a very slow convergence of the methods.

6. Experiments

6.1. Bilinear problem

Let us start with an experiment on the bilinear problem:

minmax
x,y∈[−1;1]n

1

M

M∑
m=1

(
xTAmy + bTmx+ cTmy

)
, (17)

where n = 100, M = 100, matrices Am ≻ 0 are randomly generated with λmax = 1000
(then L = 1000). Coordinates bm, cm are generated uniformly on [−1000; 1000]. Moreover,
we add unbiased Gaussian noise with σ2 = 10000 to the gradients. Starting point is
zero.

The purpose of the first experiment is to compare our local method (Algorithm 3)
with the local approaches from papers [9, 18]. For all methods H = 3, and the step is
chosen for best convergence. See Figure 1 (a) for the results. Note that our Algorithm 3
outperforms the competitors. Moreover, the methods from the papers [9, 18] do not
converge at all with any steps γ. As mentined above (Section 1.1), this is due to the
fact that these methods are based on Descent-Ascent.

The next experiment is aimed at comparing Algorithm 3 with different communication
frequencies H. We take γ = 1

15L . From the point of view of communications (Figure

12
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Figure 1. (a) Comparison of Algorithm 3 and [9, 18] with H = 3 and tuned steps; (b) Comparison of Algorithm
3 with different communication frequencies H, as well as Algorithm 1 with batch size 1 (blue line – "Every")
for (17); (c) Comparison of Algorithm 3 (L) with communication frequencies H = 3 and Algorithm 1 (MB)
with batch size 6 for (17).

1 (b)), we get a standard result for local methods: less frequent communications, the
faster convergence (in communications), but worse solution accuracy. This is due to
fluctuations during local iterations, which lead away from the solution of the global
solution.

In the third experiment, we want to vary the step and compare Algorithm 3 with
a frequency of 3 and Algorithm 1 with a batch of 6 (such parameters give that there
are 6 local calls for one communication for both Algorithms). This problem statement
is interesting because Algorithm 1 is optimal, but Algorithm 3 is not, but it can be
better in practice. We see (Figure 1 (c)) that the local method wins in rate, but loses
in extreme accuracy.

6.2. Federated GAN

• Model, data, optimizer. A very popular enhancement of GANs is Conditional
GAN, originally proposed in [38]. It allows to direct the generation process by introducing
class labels. We use a more complex Deep Convolutional GAN [49] with adjustments
allowing to condition the output by class labels. We consider the CIFAR-10 [27] and
split the dataset into 4 parts. For each part, we select 2 majors classes that forms 30%
of the data, while the rest of the data split is uniformly filled by the other classes. As
optimizers we use Algorithm 3 and Local Adam [24] – a variation of Algorithm 3, but
where the local gradient steps are replaced with Adam updates.

• Setting. Here we would like to consider the experiment of federated learning.
Communication is a strong bottleneck of the federated setting, since the data is the
local data of the users on their devices, and they may simply not be online to transmite
information. Therefore, our goal is to reduce communication, which requires local
methods. Then we want to compare how our optimizers work with a different number
of local steps. In particular, we try to communicate once in an epoch, once in 5 epochs
and once in 10 epochs. It is interesting to check how the frequency of communication
affects the quality of the training.

• Results. Based on the results of experiments on bilinear problems (Section 6.1),
it was expected that methods which connect to the server less frequently (but do
the same number of local epochs) would outperform their competitors in terms of
communication budget. This trend is observed in Figures 2 and 3 – methods making
fewer communications do not lose in terms of FID and IS. On the other hand, the
increasing distance between communications can have a significant impact on the quality
of the training, especially in the last epochs. Therefore, we recommend using local
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Figure 2. Comparison of three distances between communications in Local Adam in DCGAN distributed
learning on CIFAR-10. We compare the FID Score and the Inception Score in terms of the local epochs number.
The experiment was repeated 3 times on different data random splitting – the maximum and minimum deviations
are shown on the plots.
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Figure 3. Pictures generated by DSGAN trained distributed on different distance between communications:
(a) 1, (b) 5, (c) 10 epochs.

methods with long gaps between communications only in the early stages of training,
then it is worthwhile to communicate more and more frequently.

For more experiments with Algorithm 3 and Local Adam on MNIST see Appendix
E.
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Supplementary Material
Appendix A. General facts and technical lemmas

Lemma A.1. For an arbitrary integer n ≥ 1 and arbitrary set of vectors a1, . . . , an ∈ Rd

we have ∥∥∥∥∥
n∑

i=1

ai

∥∥∥∥∥
2

≤ n

n∑
i=1

∥ai∥2. (A1)

Lemma A.2. Suppose given a convex closed set Z, then the operator of the Euclidean
projection onto this set is non-expansive, i.e. for all z, z′ ∈ Z,

∥projZ(z)− projZ(z
′)∥ ≤ ∥z − z′∥. (A2)

Appendix B. Proof of Theorems from Section 3

As mentioned in the main part of the paper we consider the following model of functions:

fm(x, y) = fdeter
m (xdeter, y) + fstoch(xstoch). (B1)

Note that the function fdeter
m uses the vector xdeter, and the function fstoch uses another

vector xstoch. The variables in the vectors xdeter and xstoch do not intersect, but together
xdeter and xstoch form a complete vector x, for example, according to the following rule:
x2k−1 = xdeterk and x2k = xstochk for k = 1, 2 . . .. At the same time, for fdeter

m , we have
access to ∇xf

deter
m (x, y), ∇yf

deter
m (xdeter, y), and for f stoch, to stochastic realizations

∇xf
stoch
m (xstoch, ξ) that satisfy Assumption 3. Moreover, fdeter

m are different for each
device, but fstoch is the same.

We take «bad» functions with even nxstoch = nxdeter = ny = n. Moreover, n must be
taken large enough, as stated in Theorems.

B.1. Deterministic lower bounds

We start with deterministic lower bounds. Our example builds on a splitting of the
«bad» function for the non-distributed case from [59]. Next, we give an example of the
functions fdeter

m (xdeter, y) and their location on the nodes. To simplify the notation, we
use fm(x, y) instead of fdeter

m (xdeter, y) in this subsection. Moreover, in the deterministic
lower bounds, we consider the unconstrained problem over X × Y = Rn × Rn, hence
the projection operators from (10) are identical: projX (x) = x, projY(y) = y. It means
that we can simplify Definition 2.2 and remove (10) from it. Next, we introduce some
auxiliary arrangements of functions on the nodes, prove some facts for them, and then
present the final «bad» examples and prove the lower bounds.

Let B ⊂ V be a subset of the nodes of G. For d ∈ N we define Bd = {v ∈
V : d(B, v) ≥ d}, where d(B, v) is a distance between the set B and the node v (the
smallest number of edges between the vertex v and the vertices from B). Then we
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construct the following arrangement of bilinearly functions on nodes:

fm(x, y) =


f1(x, y) =

M
2|Bd| ·

L
2 x

TA1y +
µ
2∥x∥

2 − µ
2∥y∥

2 + M
2|Bd| ·

L2

2µe
T
1 y, m ∈ Bd

f2(x, y) =
M
2|B| ·

L
2 x

TA2y +
µ
2∥x∥

2 − µ
2∥y∥

2, m ∈ B

f3(x, y) =
µ
2∥x∥

2 − µ
2∥y∥

2, otherwise
.

(B2)
where e1 = (1, 0 . . . , 0) and

A1 =



1 0

1 −2

1 0

1 −2

. . . . . .

1 −2

1 0

1



, A2 =



1 −2

1 0

1 −2

1 0

. . . . . .

1 0

1 −2

1



.

In most cases, we want the simplest case with |B| = |Bd| = 1.

Lemma B.1. Let the problem (1)+(B2) be solved by any method that satisfies Definition
2.2. Then after K communication rounds, only the first

⌊
K
d

⌋
coordinates of the global

output can be non-zero while the rest of the n−
⌊
K
d

⌋
coordinates are strictly equal to

zero.

Proof: We begin introducing some notation for our proof:

E0 := {0}, Ek := span{e1, . . . , ek}.

Note that, the initialization from Definition (2.2) gives Mx
m = E0, My

m = E0.
Suppose that, for some m, Mx

m = Ek and My
m = Ek, at some given iteration. Let

us analyze how Mx
m,My

m can change by performing only local computations.
Firstly, we consider the case when k odd. After one local update, we have the

following:
• For machines m which own f1, it holds

x ∈ span
{
e1 , x′ , A1y

′} = Ek,

y ∈ span
{
e1 , y′ , AT

1 x
′} = Ek,

(B3)

for given x′ ∈ Mx
m and y′ ∈ My

m. Since A1 has a block diagonal structure, after one
local computation, we have Mx

m = Ek and My
m = Ek. The situation does not change,

no matter how many local computations one does.
• For machines m which own f2, it holds

x ∈ span
{
x′ , A2y

′} = Ek+1,

y ∈ span
{
y′ , AT

2 x
′} = Ek+1,
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for given x′ ∈ Mx
m and y′ ∈ My

m. It means that, after local computations (at least
one local computation), one has Mx

m = Ek+1 and My
m = Ek+1. Therefore, machines

with function f2 can progress by one new non-zero coordinate. The situation with even
k is opposite, the devices with f1 can increase the number of non-zero coordinates
by exactly 1 from k to k + 1, but the machines with f2 do not progress from local
computations.

This means that we constantly have to transfer progress from the group of machines
with f1 to the group of machines with f2 and back. Initially, all devices have zero
coordinates. Furthermore, after at least one local computation, the machines with f1
can receive the first non-zero coordinate using e1 in the gradients for y (but only the
first, not the second), and the rest of the devices are left with all zeros. Next, we pass the
first non-zero coordinate to machines with f2. This requires d communication rounds.
The devices with f2 now give a progress on one more non-zero coordinate (the second)
according to the reasoning above, this update is passed to the machines with f1 and
there give another progress. Then the process continues in the same way. It remains to
note that for this update in the number of non-zero coordinates, we need at least one
local calculation for each non-zero coordinate. Note that the local computation budget
is sufficient (T > K – see Definition 2.2). This completes the proof.

□

Consider the problem with the global objective function:

f(x, y) :=
1

M

M∑
m=1

fm(x, y)

=
1

M
(|Bd| · f1(x, y) + |B| · f2(x, y) + (M − |Bd| − |B|) · f3(x, y))

=
L

2
xTAy +

µ

2
∥x∥2 − µ

2
∥y∥2 + L2

4µ
eT1 y, with A =

1

2
(A1 +A2) (B4)

With the fact that ∥A∥ ≤ 2, one can easy verify that (B4) satisfies Assumptions 1(g)
and 2(sc).

The previous lemma gives an idea of what the solution obtained using procedures
that satisfy Definition 2.2. The next lemma is already to the approximate solution of
the problem (1) + (B4) and how it is closed to the real solution.

Lemma B.2 (Lemma 3.3 from [59]). Let α = 4µ2

L2 and q = 1
2

(
2 + α−

√
α2 + 4α

)
∈

(0; 1) be the smallest root of q2 − (2 + α)q + 1 = 0, and let us introduce approximation
ȳ∗ as follows

ȳ∗i =
qi

1− q
. (B5)

Then the error between this approximation and the exact solution of (1) + (B4) can be
bounded

∥ȳ∗ − y∗∥ ≤ qn+1

α(1− q)
.

Proof: For the problem (1)+(B4), we can write down the optimality condition
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∇xf(x
∗, y∗) = 0, express x∗ through y∗, substitute it in f and obtain the following

optimization problem in y:

g(y) = −1

2
yT
(
L2

4µ
ATA+ µI

)
y +

L2

4µ
eT1 y,

where one can easy found

ATA =



1 −1

−1 2 −1

−1 2 −1

−1 2 −1

−1 2 −1

. . .

−1 2 −1

−1 2



.

The optimality ∇g(y∗) = 0 gives(
L2

4µ
ATA+ µI

)
y∗ =

L2

4µ
e1,

or (
ATA+ αI

)
y∗ = e1.

Let us write in the form of a set of equations:

(1 + α)y∗1 − y∗2 = 1

−y∗1 + (2 + α)y∗2 − y∗3 = 0

. . .

−y∗n−2 + (2 + α)y∗n−1 − y∗n = 0

−y∗n−1 + (2 + α)y∗n = 0

Note that the approximation (B5) satisfies the following set of equations:

(1 + α)ȳ∗1 − ȳ∗2 = 1

−ȳ∗1 + (2 + α)ȳ∗2 − ȳ∗3 = 0

. . .

−ȳ∗n−2 + (2 + α)ȳ∗n−1 − ȳ∗n = 0

−ȳ∗n−1 + (2 + α)ȳ∗n = qn+1

1−q
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or in the short form:

(
ATA+ αI

)
ȳ∗ = e1 +

qn+1

1− q
en.

Then the difference between the approximation and the true solution is

ȳ∗ − y∗ =
(
ATA+ αI

)−1 qn+1

1− q
en,

With the fact that α−1I ⪰
(
ATA+ αI

)−1 ≻ 0, it implies the statement of Lemma.

□

Now we formulate a key lemma (similar to Lemma 3.4 from [59]).

Lemma B.3. For any pairs T,K (T > K) one can found the distributed sad-
dle point problem in the form (1)+(B2)+(B4) with Bd ̸= ∅ and the size n ≥
max

{
2 logq

(
α

4
√
2

)
, 2K

}
, where α = 4µ2

L2 and q = 1
2

(
2 + α−

√
α2 + 4α

)
∈ (0; 1),

such that any output x̂, ŷ produced by any BBP(T,K) satisfying Definition 2.2 after K
communications rounds and T local computations, satisfies the following estimate:

∥x̂− x∗∥2 + ∥ŷ − y∗∥2 ≥ q
2K

d
∥y0 − y∗∥2

16
.

Proof: Lemma B.1 states that after K (K < T ) communications only k =
⌊
K
d

⌋
coordinates in the output ŷ can be non-zero. Therefore, by the definition of ȳ∗ from
(B5), by k ≤ K ≤ n

2 and with q < 1, we have

∥ŷ − ȳ∗∥ ≥

√√√√ n∑
j=k+1

(ȳ∗j )
2 =

qk

1− q

√
q2 + q4 + . . .+ q2(n−k)

≥ qk√
2(1− q)

√
q2 + q4 + . . .+ q2n =

qk√
2
∥ȳ∗∥ =

qk√
2
∥y0 − ȳ∗∥. (B6)

With Lemma B.2, we can guarantee that

∥ȳ∗ − y∗∥ ≤ qn+1

α(1− q)
≤ q

n

2

α
· qk · q

1− q
.

Here we also used that n ≥ 2K ≥ 2k and q < 1. Next, we take into account that
n ≥ 2 logq

(
α

4
√
2

)
and get

∥ȳ∗ − y∗∥ ≤ 1

4
√
2
· qk · q

1− q
≤ 1

4
√
2
· qk · ∥y0 − ȳ∗∥, (B7)

where we also noticed from Lemma B.2 that ∥y0 − ȳ∗∥ = ∥ȳ∗∥ ≥ q
1−q . Combining (B6)

and (B7), we obtain

∥x̂− x∗∥2 + ∥ŷ − y∗∥2 ≥ ∥ŷ − y∗∥2
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≥ (∥ŷ − ȳ∗∥ − ∥ȳ∗ − y∗∥)2

≥ ∥ŷ − ȳ∗∥2 − 2∥ȳ∗ − y∗∥ · ∥ŷ − ȳ∗∥

≥ ∥ŷ − ȳ∗∥2 − 2qk

4
√
2
∥y0 − ȳ∗∥ · ∥ŷ − ȳ∗∥.

We need to minimize the quadratic function: ϕ(t) = t2 − 2qk

4
√
2
∥y0 − ȳ∗∥t, for t ≥

qk√
2
∥y0 − ȳ∗∥. It is easy to see that t∗ = qk√

2
∥y0 − ȳ∗∥, then

∥x̂− x∗∥2 + ∥ŷ − y∗∥2 ≥ q2k

4
∥y0 − ȳ∗∥2. (B8)

It remains to note that

∥y0 − y∗∥ ≤ ∥y0 − ȳ∗∥+ ∥ȳ∗ − y∗∥ ≤
(
1 +

1

4
√
2
· qk
)
· ∥y0 − ȳ∗∥ ≤ 2∥y0 − ȳ∗∥. (B9)

Here we used (B7) and q < 1. Substituting (B9) into (B8), we have

∥x̂− x∗∥2 + ∥ŷ − y∗∥2 ≥ q2k

16
∥y0 − y∗∥2 = q2⌊

K

d ⌋ ∥y
0 − y∗∥2

16
≥ q

2K

d · ∥y
0 − y∗∥2

16
.

□

Building on the above preliminary results, we are now ready to prove our complexity
lower bounds as stated in Theorems 3.1 and 3.2.

B.1.1. Centralized case

Theorem B.4 (Theorem 3.1). For any L > µ > 0 and any connected graph with
diameter ∆, there exists a distributed saddle point problem on X × Y = Rn × Rn with
x∗, y∗ ̸= 0 over a fixed network, such that the following statements hold:

• the diameter of the network is equal to ∆,

• f = 1
M

M∑
m=1

fm is L-smooth, µ-strongly convex-strongly concave ,

• size n ≥ max
{
2 logq

(
α

4
√
2

)
, 2K

}
, where α = 4µ2

L2 and q =

1
2

(
2 + α−

√
α2 + 4α

)
∈ (0; 1),

• for any output x̂, ŷ of any BBP(T,K) (Definition 2.2), the following estimate hold:

∥x̂− x∗∥2 + ∥ŷ − y∗∥2 = Ω

(
exp

(
− 4µ

L− µ
· K
∆

)
∥y0 − y∗∥2

)
.

Proof: It suffices to consider a linear graph on ∆+ 1 vertices {v1, . . . , v∆+1} and
apply Lemma B.3 for the problem (1)+(B2)+(B4) with B = {v1} and d = ∆. Then

(
1

q

) 2K

∆

≥ ∥y0 − y∗∥2

16(∥x̂− x∗∥2 + ∥ŷ − y∗∥2)
.
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Taking the logarithm of the two parts of the inequality, we get

2K

∆
≥ ln

(
∥y0 − y∗∥2

16(∥x̂− x∗∥2 + ∥ŷ − y∗∥2)

)
1

ln(q−1)
.

Next, we work with

1

ln(q−1)
=

1

ln(1 + (1− q)/q))
≥ q

1− q
=

1 + 2µ2

L2 − 2

√
µ2

L2 +
(

µ2

L2

)2
2

√
µ2

L2 +
(

µ2

L2

)2
− 2µ2

L2

=
2

√
µ2

L2 +
(

µ2

L2

)2
− 2µ2

L2

4µ2

L2

=
1

2

√
L2

µ2
+ 1− 1

2
.

Finally, one can obtain

2K

∆
≥ ln

(
∥y0 − y∗∥2

16(∥x̂− x∗∥2 + ∥ŷ − y∗∥2)

)
· 1
2

(
L

µ
− 1

)
,

and

exp

(
4µ

L− µ

K

∆

)
≥ ∥y0 − y∗∥2

16(∥x̂− x∗∥2 + ∥ŷ − y∗∥2)
,

which completes the proof.

□

B.1.2. Decentralized case

Theorem B.5 (Theorem 3.2). For any L > µ > 0 and any connected graph with
diameter ∆, there exists a distributed saddle point problem on X × Y = Rn × Rn with
x∗, y∗ ̸= 0 over a fixed network characterized by a gossip matrix, such that the following
statements hold:

• the gossip matrix W have the condition number χ,

• f = 1
M

M∑
m=1

fm is L-smooth, µ-strongly convex-strongly concave,

• size n ≥ max
{
2 logq

(
α

4
√
2

)
, 2K

}
, where α = 4µ2

L2 and q =

1
2

(
2 + α−

√
α2 + 4α

)
,

• for any output x̂, ŷ of any BBP(T,K) (Definition 2.2), the following estimate hold:

∥x̂− x∗∥2 + ∥ŷ − y∗∥2 = Ω

(
exp

(
− 32µ

L− µ
· K
√
χ

)
∥y0 − y∗∥2

)
.
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Proof: The proof follow similar steps as in the proof of [51, Theorem 2]. Let γM =
1−cos π

M

1+cos π

M

be a decreasing sequence of positive numbers. Since γ2 = 1 and limm γM = 0,

there exists M ≥ 2 such that γM ≥ 1
χ > γM+1.

• If M ≥ 3, let us consider as a network a linear graph G of size M with vertexes
v1, . . . vM , and weighted with w1,2 = 1− a, wi,i+1 = 1 for i ≥ 2. We apply Lemma B.3
for problem (1)+(B2)+(B4) with B = {v1} and d = M − 1, then we have Bd = {vM}.
Hence,

∥x̂− x∗∥2 + ∥ŷ − y∗∥2 ≥ q
2K

d
∥y0 − y∗∥2

16
.

We consider Wa is the Laplacian of the weighted graph G. Wa satisfies Definition 2.1.
One can note that with a = 0, 1

χ(Wa)
= γM , with a = 1, we have 1

χ(Wa)
= 0 (since

the network is disconnected). Hence, there exists a ∈ (0; 1] such that 1
χ(Wa)

= χ. Then
1
χ ≥ γM+1=

1−cos π

M+1

1+cos π

M+1

≥ 2
(M+1)2 , and M ≥

√
2χ − 1 ≥

√
χ
4 . Finally, since M ≥ 3, we

get d = M − 1 ≥ M
2 ≥

√
χ
8 . Hence,

∥x̂− x∗∥2 + ∥ŷ − y∗∥2 ≥ q
16K√

χ
∥y0 − y∗∥2

16
.

Similarly to the proof of the previous theorem

exp

(
32µ

L− µ

K
√
χ

)
≥ ∥y0 − y∗∥2

16(∥x̂− x∗∥2 + ∥ŷ − y∗∥2)
. (B10)

• If M = 2, we construct a fully connected network with 3 nodes with weight
w1,3 = a ∈ [0; 1]. Let Wa is the Laplacian. If a = 0, then the network is a linear graph
and ρ(Wa) = γ3 = 1

3 . Hence, there exists a ∈ [0; 1] such that χ(Wa) = χ. Finally,
B = {v1}, Bd = {v3} and d ≥ 1 ≥

√
χ
2 . Whence, it follows that in this case (B10) is

also valid.

□

B.2. Stochastic lower bounds

B.2.1. Strongly convex case

We consider the following simple problem with function f : R → R:

min
x∈R

f(x) =
µ

2
(x− x0)2, (B11)

where we do not know the constant x0 ̸= 0. f(x) is a µ-strongly convex and µ-smooth
function. We minimize this function by using stochastic first order oracle

∇f(x, ξ) = µ(x+ ξ − x0), where ξ ∈ N
(
0,

σ2

µ2

)
.
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One can note that E[∇f(x, ξ)] = µ(x− x0) = ∇f(x), and E
[
|∇f(x, ξ)−∇f(x)|2

]
=

E
[
µ2|ξ|2

]
= σ2. We use some BBP(T,K) (Definition 2.2), which calls the stochastic

oracle N = MT times in some set of points {xi}Ni=1, for these points oracle returns
yi = µ(xi − x0 + ξi), where all ξi ∈ N (0, σ2/µ2) and independent. Using xi, yi, one
can compute point zi = xi − yi/µ = x0 − ξi ∈ N (x0, σ2/µ2) and independent. Hence,
the original problem (B11) and the working of any BBP are easy to reformulate in
the following way: after N calls of the oracle we have set of pairs {(xi, zi)}Ni=1, where
zi ∈ N (x0, σ2/µ2) and independent. By these pairs we need to estimate the unknown
constant x0. One can do it by MLE:

xMLE
N =

1

N

N∑
i=1

zi, xMLE
N ∈ N

(
x0,

σ2

Nµ2

)
.

Then

E
[
∥xMLE

N − x∗∥2
]
= E

[
|xMLE

N − x0|2
]
= Var

[
xMLE
N

]
=

σ2

Nµ2
,

or

E
[
f(xMLE

N )− f(x∗)
]
=

µ

2
E
[
|xMLE

N − x0|2
]
=

µ

2
Var

[
xMLE
N

]
=

σ2

2Nµ
.

We need to show that the estimate obtained with the MLE is the best in terms of N .
For this we need the classical statistical fact [57]:

Lemma B.6. The unique estimator that is minimax for the quadratic loss function is
the MLE.

Then we have the following theorem:

Theorem B.7 (Theorem 3.3). For any L > µ > 0, there exists a stochastic minimiza-
tion problem with L-smooth and µ-strongly convex function (i.e., satisfying Assumptions
1(g) and 2(sc)), such that for any output x̂ of any BBP(T,K) (Definition 2.2) with M
workers, one can obtain the following estimate:

E
[
∥x̂− x∗∥2

]
= Ω

(
σ2

MTµ2

)
.

B.2.2. Convex case

For the convex case, we work with

min
x∈[−Ωx

2
,Ωx

2
]

ε̃

Ωx
x, (B12)

where ε̃ can only take two values ε or −ε with some positive ε. Of course, we do
not know which of the two values ε̃ takes. We can assume, for example, that ε̃ is
randomly chosen with equal probability at the beginning. It is easy to check that (B12)
is convex and L-smooth for any L and ε. The first order stochastic oracle returns
∇f(x, ξ) = ξ ∈ N (ε̃/Ωx, σ

2). One can note that E[∇f(x, ξ)] = ε̃/Ωx = ∇f(x), and
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E
[
|∇f(x, ξ)−∇f(x)|2

]
= σ2. We use some procedure BBP(T,K) (Definition 2.2), which

calls the oracle N = MT times in some set of points {xi}Ni=1. For these points, the
oracle returns ξi, where all ξi ∈ N (ε̃, σ2) and independent. Note that we can say in
advance that x∗ = Ωx

2 if ε̃ = −ε and x∗ = −Ωx

2 if ε̃ = ε. We have a rather simple
task, from independent samples {ξi}Ni=1 ∈ N (ε̃/Ωx, σ

2) , we need to determine ε̃ from
two equally probable hypotheses H1 : ε̃ = ε or H2 : ε̃ = −ε. For these problems the
likelihood ratio criterion can be used:

δ(ξ1, . . . , ξN ) =

{
H1, T (ξ1, . . . , ξN ) < c

H2, T (ξ1, . . . , ξN ) ≥ c
, T (ξ1, . . . , ξN ) =

fH2
(ξ1, . . . , ξN )

fH1
(ξ1, . . . , ξN )

, (B13)

where fH is a density function of a random vector ξ1, . . . , ξN with distribution from
the hypothesis H. The Neyman–Pearson lemma yields

Lemma B.8. There is a constant c for which the likelihood-ratio criterion (B13) is

• minmax criterion. The number c should be chosen so that the type I error and the
type II error were the same;

• Bayesian criterion for given prior probabilities r and s. The number c is chosen
equal to the ratio r/s.

Due to the symmetry of the hypotheses with respect to zero, as well as the fact that
the prior probabilities can be considered equal to 1/2, we have that c = 1 for minmax
and Bayesian criterions. By simple transformations we can rewrite (B13):

δ(ξ1, . . . , ξN ) =


H1,

N∑
i=1

ξi > 0

H2,
N∑
i=1

ξi ≤ 0

, x̂N =


−Ωx

2 ,
N∑
i=1

ξi > 0

Ωx

2 ,
N∑
i=1

ξi ≤ 0

.

This criterion is more than natural. Neyman–Pearson lemma says it is optimal. Next
we analyse error of this criterion (we will consider only case with ε̃ = ε, the other case
one can parse similarly):

E [f(x̂N )− f(x∗)] = E
[

ε

Ωx
x̂N +

ε

2

]
= ε · P

{
N∑
i=1

ξi ≤ 0

}
= ε · P {SN ≤ 0} ,

where SN =
N∑
i=1

ξi ∈ N (εN/Ωx, σ
2N), then SN−εN/Ωx

σ
√
N

∈ N (0, 1). Finally, we get

E [f(x̂N )− f(x∗)] = εP

{
SN − εN/Ωx

σ
√
N

≤ −ε
√
N

Ωxσ

}

= εP

{
−SN − εN/Ωx

σ
√
N

≥ ε
√
N

Ωxσ

}

≥ ε · 1

3t
exp

(
− t2

2

)
·
(
1− 1

t2

)
.
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In last inequality we define t = ε
√
N

Ωxσ
and use lower bound for tail of standard normal

distribution. With ε = 2Ωxσ√
N

, we have t = 2 and then

E [f(x̂N )− f(x∗)] ≥ ε

4t
exp (−2) ≥ 1

4 exp(2)
· σΩx√

N
.

Hence, we get the next theorem:

Theorem B.9 (Theorem 3.4). For any L > 0 and any M,T ∈ N, there exists a
stochastic minimization problem with L-smooth and convex function (i.e., satisfying
Assumptions 1(g) and 2(c)) on a bounded X stoch with a diameter Ωz (i.e., satisfying
Assumption 4), such that for any output x̂ of any BBP(T,K) (Definition 2.2) with M
workers, one can obtain the following estimate:

E [f(x̂)− f(x∗)] = Ω

(
σΩx√
MT

)
.
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Appendix C. Proof of Theorems from Section 4

C.1. Centralized case

We start our proof with the following lemma:

Lemma C.1. Let z, y ∈ Rn and Z ⊂ Rn be a convex closed set. We set z+ =
projZ(z − y), then for all u ∈ Z:

∥z+ − u∥2 ≤ ∥z − u∥2 − 2⟨y, z+ − u⟩ − ∥z+ − z∥2.

Proof: For all u ∈ Z we have ⟨z+ − (z − y), z+ − u⟩ ≤ 0. Then

∥z+ − u∥2 = ∥z+ − z + z − u∥2

= ∥z − u∥2 + 2⟨z+ − z, z − u⟩+ ∥z+ − z∥2

= ∥z − u∥2 + 2⟨z+ − z, z+ − u⟩ − ∥z+ − z∥2

= ∥z − u∥2 + 2⟨z+ − (z − y), z+ − u⟩ − 2⟨y, z+ − u⟩ − ∥z+ − z∥2

≤ ∥z − u∥2 − 2⟨y, z+ − u⟩ − ∥z+ − z∥2.

□

Before proof the main theorems, we add the following notation:

ḡt =
1

M

M∑
m=1

gtm, ḡt+1/2 =
1

M

M∑
m=1

gt+1/2
m .

C.1.1. Strongly convex-strongly concave problems

Theorem C.2 (Theorem 4.1). Let {zt}t≥0 denote the iterates of Algorithm 1 for solving
the problem (1). Let Assumptions 1(g), 2(sc) and 3 be satisfied. Then if γ ≤ 1

4L , we
have the following estimate:

E
[
∥zk − z∗∥2

]
= O

(
∥z0 − z∗∥2 exp

(
− µ

4L
· K
∆

)
+

σ2

µ2MT

)
.

Proof: Applying the previous Lemma with z+ = zt+1, z = zt, u = z and y = γḡt+1/2,
we get

∥zt+1 − z∥2 ≤ ∥zt − z∥2 − 2γ⟨ḡt+1/2, zt+1 − z⟩ − ∥zt+1 − zt∥2,

and with z+ = zt+1/2, z = zt, u = zt+1, y = γḡt:

∥zt+1/2 − zt+1∥2 ≤ ∥zt − zt+1∥2 − 2γ⟨ḡt, zt+1/2 − zt+1⟩ − ∥zt+1/2 − zt∥2.

Next, we sum up the two previous equalities

∥zt+1 − z∥2 + ∥zt+1/2 − zt+1∥2 ≤∥zt − z∥2 − ∥zt+1/2 − zt∥2

− 2γ⟨ḡt+1/2, zt+1 − z⟩ − 2γ⟨ḡt, zt+1/2 − zt+1⟩.
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A small rearrangement gives

∥zt+1 − z∥2 + ∥zt+1/2 − zt+1∥2

≤∥zt − z∥2 − ∥zt+1/2 − zt∥2

− 2γ⟨ḡt+1/2, zt+1/2 − z⟩+ 2γ⟨ḡt+1/2 − ḡt, zt+1/2 − zt+1⟩
≤∥zt − z∥2 − ∥zt+1/2 − zt∥2

− 2γ⟨ḡt+1/2, zt+1/2 − z⟩+ γ2∥ḡt+1/2 − ḡt∥2 + ∥zt+1/2 − zt+1∥2. (C1)

Then we substitute z = z∗ and take the total expectation of both sides of the equation

E
[
∥zt+1 − z∗∥2

]
≤E

[
∥zt − z∗∥2

]
− E

[
∥zt+1/2 − zt∥2

]
− 2γE

[
⟨ḡt+1/2, zt+1/2 − z∗⟩

]
+ γ2E

[
∥ḡt+1/2 − ḡt∥2

]
. (C2)

Let us work with E
[
∥ḡt+1/2 − ḡt∥2

]
:

E
[
∥ḡt+1/2 − ḡt∥2

]
= E

[
∥ḡt+1/2 − F (zt+1/2) + F (zt)− ḡt + F (zt+1/2)− F (zt)∥2

]
(A1)
≤ 3E

[
∥ḡt+1/2 − F (zt+1/2)∥2

]
+ 3E

[
∥F (zt)− ḡt∥2

]
+3E

[
∥F (zt+1/2)− F (zt)∥2

]
(3)
≤ 3E

∥∥∥∥∥ 1

bM

M∑
m=1

b∑
i=1

(Fm(zt+1/2, ξt+1/2,i
m )− Fm(zt+1/2))

∥∥∥∥∥
2


+3E

∥∥∥∥∥ 1

bM

M∑
m=1

b∑
i=1

(Fm(zt, ξt,im )− Fm(zt))

∥∥∥∥∥
2


+3L2E
[
∥zt+1/2 − zt∥2

]
=

3

(bM)2
E

∥∥∥∥∥
M∑

m=1

b∑
i=1

(Fm(zt+1/2, ξt+1/2,i
m )− Fm(zt+1/2))

∥∥∥∥∥
2


+
3

(bM)2
E

∥∥∥∥∥
M∑

m=1

b∑
i=1

(Fm(zt, ξt,im )− Fm(zt))

∥∥∥∥∥
2


+3L2E
[
∥zt+1/2 − zt∥2

]
.

Using that all {ξt,im }b,Mi=1,m=1 and {ξt+1/2,i
m }b,Mi=1,m=1 are independent, we get

E
[
∥ḡt+1/2 − ḡt∥2

]
≤ 3

(bM)2

M∑
m=1

b∑
i=1

E
[∥∥∥Fm(zt+1/2, ξt+1/2,i

m )− Fm(zt+1/2)
∥∥∥2]

+
3

(bM)2

M∑
m=1

b∑
i=1

E
[∥∥Fm(zt, ξt,im )− Fm(zt)

∥∥2]
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+3L2E
[
∥zt+1/2 − zt∥2

]
(7)
≤ 3L2E

[
∥zt+1/2 − zt∥2

]
+

6σ2

bM
. (C3)

Next, we estimate E
[
⟨ḡt+1/2, zt+1/2 − z∗⟩

]
. To begin with, we use the independence of

all ξ, as well as the unbiasedness of ḡt+1/2 with respect to the conditional expectation
by the random variables {ξt+1/2,i

m }b,Mi=1,m=1:

E
[
⟨ḡt+1/2, zt+1/2 − z∗⟩

]
= E

[
E{ξt+1/2,i

m }b,M
i=1,m=1

[
⟨ḡt+1/2, zt+1/2 − z∗⟩

]]
= E

[
⟨E{ξt+1/2,i

m }b,M
i=1,m=1

[
ḡt+1/2

]
, zt+1/2 − z∗⟩

]
= E

[
⟨F (zt+1/2), zt+1/2 − z∗⟩

]
. (C4)

By the property of the solution z∗, we get

E
[
⟨ḡt+1/2, zt+1/2 − z∗⟩

]
≥ E

[
⟨F (zt+1/2)− F (z∗), zt+1/2 − z⟩

]
≥ µE

[
∥zt+1/2 − z∗∥2

]
.

Let us use a simple fact ∥zt+1/2 − z∗∥2 ≥ 1
2∥z

t − z∗∥2 − ∥zt+1/2 − zt∥2, then

E
[
⟨ḡt+1/2, zt+1/2 − z∗⟩

]
≥ µ

2
E
[
∥zt − z∗∥2

]
− µE

[
∥zt+1/2 − zt∥2

]
. (C5)

Combining three inequalities: (C2) with z = z∗, (C3), (C5), we obtain:

E
[
∥zt+1 − z∗∥2

]
≤ (1− µγ)E

[
∥zt − z∗∥2

]
+ (2µγ + 3γ2L2 − 1)E

[
∥zt+1/2 − zt∥2

]
+

6σ2γ2

bM
.

In Algorithm 1 the step γ ≤ 1
4L , then

E
[
∥zt+1 − z∗∥2

]
≤ (1− µγ)E

[
∥zt − z∗∥2

]
+

6σ2γ2

bM
.

Let us run the recursion from 0 to k − 1:

E
[
∥zk − z∗∥2

]
≤ (1− µγ)kE

[
∥z0 − z∗∥2

]
+

6σ2γ

µbM
.

Then we carefully choose γ = min
{

1
4L ;

ln(max{2;bMµ2∥z0−z∗∥2k/6σ2})
µk

}
and get (for more

details one can see [55])

E
[
∥zk+1 − z∗∥2

]
= Õ

(
∥z0 − z∗∥2 exp

(
−µk

4L

)
+

σ2

µ2bMk

)
.
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Substitute the batch size b and the number of iterations k from the description of
Algorithm 1:

E
[
∥zk+1 − z∗∥2

]
= Õ

(
∥z0 − z∗∥2 exp

(
− µ

4L
· K
r

)
+

σ2

µ2MT

)
.

Finally, we remember that r ≤ ∆ and finish the proof.

□

C.1.2. Convex-concave problems

Theorem C.3 (Theorem 4.1). Let {zt}t≥0 denote the iterates of Algorithm 1 for solving
the problem (1). Let Assumptions 1(g), 2(c), 3 and 4 be satisfied. Then if γ ≤ 1

4L , we
have the following estimate:

E[gap(zkavg)] = O
(
LΩ2

z∆

K
+

σΩz√
MT

)
.

Proof: We have already shown some of the necessary estimates, namely, we need to
use (C1) with some small rearrangement

2γ⟨F (zt+1/2), zt+1/2 − z⟩ ≤∥zt − z∥2 − ∥zt+1 − z∥2 − ∥zt+1/2 − zt∥2

+ 2γ⟨F (zt+1/2)− ḡt+1/2, zt+1/2 − z⟩+ γ2∥ḡt+1/2 − ḡt∥2.

Next, we sum over all t from 0 to k − 1

1

k

k−1∑
t=0

⟨F (zt+1/2), zt+1/2 − z⟩ ≤∥z0 − z∥2 − ∥zk+1 − z∥2

2γk

+
1

k

k−1∑
t=0

⟨F (zt+1/2)− ḡt+1/2, zt+1/2 − z⟩

+
1

2γk

k−1∑
t=0

γ2∥ḡt+1/2 − ḡt∥2 − ∥zt+1/2 − zt∥2. (C6)

Then by xkavg =
1
k

∑k−1
t=0 xt+1/2 and ykavg =

1
k

∑k−1
t=0 yt+1/2, the Jensen’s inequality and

convexity-concavity of f :

gap(zkavg) ≤max
y′∈Y

f

(
1

k

(
k−1∑
t=0

xt+1/2

)
, y′

)
− min

x′∈X
f

(
x′,

1

k

(
k−1∑
t=0

yt+1/2

))

≤max
y′∈Y

1

k

k−1∑
t=0

f(xt+1/2, y′)− min
x′∈X

1

k

k−1∑
t=0

f(x′, yt+1/2).

Given the fact of linear independence of x′ and y′:

gap(zkavg) ≤ max
(x′,y′)∈Z

1

k

k−1∑
t=0

(
f(xt+1/2, y′)− f(x′, yt+1/2)

)
.
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Using convexity and concavity of the function f :

gap(zkavg) ≤ max
(x′,y′)∈Z

1

k

k−1∑
t=0

(
f(xt+1/2, y′)− f(x′, yt+1/2)

)
= max

(x′,y′)∈Z

1

k

k−1∑
t=0

(
f(xt+1/2, y′)− f(xt+1/2, yt+1/2)

+ f(xt+1/2, yt+1/2)− f(x′, yt+1/2)
)

≤ max
(x′,y′)∈Z

1

k

k−1∑
t=0

(
⟨∇yf(x

t+1/2, yt+1/2), y′ − yt+1/2⟩

+ ⟨∇xf(x
t+1/2, yt+1/2), xt+1/2 − x′⟩

)
≤ max

z∈Z

1

k

k−1∑
t=0

⟨F (zt+1/2), zt+1/2 − z⟩. (C7)

Together with (C7), (C6) gives (additionally, we take the full expectation)

E[gap(zkavg)] ≤ E
[
max
z∈Z

∥z0 − z∥2 − ∥zk − z∥2

2γk

]
+
1

k
E

[
max
z∈Z

k−1∑
t=0

⟨F (zt+1/2)− ḡt+1/2, zt+1/2 − z⟩

]

+
1

2γk
E

[
k−1∑
t=0

γ2∥ḡt+1/2 − ḡt∥2 − ∥zt+1/2 − zt∥2
]

(8),(C3)
≤ Ω2

z

2γk
+

1

k
E

[
max
z∈Z

k−1∑
t=0

⟨F (zt+1/2)− ḡt+1/2, zt+1/2 − z⟩

]

+
1

2γk
E

[
k−1∑
t=0

3γ2L2∥zt+1/2 − zt∥2 + 6γ2σ2

bM
− ∥zt+1/2 − zt∥2

]
.

With γ = 1
4L , we get

E[gap(zkavg)] ≤
Ω2
z

2γk
+

1

k
E

[
max
z∈Z

k−1∑
t=0

⟨F (zt+1/2)− ḡt+1/2, zt+1/2 − z⟩

]
+

3γσ2

bM
. (C8)

To finish the proof we need to estimate E
[
max
z∈Z

k−1∑
t=0

⟨F (zt+1/2)− ḡt+1/2, zt+1/2 − z⟩
]
. Let

us define the sequence v: v0 = z1/2, vt+1 = projZ(vt−γδt) with δt = F (zt+1/2)− ḡt+1/2.
Then we have

k−1∑
t=0

⟨δt, zt+1/2 − z⟩ =
k−1∑
t=0

⟨δt, zt+1/2 − vt⟩+
k−1∑
t=0

⟨δt, vt − z⟩. (C9)
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By the definition of vt+1, we have for all z ∈ Z

⟨vt+1 − vt + γδt, z − vt+1⟩ ≥ 0.

Rewriting this inequality, we get

⟨γδt, vt − z⟩ ≤⟨γδt, vt − vt+1⟩+ ⟨vt+1 − vt, z − vt+1⟩

≤⟨γδt, vt − vt+1⟩+ 1

2
∥vt − z∥2 − 1

2
∥vt+1 − z∥2 − 1

2
∥vt − vt+1∥2

≤γ2

2
∥δt∥2 + 1

2
∥vt − vt+1∥2 + 1

2
∥vt − z∥2

− 1

2
∥vt+1 − z∥2 − 1

2
∥vt − vt+1∥2

=
γ2

2
∥δt∥2 + 1

2
∥vt − z∥2 − 1

2
∥vt+1 − z∥2.

With (C9), it gives

k−1∑
t=0

⟨δt, zt+1/2 − z⟩ ≤
k−1∑
t=0

⟨δt, zt+1/2 − vt⟩

+
1

γ

k−1∑
t=0

(
γ2

2
∥δt∥2 + 1

2
∥vt − z∥2 − 1

2
∥vt+1 − z∥2

)

≤
k−1∑
t=0

⟨δt, zt+1/2 − vt⟩+ γ

2

k−1∑
t=0

∥δt∥2 + 1

2γ
∥v0 − z∥2

≤
k−1∑
t=0

⟨δt, zt+1/2 − vt⟩+ γ

2

k−1∑
t=0

∥δt∥2 + Ω2
z

2γ
,

where in the last inequality we used Assumption 4 with v0, z ∈ Z. The right side is
independent of z, then

max
z∈Z

k−1∑
t=0

⟨δt, zt+1/2 − z⟩ ≤
k−1∑
t=0

⟨δt, zt+1/2 − vt⟩

+
γ

2

k−1∑
t=0

∥F (zt+1/2)− ḡt+1/2∥2 + Ω2
z

2γ
. (C10)

Taking the full expectation and using independence vt − zt+1/2, {ξt+1/2,i
m }b,Mi=1,m=1, we

get

E

[
max
z∈Z

k−1∑
t=0

⟨δt, zt+1/2 − z⟩

]

≤ E

[
k−1∑
t=0

⟨δt, zt+1/2 − vt⟩

]
+

γ

2

k−1∑
t=0

E
[
∥F (zt+1/2)− ḡt+1/2∥2

]
+

Ω2
z

2γ
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= E

[
k−1∑
t=0

⟨E{ξt+1/2,i
m }b,M

i=1,m=1

[
F (zt+1/2)− ḡt+1/2

]
, zt+1/2 − vt⟩

]

+
γ

2

k−1∑
t=0

E
[
∥F (zt+1/2)− ḡt+1/2∥2

]
+

Ω2
z

2γ

=
γ

2

k−1∑
t=0

E
[
∥F (zt+1/2)− ḡt+1/2∥2

]
+

Ω2
z

2γ

(C3)
≤ γk

2
· 3σ

2

bM
+

Ω2
z

2γ
.

Then we can finish (C8) and get

E[gap(zkavg)] ≤
Ω2
z

γk
+

γ

2
· 5σ

2

bM
.

Let γ = min

{
1
4L ; Ωz

√
2bM
5kσ2

}
, then

E[gap(zkavg)] = O
(
LΩ2

z

k
+

σΩz√
bMk

)
.

Substitute the batch size b and the number of iterations k from the description of
Algorithm 1 with r ≤ ∆:

E[gap(zkavg)] = O
(
LΩ2

z∆

K
+

σΩz√
MT

)
.

□

C.1.3. Non-convex-non-concave problems

Theorem C.4 (Theorem 4.1). Let {zt}t≥0 denote the iterates of Algorithm 1 for solving
the problem (1). Let Assumptions 1(g), 2(nc), 3 and 4 be satisfied. Then if γ ≤ 1

4L , we
have the following estimate:

E

[
1

k

k−1∑
t=0

∥F (zt)∥2
]
= O

(
L2Ω2

z∆

K
+

σ2K

MT∆

)
.

Proof: We start proof with combining (C2) (z = z∗), (C3) and (C4)

E
[
∥zt+1 − z∗∥2

]
≤E

[
∥zt − z∗∥2

]
− E

[
∥zt+1/2 − zt∥2

]
− 2γE

[
⟨F (zt+1/2), zt+1/2 − z∗⟩

]
+ 3γ2L2E

[
∥zt+1/2 − zt∥2

]
+

6γ2σ2

bM
.
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Using the Minty assumption (6), we obtain

E
[
∥zt+1 − z∗∥2

]
≤ E

[
∥zt − z∗∥2

]
− (1− 3γ2L2)E

[
∥zt+1/2 − zt∥2

]
+

6γ2σ2

bM

= E
[
∥zt − z∗∥2

]
− γ2(1− 3γ2L2)E

[∥∥ḡt∥∥2]+ 6γ2σ2

bM
.

With γ ≤ 1
4L , we get

E
[
∥zt+1 − z∗∥2

]
≤ E

[
∥zt − z∗∥2

]
− (1− 3γ2L2)E

[
∥zt+1/2 − zt∥2

]
+

6γ2σ2

bM

= E
[
∥zt − z∗∥2

]
− 3γ2

4
E
[∥∥ḡt∥∥2]+ 6γ2σ2

bM
.

The fact: −∥ḡt∥2 ≤ −2
3∥F (zt)∥2 + 2∥ḡt − F (zt)∥2, gives

E
[
∥zt+1 − z∗∥2

]
≤ E

[
∥zt − z∗∥2

]
− γ2

2
E
[∥∥F (zt)

∥∥2]+ 2γ2∥ḡt − F (zt)∥2 + 6γ2σ2

bM
.

The term ∥ḡt − F (zt)∥2 was estimated, when we deduced (C3). Then

γ2

2
E
[∥∥F (zt)

∥∥2] ≤ E
[
∥zt − z∗∥2

]
− E

[
∥zt+1 − z∗∥2

]
+

8γ2σ2

bM
.

Summing over all t from 0 to k − 1:

E

[
1

k

k−1∑
t=0

∥∥F (zt)
∥∥2] ≤

2E
[
∥z0 − z∗∥2

]
γ2k

+
16σ2

bM
.

Next we substitute γ = 1
4L , k, b and finish the proof.

□

C.2. Decentralized case

First of all, we present the missing Algorithm 4:

Algorithm 4 FastMix
Parameters: Vectors z1, ..., zM , communic. rounds P .
Initialization: Construct matrix z with rows zT1 , ..., z

T
M ,

choose z−1 = z, z0 = z, η =
1−
√

1−λ2
2(W̃ )

1+
√

1−λ2
2(W̃ )

.

for h = 0, 1, 2, . . . , P − 1 do
zh+1 = (1 + η)W̃zh − ηzh−1,

end for
Output: rows z1, ..., zM of zP .
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We introduce the following notation:

zt =
1

M

M∑
m=1

ztm, zt+1/2 =
1

M

M∑
m=1

zt+1/2
m ,

ẑt =
1

M

M∑
m=1

ẑtm, ẑt+1/2 =
1

M

M∑
m=1

ẑt+1/2
m , z̃t =

1

M

M∑
m=1

z̃tm, z̃t+1/2 =
1

M

M∑
m=1

z̃t+1/2
m ,

ḡt =
1

M

M∑
m=1

gtm=
1

M

M∑
m=1

[
1

b

b∑
i=1

Fm(ztm, ξt,im )

]
,

ḡt+1/2 =
1

M

M∑
m=1

gt+1/2
m =

1

M

M∑
m=1

[
1

b

b∑
i=1

Fm(zt+1/2
m , ξt+1/2,i

m )

]
.

Next, we introduce the convergence of FastMix [29, 58]:

Lemma C.5. Let {z̃t+1
m }Mm=1 be the output of Algorithm 4 with the input {ẑt+1

m }Mm=1.
Then it holds that

1

M

M∑
m=1

∥z̃t+1
m − z̃t+1∥2 ≤

(
1− 1

√
χ

)2P
(

1

M

M∑
m=1

∥ẑt+1
m − ẑt+1∥2

)
and ẑt = z̃t.

Let after P iterations we get ε0-accuracy of consensus, i.e.

z̃tm − z̃t = δtm, ∥δtm∥ ≤ ε0, z̃t+1/2
m − z̃t+1/2 = δt+1/2

m , ∥δt+1/2
m ∥ ≤ ε0. (C11)

Then let us estimate the number of iterations P to achieve such ε0 (how to choose this
parameter we will talk later) accuracy:

Corollary C.6. To achieve ε0-accuracy in terms of (C11) we need to take P :
• in the convex-concave (Assumptions 2(c) and 4) and non-convex-non-concave

(Assumptions 2(nc) and 4) cases

P = O

√
χ log

1 +
Ω2
z +

Q2+σ2/b
L2

max

ε20

 ,

• in the strongly convex-strongly concave case (Assumption 2(sc))

P = O

√
χ log

1 +
∥z0 − z∗∥2 + Q2+σ2/b

L2
max

ε20

 ,

where Q2 = 1
M

M∑
m=1

∥Fm(z∗)∥2.
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Proof: The proof is in a rough estimate of 1
M

M∑
m=1

∥ẑt+1
m − ẑt+1∥2:

1

M

M∑
m=1

∥ẑt+1
m − ẑt+1∥2 = 1

M

M∑
m=1

∥ztm − γgt+1/2
m − zt + γḡt+1/2∥2

≤ 2

M

M∑
m=1

∥ztm − zt∥2 + 2γ2

M

M∑
m=1

∥gt+1/2
m − ḡt+1/2∥2

≤ 2

M

M∑
m=1

∥projZ(z̃
t
m)− 1

M

M∑
i=1

projZ(z̃
t
i)∥2

+
2γ2

M

M∑
m=1

∥gt+1/2
m ∥2

In the last inequality we use the property: 1
M

M∑
m=1

∥gt+1/2
m −

ḡt+1/2∥2= 1
M

M∑
m=1

∥gt+1/2
m − 1

M

M∑
m=1

g
t+1/2
m ∥2 ≤ 1

M

M∑
m=1

∥gt+1/2
m ∥2. Then we take

the full expectation and get

E

[
1

M

M∑
m=1

∥ẑt+1
m − ẑt+1∥2

]
(A1)
≤ 4

M
E

[
M∑

m=1

∥projZ(z̃
t
m)− projZ(z̃

t)∥2
]

+4E

[
∥projZ(z̃

t)− 1

M

M∑
i=1

projZ(z̃
t
i)∥2

]

+
2γ2

M
E

[
M∑

m=1

∥gt+1/2
m ∥2

]
(A2),(A1)

≤ 8

M
E

[
M∑

m=1

∥z̃tm − z̃t∥2
]
+

2γ2

M
E

[
M∑

m=1

∥gt+1/2
m ∥2

]
(C11),(16)

≤ 8ε20 +
4γ2

M
E

[
M∑

m=1

∥Fm(zt+1/2)∥2
]
+

4γ2σ2

b

≤ 8ε20 +
8γ2

M
E

[
M∑

m=1

∥Fm(zt+1/2)− Fm(z∗)∥2
]

+
8γ2

M

M∑
m=1

∥Fm(z∗)∥2 + 4γ2σ2

b

(4)
≤ 8ε20 + 8γ2L2

maxE
[
∥zt+1/2 − z∗∥2

]
+
8γ2

M

M∑
m=1

∥Fm(z∗)∥2 + 4γ2σ2

b

The proof of the theorem follows from γ ≤ 1
4Lmax

and the fact that in the convex-concave
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and non-convex-non-concave cases we can bounded ∥zt+1/2 − z∗∥ ≤ Ωz, in the strongly
convex-strongly concave cases – E

[
∥zt+1/2 − z∗∥2

]
≤ ∥z0 − z∗∥2.

□

We are now ready to prove the main theorems. Note we can rewrite one step of the
algorithm as follows:

zt+1/2 =
1

M

M∑
m=1

zt+1/2
m =

1

M

M∑
m=1

projZ(z̃
t+1/2 + δt+1/2

m )

= projZ(z̃
t+1/2) +

1

M

M∑
m=1

projZ(z̃
t+1/2 + δt+1/2

m )− projZ(z̃
t+1/2)

= projZ

(
1

M

M∑
m=1

z̃t+1/2
m

)
+

1

M

M∑
m=1

projZ(z̃
t+1/2 + δt+1/2

m )− projZ(z̃
t+1/2).

Next, we use that the mixing procedure (in particular FastMix) does not change the

sum of the local vectors. In particular, 1
M

M∑
m=1

z̃
t+1/2
m = 1

M

M∑
m=1

ẑ
t+1/2
m , it gives

zt+1/2 = projZ

(
1

M

M∑
m=1

ẑt+1/2
m

)
+

1

M

M∑
m=1

projZ(z̃
t+1/2 + δt+1/2

m )− projZ(z̃
t+1/2)

= projZ

(
1

M

M∑
m=1

ztm − γgtm

)
+∆t = projZ

(
zt − γḡt

)
+∆t.

Here we added one more notation: ∆t+1/2 := 1
M

M∑
m=1

projZ(z̃t+1/2 + δ
t+1/2
m ) −

projZ(z̃t+1/2) and ∆t := 1
M

M∑
m=1

projZ(z̃t + δtm) − projZ(z̃t). It is easy to see that

∥∆t+1/2∥ ≤ ε0 and ∥∆t∥ ≤ ε0. We see that the step of the algorithm is very similar to
the step of Algorithm 1, but with imprecise projection onto a set. Let us prove the
following lemma:

Lemma C.7. Let Z ⊂ Rn be a convex compact set, z ∈ Z and y,∆ ∈ Rn. We set
z+ = projZ(z − y) + ∆, then for all u ∈ Z:

∥z − u∥2 + 2∥∆∥ · ∥z+ − u∥+ 4∥∆∥ · ∥y∥ − 2⟨y, z+ − u⟩ − ∥z+ − z∥2.

Proof: Let r = projZ(z − y). For all u ∈ Z we have ⟨r − (z − y), r − u⟩ ≤ 0. Then

∥z+ − u∥2 = ∥z+ − z + z − u∥2

= ∥z − u∥2 + 2⟨z+ − z, z − u⟩+ ∥z+ − z∥2

= ∥z − u∥2 + 2⟨z+ − z, z+ − u⟩ − ∥z+ − z∥2

= ∥z − u∥2 + 2⟨z+ − (z − y), z+ − u⟩ − 2⟨y, z+ − u⟩ − ∥z+ − z∥2

= ∥z − u∥2 + 2⟨r − (z − y), r − u⟩+ 2⟨∆, r − u⟩+ 2⟨z+ − (z − y),∆⟩
−2⟨y, z+ − u⟩ − ∥z+ − z∥2
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≤ ∥z − u∥2 + 2⟨∆, z+ − u⟩+ 2⟨∆, r − (z − y)⟩
−2⟨y, z+ − u⟩ − ∥z+ − z∥2

≤ ∥z − u∥2 + 2∥∆∥ · ∥z+ − u∥+ 2∥∆∥ · ∥projZ(z − y)− projZ(z)∥
+2∥∆∥ · ∥y∥ − 2⟨y, z+ − u⟩ − ∥z+ − z∥2

(A2)
≤ ∥z − u∥2 + 2∥∆∥ · ∥z+ − u∥+ 4∥∆∥ · ∥y∥

−2⟨y, z+ − u⟩ − ∥z+ − z∥2.

□

C.2.1. Convex-concave problems

Theorem C.8 (Theorem 4.2). Let {ztm}t≥0 denote the iterates of Algorithm 2 for
solving problem (1). Let Assumptions 1(g), 1(l), 2(nc), 3 and 4 be satisfied. Then if
γ ≤ 1

4L and P = O
(√

χ log 1
ε

)
, we have the following estimate

E[gap(z̄kavg)] = Õ
(
LΩ2

z
√
χ

K
+

σΩz√
MT

)
.

Proof: The same way as in Theorem C.2 one can get

∥zt+1 − z∥2 ≤ ∥zt − z∥2 − ∥zt+1/2 − zt∥2 − 2γ⟨ḡt+1/2, zt+1/2 − z⟩

+ γ2∥ḡt+1/2 − ḡt∥2 + 4∥∆t+1/2∥ · ∥zt+1 − z∥+ 4E
[
∥∆t+1/2∥ · ∥γḡt+1/2∥

]
+ 4∥∆t∥ · ∥zt+1/2 − zt+1∥+ 4∥∆t∥ · ∥γḡt∥

≤ ∥zt − z∥2 − ∥zt+1/2 − zt∥2

− 2γ⟨ḡt+1/2, zt+1/2 − z⟩+ γ2∥ḡt+1/2 − ḡt∥2

+ 4ε0∥zt+1 − z∥+ 4ε0γ∥ḡt+1/2∥
+ 4ε0∥zt+1/2 − zt+1∥+ 4ε0γ∥gt∥. (C12)

Here we use ∥∆t∥, ∥∆t+1/2∥ ≤ ε0 and the triangle inequality. Next we use estimate on
gap (C7) and taking full expectation:

2γk · E[gap(z̄kavg)] ≤ 2γE

[
max
z∈Z

k−1∑
t=0

⟨F (zt+1/2), zt+1/2 − z⟩

]

≤ Ω2
z −

k−1∑
t=0

E
[
∥zt+1/2 − zt∥2

]
+ 2γE

[
max
z∈Z

k−1∑
t=0

⟨F (zt+1/2)− ḡt+1/2, zt+1/2 − z⟩

]

+ γ2
k−1∑
t=0

E
[
∥ḡt+1/2 − ḡt∥2

]
+ 4ε0

k−1∑
t=0

E
[
max
z∈Z

∥zt+1 − z∥
]
+ 4ε0γ

k−1∑
t=0

E
[
∥ḡt+1/2∥

]
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+ 4ε0

k−1∑
t=0

E
[
∥zt+1/2 − zt+1∥

]
+ 4ε0γ

k−1∑
t=0

E
[
∥ḡt∥

]
. (C13)

Let us work with E
[
∥ḡt+1/2 − ḡt∥2

]
:

E
[
∥gt+1/2 − gt∥2

]
= E

[
∥ḡt+1/2 − 1

M

M∑
m=1

Fm(zt+1/2
m ) +

1

M

M∑
m=1

Fm(zt+1/2
m )

−F (zt+1/2) + F (zt)− 1

M

M∑
m=1

Fm(ztm) +
1

M

M∑
m=1

Fm(ztm)− ḡt

+F (zt+1/2)− F (zt)∥2
]

(A1)
≤ 5E

∥∥∥∥∥ 1

bM

M∑
m=1

b∑
i=1

(Fm(zt+1/2
m , ξt+1/2,i

m )− Fm(zt+1/2
m ))

∥∥∥∥∥
2


+5E

∥∥∥∥∥ 1

M

M∑
m=1

Fm(zt+1/2
m )− F (zt+1/2)

∥∥∥∥∥
2


+5E

∥∥∥∥∥F (zt)− 1

M

M∑
m=1

Fm(ztm)

∥∥∥∥∥
2


+5E

∥∥∥∥∥ 1

bM

M∑
m=1

b∑
i=1

(Fm(ztm, ξt,im )− Fm(ztm))

∥∥∥∥∥
2


+5E
[∥∥∥F (zt+1/2)− F (zt)

∥∥∥2] .
Using that all {ξt,im }b,Mi=1,m=1 and {ξt+1/2,i

m }b,Mi=1,m=1 are independent, we get

E
[
∥ḡt+1/2 − ḡt∥2

]
(3)
≤ 5

(bM)2

M∑
m=1

b∑
i=1

E
[∥∥∥Fm(zt+1/2

m , ξt+1/2,i
m )− Fm(zt+1/2

m )
∥∥∥2]

+
5

(bM)2

M∑
m=1

b∑
i=1

E
[∥∥Fm(ztm, ξt,im )− Fm(ztm)

∥∥2]
+5L2E

[
∥zt+1/2 − zt∥2

]
+5E

∥∥∥∥∥ 1

M

M∑
m=1

(Fm(zt+1/2
m )− Fm(zt+1/2))

∥∥∥∥∥
2


+5E

∥∥∥∥∥ 1

M

M∑
m=1

(Fm(ztm)− Fm(zt))

∥∥∥∥∥
2
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(4),(7),(A1)
≤ 5L2E

[
∥zt+1/2 − zt∥2

]
+

10σ2

bM

+5L2
maxE

[
1

M

M∑
m=1

∥∥∥∥∥projZ(z̃
t+1/2 + δt+1/2

m )

− 1

M

M∑
j=1

projZ(z̃
t+1/2 + δ

t+1/2
j )

∥∥∥∥∥
2]

+5L2
maxE

 1

M

M∑
m=1

∥∥∥∥∥∥projZ(z̃
t + δtm)− 1

M

M∑
j=1

projZ(z̃
t + δtj)

∥∥∥∥∥∥
2

≤ 5L2E
[
∥zt+1/2 − zt∥2

]
+

10σ2

bM

+10L2
maxE

[
1

M

M∑
m=1

∥∥∥projZ(z̃
t+1/2 + δt+1/2

m )− projZ(z̃
t+1/2)

∥∥∥2]

+10L2
maxE

 1

M

M∑
j=1

∥∥∥(projZ(z̃
t+1/2 + δ

t+1/2
j )− projZ(z̃

t+1/2))
∥∥∥2


+10L2
maxE

[
1

M

M∑
m=1

∥∥projZ(z̃
t + δtm)− projZ(z̃

t)
∥∥2]

+10L2
maxE

 1

M

M∑
j=1

∥∥(projZ(z̃
t + δtj)− projZ(z̃

t))
∥∥2

(C11)
≤ 5L2E

[
∥zt+1/2 − zt∥2

]
+

10σ2

bM
+ 40L2

maxε
2
0. (C14)

Next we estimate E
[
maxz∈Z

k−1∑
t=0

⟨F (zt+1/2)− ḡt+1/2, zt+1/2 − z⟩
]
. To begin with, we

use the same approach as in (C9), (C10) with sequence v: v0 = z1/2, vt+1 = projZ(vt −
γ(F (zt+1/2)− ḡt+1/2)) and get

max
z∈Z

k−1∑
t=0

⟨F (zt+1/2)− ḡt+1/2, zt+1/2 − z⟩ ≤
k−1∑
t=0

⟨F (zt+1/2)− gt+1/2, zt+1/2 − vt⟩

+
γ

2

k−1∑
t=0

∥F (zt+1/2)− ḡt+1/2∥2 + Ω2
z

2γ
.

To begin with, we use the independence of all ξ, as well as the unbiasedness of ḡt+1/2

with respect to the conditional m.o. by random variables {ξt+1/2,i
m }b,Mi=1,m=1:

E

[
max
z∈Z

k−1∑
t=0

⟨F (zt+1/2)− ḡt+1/2, zt+1/2 − z⟩

]

≤
k−1∑
t=0

E
[
E{ξt+1/2,i

m }b,M
i=1,m=1

[
⟨F (zt+1/2)− ḡt+1/2, zt+1/2 − vt⟩

]]
42



+
γ

2

k−1∑
t=0

E
[
∥F (zt+1/2)− ḡt+1/2∥2

]
+

Ω2
z

2γ

=

k−1∑
t=0

E
[
⟨E{ξt+1/2,i

m }b,M
i=1,m=1

[
F (zt+1/2)− ḡt+1/2

]
, zt+1/2 − vt⟩

]
+
γ

2

k−1∑
t=0

E
[
∥F (zt+1/2)− ḡt+1/2∥2

]
+

Ω2
z

2γ

=

k−1∑
t=0

E

[
⟨ 1

M

M∑
m=1

(Fm(zt+1/2)− Fm(zt+1/2
m )), zt+1/2 − vt⟩

]

+
γ

2

k−1∑
t=0

E
[
∥F (zt+1/2)− ḡt+1/2∥2

]
+

Ω2
z

2γ

≤
k−1∑
t=0

E

[∥∥∥∥∥ 1

M

M∑
m=1

(Fm(zt+1/2
m )− Fm(zt+1/2))

∥∥∥∥∥ · ∥zt+1/2 − vt∥

]

+
γ

2

k−1∑
t=0

E
[
∥F (zt+1/2)− ḡt+1/2∥2

]
+

Ω2
z

2γ

(4)
≤

k−1∑
t=0

E

[(
Lmax

M

M∑
m=1

∥∥∥zt+1/2
m − zt+1/2

∥∥∥) · ∥zt+1/2 − vt∥

]

+
γ

2

k−1∑
t=0

E
[
∥F (zt+1/2)− ḡt+1/2∥2

]
+

Ω2
z

2γ

≤
k−1∑
t=0

E

[(
Lmax

M

M∑
m=1

∥∥∥projZ(z̃
t+1/2 + δt+1/2

m )

− 1

M

M∑
j=1

projZ(z̃
t+1/2 + δ

t+1/2
j )

∥∥∥∥∥
)

· ∥zt+1/2 − vt∥
]

+
γ

2

k−1∑
t=0

E
[
∥F (zt+1/2)− ḡt+1/2∥2

]
+

Ω2
z

2γ

≤
k−1∑
t=0

E

[(
Lmax

M

M∑
m=1

∥∥∥projZ(z̃
t+1/2 + δt+1/2

m )− projZ(z̃
t+1/2)

∥∥∥) · ∥zt+1/2 − vt∥

]

+E

Lmax

M

M∑
j=1

∥∥∥(projZ(z̃
t+1/2 + δ

t+1/2
j )− projZ(z̃

t+1/2))
∥∥∥
 · ∥zt+1/2 − vt∥


+
γ

2

k−1∑
t=0

E
[
∥F (zt+1/2)− ḡt+1/2∥2

]
+

Ω2
z

2γ

(C11)
≤ 2Lmaxε0

k−1∑
t=0

E
[
∥zt+1/2 − vt∥

]
+

γ

2

k−1∑
t=0

E
[
∥F (zt+1/2)− ḡt+1/2∥2

]
+

Ω2
z

2γ
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≤ 2Lmaxε0kΩz +
γ

2

k−1∑
t=0

E
[
∥F (zt+1/2)− ḡt+1/2∥2

]
+

Ω2
z

2γ
. (C15)

Next we combine (C13), (C14) and (C15)

2γkE[gap(z̄kavg)] ≤2Ω2
z + (5L2γ2 − 1)

k−1∑
t=0

E
[
∥zt+1/2 − zt∥2

]
+ 4γLmaxε0kΩz + γ2

k−1∑
t=0

E
[
∥F (zt+1/2)− ḡt+1/2∥2

]
+ γ2

10kσ2

bM

+ 40γ2kL2
maxε

2
0 + 4ε0

k−1∑
t=0

E
[
max
z∈Z

∥zt+1 − z∥
]

+ 4ε0γ

k−1∑
t=0

E
[
∥ḡt+1/2∥

]
+ 4ε0

k−1∑
t=0

E
[
∥zt+1/2 − zt+1∥

]
+ 4ε0γ

k−1∑
t=0

E
[
∥ḡt∥

]
.

Then we use γ ≤ 1
4L and Assumption 4:

2γkE[gap(z̄kavg)] ≤ 2Ω2
z + γ2

k−1∑
t=0

E
[
∥F (zt+1/2)− ḡt+1/2∥2

]
+ γ2

10kσ2

bM
+ 40γ2kL2

maxε
2
0 + 8(1 + γLmax)ε0kΩz

+ 4ε0γ

k−1∑
t=0

E
[
∥ḡt+1/2∥

]
+ 4ε0γ

k−1∑
t=0

E
[
∥ḡt∥

]
. (C16)

It remains to estimate E
[
∥ḡt+1/2∥+ ∥ḡt∥

]
:

E
[
∥ḡt∥

]
=E

[
∥F (z∗)− F (z∗) + F (zt)− F (zt) +

1

M

M∑
m=1

Fm(ztm)− 1

M

M∑
m=1

Fm(ztm) + ḡt∥

]

≤∥F (z∗)∥+ E
[∥∥F (zt)− F (z∗)

∥∥]+ E

[∥∥∥∥∥ 1

M

M∑
m=1

Fm(ztm)− F (zt)

∥∥∥∥∥
]

+ E

[∥∥∥∥∥ 1

bM

M∑
m=1

b∑
i=1

(Fm(ztm, ξt,im )− Fm(ztm))

∥∥∥∥∥
]
.

From (C14) we have that E

[∥∥∥∥ 1
bM

M∑
m=1

b∑
i=1

(Fm(ztm, ξt,im )− Fm(ztm))

∥∥∥∥2
]
≤ σ2

bM and from
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(C15) we have E
[∥∥∥∥ 1

M

M∑
m=1

Fm(ztm)− F (zt)

∥∥∥∥] ≤ 2Lmaxε0, then

E
[
∥gt∥

]
≤∥F (z∗)∥+ E

[∥∥F (zt)− F (z∗)
∥∥]+ 2Lmaxε0 +

σ√
bM

≤Q+ LΩz + 2Lmaxε0 +
σ√
bM

,

where Q2 = 1
M

M∑
m=1

∥Fm(z∗)∥2. Hence, we can rewrite (C16) as follows:

E[gap(z̄kavg)] ≤
Ω2
z

2γk
+

γ

2k

k−1∑
t=0

E
[
∥F (zt+1/2)− ḡt+1/2∥2

]
+

5σ2γ

bM

+ 20γL2
maxε

2
0 + 4

(
1

γ
+ Lmax

)
ε0Ωz

+ 4ε0

(
Q+ LΩz + 2Lmaxε0 +

σ√
bM

)
.

The same way as (C14), one can estimate E
[
∥F (zt+1/2)− ḡt+1/2∥2

]
:

E[gap(z̄kavg)] ≤
Ω2
z

2γk
+

6σ2γ

bM

+ 24γL2
maxε

2
0 + 4

(
1

γ
+ Lmax

)
ε0Ωz

+ 4ε0

(
Q+ LΩz + 2Lmaxε0 +

σ√
bM

)
.

Let γ = min

{
1
4L ; Ωz

√
bM

12kσ2

}
and ε0 = O

(
ε

ΩzLmax+Q

)
, where ε = max

(
LΩ2

z

k ; σΩz√
bMk

)
.

Then for the output of Algorithm 4 it holds

E[gap(z̄kavg)] = O
(
LΩ2

z

k
+

σΩz√
bMk

)
.

Substituting the batch size b and the number of iterations k from the description of
Algorithm 2 and Corollary C.6:

E[gap(z̄kavg)] = Õ
(
LΩ2

z
√
χ

K
+

σΩz√
MT

)
.

□

C.2.2. Strongly convex-strongly concave problems

Theorem C.9 (Theorem 4.2). Let {ztm}t≥0 denote the iterates of Algorithm 2 for
solving the problem (1). Let Assumptions 1(g), 1(l), 2(sc) and 3 be satisfied. Then if
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γ ≤ 1
4L and P = O

(√
χ log 1

ε

)
, we have the following estimate:

E
[
∥z̄k − z∗∥2

]
= Õ

(
∥z0 − z∗∥2 exp

(
− µ

8L
· K
√
χ

)
+

σ2

µ2MT

)
.

Proof: We start with substituting z = z∗ in (C12) and taking full expectation. Then
we use (C14) and get

2γE
[
⟨F (zt+1/2),zt+1/2 − z∗⟩

]
≤ E

[
∥zt − z∗∥2

]
− E

[
∥zt+1 − z∗∥2

]
− E

[
∥zt+1/2 − zt∥2

]
+ 5L2γ2E

[
∥zt+1/2 − zt∥2

]
+

10σ2γ2

bM

+ 4ε0E
[
∥zt+1 − z∗∥

]
+ 4ε0γE

[
∥ḡt+1/2∥

]
+ 4ε0E

[
∥zt+1/2 − zt+1∥

]
+ 4ε0γE

[
∥ḡt∥

]
+ 2γE

[
⟨F (zt+1/2)− ḡt+1/2, zt+1/2 − z∗⟩

]
+ 40γ2L2

maxε
2
0.

The same way as (C15), one can get

E
[
⟨F (zt+1/2)− ḡt+1/2, zt+1/2 − z∗⟩

]
≤ E

[
E{ξt+1/2,i

m }b,M
i=1,m=1

[
⟨F (zt+1/2)− ḡt+1/2, zt+1/2 − z∗⟩

]]
= E

[
⟨E{ξt+1/2,i

m }b,M
i=1,m=1

[
F (zt+1/2)− ḡt+1/2

]
, zt+1/2 − z∗⟩

]
= E

[
⟨ 1

M

M∑
m=1

(Fm(zt+1/2)− Fm(zt+1/2
m )), zt+1/2 − z∗⟩

]

≤ E

[∥∥∥∥∥ 1

M

M∑
m=1

(Fm(zt+1/2
m )− Fm(zt+1/2))

∥∥∥∥∥ · ∥zt+1/2 − z∗∥

]
(4)
≤ E

[(
Lmax

M

M∑
m=1

∥∥∥zt+1/2
m − zt+1/2

∥∥∥) · ∥zt+1/2 − z∗∥

]

≤ E

[(
Lmax

M

M∑
m=1

∥∥∥∥projZ(z̃
t+1/2 + δt+1/2

m )

− 1

M

M∑
j=1

projZ(z̃
t+1/2 + δ

t+1/2
j )

∥∥∥∥
)

· ∥zt+1/2 − z∗∥

]

≤ E

[(
Lmax

M

M∑
m=1

∥∥∥projZ(z̃
t+1/2 + δt+1/2

m )− projZ(z̃
t+1/2)

∥∥∥) · ∥zt+1/2 − z∗∥

]

+E

Lmax

M

M∑
j=1

∥∥∥(projZ(z̃
t+1/2 + δ

t+1/2
j )− projZ(z̃

t+1/2))
∥∥∥
 · ∥zt+1/2 − z∗∥


(C11)
≤ 2Lmaxε0E

[
∥zt+1/2 − z∗∥

]
.
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and then

2γE
[
⟨F (zt+1/2), zt+1/2 − z∗⟩

]
≤E

[
∥zt − z∗∥2

]
− E

[
∥zt+1 − z∗∥2

]
− E

[
∥zt+1/2 − zt∥2

]
+ 5L2γ2E

[
∥zt+1/2 − zt∥2

]
+

10σ2γ2

bM

+ 4ε0E
[
∥zt+1 − z∗∥

]
+ 4ε0γE

[
∥ḡt+1/2∥

]
+ 4ε0E

[
∥zt+1/2 − zt+1∥

]
+ 4ε0γE

[
∥ḡt∥

]
+ 4γLmaxε0E

[
∥zt+1/2 − z∗∥

]
+ 40γ2L2

maxε
2
0.

Next, we work with

zt+1 =
1

M

M∑
m=1

zt+1
m =

1

M

M∑
m=1

projZ(z̃
t+1/2 + δt+1

m )

= projZ(z̃
t+1) +

1

M

M∑
m=1

projZ(z̃
t+1 + δt+1

m )− projZ(z̃
t+1)

= projZ

(
1

M

M∑
m=1

ztm − γgt+1/2
m

)
+∆t+1/2 = projZ

(
zt − γḡt+1/2

)
+∆t+1/2,

and using the triangle inequality of the forms ∥zt+1 − z∗∥ ≤ ∥zt+1 − zt∥+ ∥zt − z∗∥,
∥zt+1/2−zt+1∥ ≤ ∥zt+1/2−zt∥+∥zt+1/2−zt∥ and ∥zt+1/2−z∗∥ ≤ ∥zt−z∗∥+∥zt+1/2−zt∥,
we get

2γE
[
⟨F (zt+1/2), zt+1/2 − z∗⟩

]
≤ E

[
∥zt − z∗∥2

]
− E

[
∥zt+1 − z∗∥2

]
− E

[
∥zt+1/2 − zt∥2

]
+5L2γ2E

[
∥zt+1/2 − zt∥2

]
+

10σ2γ2

bM

+8ε0E
[
∥zt+1 − zt∥

]
+ 4ε0γE

[
∥ḡt+1/2∥

]
+ 4ε0γE

[
∥ḡt∥

]
+4ε0(1 + γLmax)E

[
∥zt+1/2 − zt∥

]
+4ε0(1 + γLmax)E

[
∥zt − z∗∥

]
+ 40γ2L2

maxε
2
0

≤ E
[
∥zt − z∗∥2

]
− E

[
∥zt+1 − z∗∥2

]
− E

[
∥zt+1/2 − zt∥2

]
+5L2γ2E

[
∥zt+1/2 − zt∥2

]
+

10σ2γ2

bM

+8ε0E
[
∥projZ

(
zt − γgt+1/2

)
+∆t+1/2 − zt∥

]
+4ε0γE

[
∥ḡt+1/2∥

]
+ 4ε0γE

[
∥ḡt∥

]
+4ε0(1 + γLmax)E

[
∥zt+1/2 − zt∥

]
+4ε0(1 + γLmax)E

[
∥zt − z∗∥

]
+ 40γ2L2

maxε
2
0
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≤ E
[
∥zt − z∗∥2

]
− E

[
∥zt+1 − z∗∥2

]
− E

[
∥zt+1/2 − zt∥2

]
+5L2γ2E

[
∥zt+1/2 − zt∥2

]
+

10σ2γ2

bM

+8ε0E
[
∥projZ

(
zt − γgt+1/2

)
− projZ(z

t)∥
]
+ 8ε20

+4ε0(1 + γLmax)E
[
∥zt − z∗∥

]
+ 4ε0γE

[
∥ḡt+1/2∥

]
+4ε0γE

[
∥ḡt∥

]
+ 4ε0(1 + γLmax)E

[
∥zt+1/2 − zt∥

]
+ 40γ2L2

maxε
2
0

(A2)
≤ E

[
∥zt − z∗∥2

]
− E

[
∥zt+1 − z∗∥2

]
− E

[
∥zt+1/2 − zt∥2

]
+5L2γ2E

[
∥zt+1/2 − zt∥2

]
+

10σ2γ2

bM

+8ε20 + 4ε0(1 + γLmax)E
[
∥zt − z∗∥

]
+ 12ε0γE

[
∥ḡt+1/2∥

]
+4ε0γE

[
∥ḡt∥

]
+ 4ε0(1 + γLmax)E

[
∥zt+1/2 − zt∥

]
+ 40γ2L2

maxε
2
0. (C17)

It remains to estimate E
[
∥ḡt+1/2∥+ ∥ḡt∥

]
:

E
[
∥ḡt∥

]
=E

[
∥F (z∗)− F (z∗) + F (zt)− F (zt) +

1

M

M∑
m=1

Fm(ztm)− 1

M

M∑
m=1

Fm(ztm) + ḡt∥

]

≤∥F (z∗)∥+ E
[∥∥F (zt)− F (z∗)

∥∥]+ E

[∥∥∥∥∥ 1

M

M∑
m=1

Fm(ztm)− F (zt)

∥∥∥∥∥
]

+ E

[∥∥∥∥∥ 1

bM

M∑
m=1

b∑
i=1

(Fm(ztm, ξt,im )− Fm(ztm))

∥∥∥∥∥
]
.

From (C14) we have that E

[∥∥∥∥ 1
bM

M∑
m=1

b∑
i=1

(Fm(ztm, ξt,im )− Fm(ztm))

∥∥∥∥2
]
≤ σ2

bM and from

(C15) E
[∥∥∥∥ 1

M

M∑
m=1

Fm(ztm)− F (zt)

∥∥∥∥] ≤ 2Lmaxε0, then

E
[
∥ḡt∥

]
≤ ∥F (z∗)∥+ E

[∥∥F (zt)− F (z∗)
∥∥]+ 2Lmaxε0 +

σ√
bM

≤ Q+ LE
[
∥zt − z∗∥

]
+ 2Lmaxε0 +

σ√
bM

.

Substituting in (C17):

2γE
[
⟨F (zt+1/2), zt+1/2 − z∗⟩

]
≤E

[
∥zt − z∗∥2

]
− E

[
∥zt+1 − z∗∥2

]
− E

[
∥zt+1/2 − zt∥2

]
+ 5L2γ2E

[
∥zt+1/2 − zt∥2

]
+

10σ2γ2

bM
+ 8ε20 + 4ε0(1 + γLmax)E

[
∥zt − z∗∥

]
+ 12ε0γ

(
Q+ LE

[
∥zt+1/2 − z∗∥

]
+ 2Lmaxε0 +

σ√
bM

)
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+ 4ε0γ

(
Q+ LE

[
∥zt − z∗∥

]
+ 2Lmaxε0 +

σ√
bM

)
+ 4ε0(1 + γLmax)E

[
∥zt+1/2 − zt∥

]
+ 40γ2L2

maxε
2
0. (C18)

By simple fact 2ab ≤ a2 + b2, we get

2γE
[
⟨F (zt+1/2), zt+1/2 − z∗⟩

]
≤E

[
∥zt − z∗∥2

]
− E

[
∥zt+1 − z∗∥2

]
− E

[
∥zt+1/2 − zt∥2

]
+ 5L2γ2E

[
∥zt+1/2 − zt∥2

]
+

10σ2γ2

bM

+ 20ε0(1 + γLmax)E
[
∥zt − z∗∥

]
+ 16ε0(1 + γLmax)E

[
∥zt+1/2 − zt∥

]
+ 16ε0γ

(
Q+ 2Lmaxε0 +

σ√
bM

)
+ 40γ2L2

maxε
2
0 + 8ε20

≤(1 + 10ε0)E
[
∥zt − z∗∥2

]
− E

[
∥zt+1 − z∗∥2

]
+ (5L2γ2 + 8ε0 − 1)E

[
∥zt+1/2 − zt∥2

]
+

10σ2γ2

bM

+ 20ε0(1 + γLmax)
2 + 16ε0γ

(
Q+ 2Lmaxε0 +

σ√
bM

)
+ 40γ2L2

maxε
2
0 + 8ε20. (C19)

By property of z∗, we get

E
[
⟨F (zt+1/2), zt+1/2 − z∗⟩

]
≥ E

[
⟨F (zt+1/2)− F (z∗), zt+1/2 − z∗⟩

]
≥ µE

[
∥zt+1/2 − z∗∥2

]
.

Let use a simple fact ∥zt+1/2 − z∗∥2 ≥ 1
2∥z

t − z∗∥2 − ∥zt+1/2 − zt∥2, then

E
[
⟨F (zt+1/2), zt+1/2 − z∗⟩

]
≥ µ

2
E
[
∥zt − z∗∥2

]
− µE

[
∥zt+1/2 − zt∥2

]
.

Then (C19) gives

E
[
∥zt+1 − z∗∥2

]
≤ (1 + 10ε0 − µγ)E

[
∥zt − z∗∥2

]
+

10σ2γ2

bM

+ (5L2γ2 + 2γµ+ 8ε0 − 1)E
[
∥zt+1/2 − zt∥2

]
+ 20ε0(1 + γLmax)

2 + 16ε0γ

(
Q+ 2Lmaxε0 +

σ√
bM

)
+ 40γ2L2

maxε
2
0 + 8ε20.

With ε0 ≤ min
(

1
50 ,

µγ
20

)
and γ ≤ 1

4L , we have

E
[
∥zt+1 − z∗∥2

]
≤
(
1− µγ

2

)
E
[
∥zt − z∗∥2

]
+

10σ2γ2

bM
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+ 20ε0(1 + γLmax)
2 + 16ε0γ

(
Q+ 2Lmaxε0 +

σ√
bM

)
+ 40γ2L2

maxε
2
0 + 8ε20.

Let us run the recursion from 0 to k − 1:

E
[
∥zk − z∗∥2

]
≤
(
1− µγ

2

)k
E
[
∥z0 − z∗∥2

]
+

20σ2γ

µbM

+
2ε0
µγ

(
20(1 + γLmax)

2 + 16γ

(
Q+ 2Lmaxε0 +

σ√
bM

)

+ 40γ2L2
maxε0 + 8ε0

)
.

Then we carefully choose γ = min
{

1
4L ;

2 ln(max{2;bMµ2∥z0−z∗∥2k/20σ2})
µk

}
and ε0 =

O
(
εµγ(1 +Q+ γLmax)

2
)
, where ε = max

(
∥z0 − z∗∥2 exp

(
−µk

8L

)
; σ2

µ2bMk

)
. Then the

output of Algorithm 4 it holds

E
[
∥z̄k − z∗∥2

]
= Õ

(
∥z0 − z∗∥2 exp

(
−µk

8L

)
+

σ2

µ2bMk

)
.

Substituting the batch size b and the number of iterations k from the description of
Algorithm 1:

E
[
∥z̄k − z∗∥2

]
= Õ

(
∥z0 − z∗∥2 exp

(
− µ

8L
· K
P

)
+

σ2

µ2MT

)
.

Corollary C.6 ends the proof.

□

C.3. Non-convex-non-concave problems

Theorem C.10 (Theorem 4.2). Let {ztm}t≥0 denote the iterates of Algorithm 2 for
solving problem (1). Let Assumptions 1(g), 1(l), 2(nc), 3 and 4 be satisfied. Then if
γ ≤ 1

4L and P = O
(√

χ log 1
ε

)
, we have the following estimate:

E

[
1

k

k−1∑
t=0

∥F (zt)∥2
]
= Õ

(
L2Ω2

z
√
χ

K
+

σ2K

MT
√
χ

)
.

Proof: We start from (C18) with using diameter Ωz:

2γE
[
⟨F (zt+1/2), zt+1/2 − z∗⟩

]
≤ E

[
∥zt − z∗∥2

]
− E

[
∥zt+1 − z∗∥2

]
− (1− 5L2γ2)E

[
∥zt+1/2 − zt∥2

]
+

10σ2γ2

bM

+ 16ε0γ

(
LΩz + 2Lmaxε0 +

σ√
bM

)
+ 8ε0(1 + γLmax)Ωz + 8(1 + 5γ2L2

max)ε
2
0.
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With the Minty assumption it transforms to

0 ≤ E
[
∥zt − z∗∥2

]
− E

[
∥zt+1 − z∗∥2

]
− (1− 5L2γ2)E

[
∥zt+1/2 − zt∥2

]
+

10σ2γ2

bM

+ 16ε0γ

(
Q+ LΩz + 2Lmaxε0 +

σ√
bM

)
+ 8ε0(1 + γLmax)Ωz + 8(1 + 5γ2L2

max)ε
2
0

= E
[
∥zt − z∗∥2

]
− E

[
∥zt+1 − z∗∥2

]
− γ2(1− 5L2γ2)E

[
∥gt∥2

]
+

10σ2γ2

bM

+ 16ε0γ

(
Q+ LΩz + 2Lmaxε0 +

σ√
bM

)
+ 8ε0(1 + γLmax)Ωz + 8(1 + 5γ2L2

max)ε
2
0.

After the choice of γ ≤ 1
4L we get

0 ≤ E
[
∥zt − z∗∥2

]
− E

[
∥zt+1 − z∗∥2

]
− γ2

2
E
[
∥gt∥2

]
+

10σ2γ2

bM

+ 16ε0γ

(
Q+ LΩz + 2Lmaxε0 +

σ√
bM

)
+ 8ε0(1 + γLmax)Ωz + 8(1 + 5γ2L2

max)ε
2
0.

The fact: −∥gt∥2 ≤ −1
2∥F (zt)∥2 + ∥gt − F (zt)∥2, gives

0 ≤E
[
∥zt − z∗∥2

]
− E

[
∥zt+1 − z∗∥2

]
− γ2

4
E
[
∥F (zt)∥2

]
+

γ2

2
E
[
∥gt − F (zt)∥2

]
+

10σ2γ2

bM
+ 16ε0γ

(
Q+ LΩz + 2Lmaxε0 +

σ√
bM

)
+ 8ε0(1 + γLmax)Ωz

+ 8(1 + 5γ2L2
max)ε

2
0.

The term ∥ḡt − F (zt)∥2 was estimated, when we deduced (C14). Then

γ2

4
E
[
∥F (zt)∥2

]
≤ E

[
∥zt − z∗∥2

]
− E

[
∥zt+1 − z∗∥2

]
+

11σ2γ2

bM

+ 16ε0γ

(
Q+ LΩz + 2Lmaxε0 +

σ√
bM

)
+ 8ε0(1 + γLmax)Ωz + 8(1 + 6γ2L2

max)ε
2
0.

Summing over all t from 0 to k − 1:

E

[
1

k

k−1∑
t=0

∥∥F (zt)
∥∥2] ≤

4E
[
∥z0 − z∗∥2

]
γ2k

+
44σ2

bM
+

64ε0
γ

(
Q+ LΩz + 2Lmaxε0 +

σ√
bM

)
+

32ε0
γ2

(1 + γLmax)Ωz +
32

γ2
(1 + 6γ2L2

max)ε
2
0.

Let γ = 1
4L and ε0 = O

(
ε

ΩzLmaxL

)
, where ε = max

(
L2Ω2

z

k ; σ2

bM

)
. Then for the output of

Algorithm 4 it holds

E

[
1

k

k−1∑
t=0

∥∥F (zt)
∥∥2] = O

(
E
[
L2∥z0 − z∗∥2

]
k

+
σ2

bM

)
.
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Substituting the batch size b and the number of iterations k from the description of
Algorithm 2 and Corollary C.6:

E

[
1

k

k−1∑
t=0

∥F (zt)∥2
]
= Õ

(
L2Ω2

z
√
χ

K
+

σ2K

MT
√
χ

)
.

□

Appendix D. Proof of Theorems from Section 5

Here we also introduce auxiliary sequences (Algorithm 3 does not compute them):

z̄t =
1

M

M∑
m=1

ztm, ḡt =
1

M

M∑
m=1

Fm(ztm, ξtm),

z̄t+1/2 = z̄t − γḡt, z̄t+1 = z̄t − γḡt+1/2 (D1)

D.1. Strongly convex-strongly concave problems

Theorem D.1 (Theorem 5.1). Let {ztm}t≥0 denote the iterates of Algorithm 3 for
solving the problem (1). Let Assumptions 1(l), 2(sc), 3 and 5 be satisfied. Also let
H = maxp |kp+1 − kp| is a maximum distance between moments of communication
(kp ∈ I). Then if γ ≤ 1

21HLmax
, we have the following estimate:

E[∥z̄T − z∗∥2] = Õ
(
exp

(
− µK

42HLmax

)
∥z0 − z∗∥2 + σ2

µ2MT
+

(D2H + σ2)HL2
max

µ4T 2

)
.

We start our proof with the following lemma.

Lemma D.2. Let z, y ∈ Rn. We set z+ = z − y, then for all u ∈ Rn:

∥z+ − u∥2 ≤ ∥z − u∥2 − 2⟨y, z+ − u⟩ − ∥z+ − z∥2.

Proof: Simple manipulations give

∥z+ − u∥2 = ∥z+ − z + z − u∥2

= ∥z − u∥2 + 2⟨z+ − z, z − u⟩+ ∥z+ − z∥2

= ∥z − u∥2 + 2⟨z+ − z, z+ − u⟩ − ∥z+ − z∥2

= ∥z − u∥2 + 2⟨z+ − (z − y), z+ − u⟩ − 2⟨y, z+ − u⟩ − ∥z+ − z∥2

= ∥z − u∥2 − 2⟨y, z+ − u⟩ − ∥z+ − z∥2.

□

Proof of Theorem: Applying this Lemma with z = z̄t+1, z = z̄t, u = z∗ and
y = γḡt+1/2, we get

∥z̄t+1 − z∗∥2 = ∥z̄t − z∗∥2 − 2γ⟨ḡt+1/2, z̄t+1 − z∗⟩ − ∥z̄t+1 − z̄t∥2,
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and with z = z̄t+1/2, z = z̄t, u = zt+1, y = γḡt:

∥z̄t+1/2 − z̄t+1∥2 = ∥z̄t − z̄t+1∥2 − 2γ⟨ḡt, z̄t+1/2 − z̄t+1⟩ − ∥z̄t+1/2 − z̄t∥2.

Next, we sum up the two previous equalities

∥z̄t+1 − z∗∥2 + ∥z̄t+1/2 − z̄t+1∥2 =∥z̄t − z∗∥2 − ∥z̄t+1/2 − z̄t∥2

− 2γ⟨ḡt+1/2, z̄t+1 − z∗⟩ − 2γ⟨ḡt, z̄t+1/2 − z̄t+1⟩.

A small rearrangement gives

∥z̄t+1 − z∗∥2 + ∥z̄t+1/2 − z̄t+1∥2 =∥z̄t − z∗∥2 − ∥z̄t+1/2 − z̄t∥2

− 2γ⟨ḡt+1/2, z̄t+1/2 − z∗⟩
+ 2γ⟨ḡt+1/2 − ḡt, z̄t+1/2 − z̄t+1⟩

≤∥z̄t − z∗∥2 − ∥z̄t+1/2 − z̄t∥2

− 2γ⟨ḡt+1/2, z̄t+1/2 − z∗⟩+ γ2∥ḡt+1/2 − ḡt∥2

+ ∥z̄t+1/2 − z̄t+1∥2,

Then we take the total expectation of both sides of the equation

E
[
∥z̄t+1 − z∗∥2

]
= E

[
∥z̄t − z∗∥2

]
− E

[
∥z̄t+1/2 − z̄t∥2

]
−2γE

[
⟨ḡt+1/2, z̄t+1/2 − z∗⟩

]
+ γ2E

[
∥ḡt+1/2 − ḡt∥2

]
. (D2)

Further, we need to additionally estimate two terms −2γ⟨ḡt+1/2, z̄t+1/2 − z∗⟩ and
∥ḡt+1/2− ḡt∥2. For this we prove the following two lemmas, but before that we introduce
the additional notation:

Err(t) =
1

M

M∑
m=1

∥z̄t − ztm∥2. (D3)

Lemma D.3. The following estimate is valid:

−2γE
[
⟨ḡt+1/2, z̄t+1/2 − z∗⟩

]
≤ −γµE

[
∥z̄t+1/2 − z∗∥2

]
+

γL2
max

µ
E [Err(t+ 1/2)] . (D4)

Proof: We take into account the independence of all random vectors ξi = (ξi1, . . . , ξ
i
m)

and select only the conditional expectation Eξt+1/2 on vector ξt+1/2:

−2γE
[
⟨ḡt+1/2, z̄t+1/2 − z∗⟩

]
= −2γE

[〈
1

M

M∑
m=1

Eξt+1/2 [Fm(zt+1/2
m , ξt+1/2

m )], z̄t+1/2 − z∗

〉]
(7)
= −2γE

[〈
1

M

M∑
m=1

Fm(zt+1/2
m ), z̄t+1/2 − z∗

〉]
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= −2γE

[〈
1

M

M∑
m=1

Fm(z̄t+1/2), z̄t+1/2 − z∗

〉]

+2γE

[〈
1

M

M∑
m=1

[Fm(z̄t+1/2)− Fm(zt+1/2
m )], z̄t+1/2 − z∗

〉]
= −2γE

[〈
F (z̄t+1/2), z̄t+1/2 − z∗

〉]
+2γE

[〈
1

M

M∑
m=1

[Fm(z̄t+1/2)− Fm(zt+1/2
m )], z̄t+1/2 − z∗

〉]
.

Using the property of z∗, we have:

−2γE
[
⟨ḡt+1/2, z̄t+1/2 − z∗⟩

]
= −2γE

[〈
F (z̄t+1/2)− F (z∗), z̄t+1/2 − z∗

〉]
+2γE

[〈
1

M

M∑
m=1

[Fm(z̄t+1/2)− Fm(zt+1/2
m )], z̄t+1/2 − z∗

〉]
(5)
≤ −2γµE

[
∥z̄t+1/2 − z∗∥2

]
+2γE

[〈
1

M

M∑
m=1

[Fm(z̄t+1/2)− Fm(zt+1/2
m )], z̄t+1/2 − z∗

〉]
.

For c > 0 it is true that 2⟨a, b⟩ ≤ 1
c∥a∥

2 + c∥b∥2, then

−2γE
[
⟨ḡt+1/2, z̄t+1/2 − z∗⟩

]
≤ −2γµE

[
∥z̄t+1/2 − z∗∥2

]
+γµE

[∥∥∥z̄t+1/2 − z∗
∥∥∥2]+ γ

µ
E

∥∥∥∥∥ 1

M

M∑
m=1

[Fm(z̄t+1/2)− Fm(zt+1/2
m )]

∥∥∥∥∥
2


= −γµE
[
∥z̄t+1/2 − z∗∥2

]
+

γ

µM2
E

∥∥∥∥∥
M∑

m=1

[Fm(z̄t+1/2)− Fm(zt+1/2
m )]

∥∥∥∥∥
2


(A1)
≤ −γµE

[
∥z̄t+1/2 − z∗∥2

]
+

γ

µM
E

[
M∑

m=1

∥∥∥Fm(z̄t+1/2)− Fm(zt+1/2
m )

∥∥∥2]
(4)
≤ −γµE

[
∥z̄t+1/2 − z∗∥2

]
+

γL2
max

µM
E

[
M∑

m=1

∥∥∥z̄t+1/2 − zt+1/2
m

∥∥∥2] .
Definition (D3) ends the proof.

□

Lemma D.4. The following estimate is valid:
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E
[
∥ḡt+1/2 − ḡt∥2

]
≤ 5L2

maxE
[
∥z̄t+1/2 − z̄t∥2

]
+

10σ2

M
+ 5L2

maxE [Err(t+ 1/2)] + 5L2
maxE [Err(t)] . (D5)

Proof: We make the following chain:

E
[
∥ḡt+1/2− ḡt∥2

]
= E

∥∥∥∥∥ 1

M

M∑
m=1

Fm(zt+1/2
m , ξt+1/2

m )− 1

M

M∑
m=1

Fm(ztm, ξtm)

∥∥∥∥∥
2


(A1)
≤ 5E

∥∥∥∥∥ 1

M

M∑
m=1

[Fm(zt+1/2
m , ξt+1/2

m )− Fm(zt+1/2
m )]

∥∥∥∥∥
2


+5E

∥∥∥∥∥ 1

M

M∑
m=1

[Fm(ztm, ξkm)− Fm(ztm)]

∥∥∥∥∥
2


+5E

∥∥∥∥∥ 1

M

M∑
m=1

[Fm(zt+1/2
m )− Fm(z̄t+1/2)]

∥∥∥∥∥
2


+5E

∥∥∥∥∥ 1

M

M∑
m=1

[Fm(ztm)− Fm(z̄t)]

∥∥∥∥∥
2


+5E

∥∥∥∥∥ 1

M

M∑
m=1

[Fm(z̄t+1/2)− Fm(z̄t)]

∥∥∥∥∥
2


(A1)
≤ 5E

∥∥∥∥∥ 1

M

M∑
m=1

[Fm(zt+1/2
m , ξt+1/2

m )− Fm(zt+1/2
m )]

∥∥∥∥∥
2


+5E

∥∥∥∥∥ 1

M

M∑
m=1

[Fm(ztm, ξkm)− Fm(ztm)]

∥∥∥∥∥
2


+
5

M

M∑
m=1

E
[∥∥∥Fm(zt+1/2

m )− Fm(z̄t+1/2)
∥∥∥2]

+
5

M

M∑
m=1

E
[∥∥Fm(ztm)− Fm(z̄t)

∥∥2]+ 5E
[∥∥∥F (z̄t+1/2)− F (z̄t)

∥∥∥2]
(4),(D3)

≤ 5E

∥∥∥∥∥ 1

M

M∑
m=1

[Fm(zt+1/2
m , ξt+1/2

m )− Fm(zt+1/2
m )]

∥∥∥∥∥
2


+5E

∥∥∥∥∥ 1

M

M∑
m=1

[Fm(ztm, ξkm)− Fm(ztm)]

∥∥∥∥∥
2


+5L2
maxE [Err(t+ 1/2)] + 5L2

maxE [Err(t)] + 5L2
maxE

[
∥z̄t+1/2 − z̄t∥2

]
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= 5E

Eξt+1/2

∥∥∥∥∥ 1

M

M∑
m=1

[Fm(zt+1/2
m , ξt+1/2

m )− Fm(zt+1/2
m )]

∥∥∥∥∥
2


+5E

Eξt

∥∥∥∥∥ 1

M

M∑
m=1

[Fm(ztm, ξtm)− Fm(ztm)]

∥∥∥∥∥
2


+5L2
maxE [Err(t+ 1/2)] + 5L2

maxE [Err(t)] + 5L2
maxE

[
∥z̄t+1/2 − z̄t∥2

]
.

Using the independence of each machine and (7), we get:

E
[
∥ḡt+1/2 − ḡt∥2

]
≤10σ2

M
+ 5L2

maxE [Err(t+ 1/2)]

+ 5L2
maxE [Err(t)] + 5L2

maxE
[
∥z̄t+1/2 − z̄t∥2

]
.

□

We are now ready to combine (D2), (D4), (D5) and get

E
[
∥z̄t+1 − z∗∥2

]
≤E

[
∥z̄t − z∗∥2

]
− E

[
∥z̄t+1/2 − z̄t∥2

]
− γµE

[
∥z̄t+1/2 − z∗∥2

]
+

γL2
max

µ
E [Err(t+ 1/2)]

+ 5γ2L2
maxE

[
∥z̄t+1/2 − z̄t∥2

]
+

10γ2σ2

M
+ 5γ2L2

maxE [Err(t+ 1/2)] + 5γ2L2
maxE [Err(t)] . (D6)

Together with −∥z̄t+1/2 − z∗∥2 ≤ ∥z̄t+1/2 − z̄t∥2 − 1/2∥z̄t − z∗∥2 it transforms to

E
[
∥z̄t+1 − z∗∥2

]
≤
(
1− µγ

2

)
E
[
∥z̄t − z∗∥2

]
+

10γ2σ2

M

+ (µγ + 5γ2L2
max − 1)∥z̄t+1/2 − z̄t∥2

+
γL2

max

µ
E [Err(t+ 1/2)] + 5γ2L2

maxE [Err(t+ 1/2)]

+ 5γ2L2
maxE [Err(t)] .

Taking γ ≤ 1
6HLmax

gives

E
[
∥z̄t+1 − z∗∥2

]
≤
(
1− µγ

2

)
E
[
∥z̄t − z∗∥2

]
+

10γ2σ2

M

+
7γL2

max

µ
E [Err(t+ 1/2)] + 5γ2L2

maxE [Err(t)] . (D7)

It remains to estimate E [Err(t+ 1/2)] and E [Err(t)].

Lemma D.5. For t ∈ [tp + 1; tp+1] the following estimate is valid:
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E [Err(t+ 1/2)] ≤ 216(D2H + σ2)Hγ2. (D8)

Proof: First, let us look at the nearest past consensus point tp < t, then z
tp+1
m = z̄tp+1:

E [Err(t+ 1/2)] =
1

M

M∑
m=1

E∥z̄t+1/2 − zt+1/2
m ∥2

=
1

M

M∑
m=1

E∥z̄t+1/2 − z̄tp + ztpm − zt+1/2
m ∥2

=
γ2

M

M∑
m=1

E

∥∥∥∥∥∥Fm(ztm, ξtm)− ḡt +

t−1∑
k=tp+1

[Fm(zk+1/2
m , ξk+1/2

m )− ḡk+1/2]

∥∥∥∥∥∥
2

.

Only ḡt and Fm(zkm, ξkm) depend on ξk, as well as the unbiasedness of ḡt and Fm(zkm, ξkm),
we have

E [Err(t+ 1/2)] =
γ2

M

M∑
m=1

E

∥∥∥∥∥− 1

M

M∑
i=1

Fi(z
t
i)−

t−1∑
k=tp+1

ḡk+1/2

+ Fm(ztm) +

t−1∑
k=tp+1

Fm(zk+1/2
m , ξk+1/2

m )

∥∥∥∥∥
2

+
γ2

M

M∑
m=1

E

∥∥∥∥∥ 1

M

M∑
i=1

Fi(z
t
i)− ḡt − Fm(ztm) + Fm(ztm, ξtm)

∥∥∥∥∥
2

.

We continue the same way, but note that zti depends on ξk−1+1/2, then let us make the
estimate rougher than in the previous case

E [Err(t+ 1/2)] ≤ (1 + β0)
γ2

M

M∑
m=1

E

∥∥∥∥∥∥−
t−1∑

k=tp+1

ḡk+1/2 +

t−1∑
k=tp+1

Fm(zk+1/2
m , ξk+1/2

m )

∥∥∥∥∥∥
2

+ (1 + β−1
0 )

γ2

M

M∑
m=1

E

∥∥∥∥∥− 1

M

M∑
i=1

Fi(z
t
i) + Fm(ztm)

∥∥∥∥∥
2

+
γ2

M

M∑
m=1

E

∥∥∥∥∥ 1

M

M∑
i=1

Fi(z
t
i)− ḡt − Fm(ztm) + Fm(ztm, ξtm)

∥∥∥∥∥
2

.

Here β0 is some positive constant, which we define later. Then

E [Err(t+ 1/2)]

≤ (1 + β0)
γ2

M

M∑
m=1

E

∥∥∥∥∥− 1

M

M∑
i=1

Fi(z
t−1+1/2
i )−

t−2∑
k=tp+1

ḡk+1/2
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+ Fm(zt−1+1/2
m , ξt−1+1/2

m ) +

t−2∑
k=tp+1

Fm(zk+1/2
m , ξk+1/2

m )

∥∥∥∥∥
2

+ (1 + β−1
0 )

γ2

M

M∑
m=1

E

∥∥∥∥∥− 1

M

M∑
i=1

Fi(z
t
i) + Fm(ztm)

∥∥∥∥∥
2

+ (1 + β0)
γ2

M

M∑
m=1

E

∥∥∥∥∥ 1

M

M∑
i=1

Fi(z
t−1+1/2
i )− ḡt−1+1/2

− Fm(zt−1+1/2
m ) + Fm(zt−1+1/2

m , ξt−1+1/2
m )

∥∥∥∥∥
2

+
γ2

M

M∑
m=1

E

∥∥∥∥∥ 1

M

M∑
i=1

Fi(z
t
i)− ḡt − Fm(ztm) + Fm(ztm, ξtm)

∥∥∥∥∥
2

.

and

E [Err(t+ 1/2)]

≤ (1 + β0)(1 + β1)
γ2

M

M∑
m=1

E

∥∥∥∥∥−
t−2∑

k=tp+1

ḡk+1/2 +

t−2∑
k=tp+1

Fm(zk+1/2
m , ξk+1/2

m )

∥∥∥∥∥
2

+ (1 + β0)(1 + β−1
1 )

γ2

M

M∑
m=1

E

∥∥∥∥∥− 1

M

M∑
i=1

Fi(z
t−1+1/2
i ) + Fm(zt−1+1/2

m )

∥∥∥∥∥
2

+ (1 + β−1
0 )

γ2

M

M∑
m=1

E

∥∥∥∥∥− 1

M

M∑
i=1

Fi(z
t
i) + Fm(ztm)

∥∥∥∥∥
2

+ (1 + β0)
γ2

M

M∑
m=1

E

∥∥∥∥∥ 1

M

M∑
i=1

Fi(z
t−1+1/2
i )− ḡt−1+1/2

− Fm(zt−1+1/2
m ) + Fm(zt−1+1/2

m , ξt−1+1/2
m )

∥∥∥∥∥
2

+
γ2

M

M∑
m=1

E

∥∥∥∥∥ 1

M

M∑
i=1

Fi(z
t
i)− ḡt − Fm(ztm) + Fm(ztm, ξtm)

∥∥∥∥∥
2

.

One can continue this way for all terms, setting βi =
1

α−i−1 , where α = 4H. Then for
all i = 0, . . . , (t− tp − 1)

(1 + β0)(1 + β1)(1 + β2) . . . (1− βi) =
α

α− i− 1
.

Note that t− tp ≤ 2H, hence for all i = 0, . . . , (t− tp − 1)

(1+ β0)(1 + β1)(1 + β2) . . . (1 + βi) ≤ (1 + β1)(1 + β2) . . . (1 + βt−tp−1) ≤
α

α− 2H
≤ 2.
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Additionally, 1 + β−1
i ≤ α, then (α = 4H)

E [Err(t+ 1/2)] ≤ 2αγ2

M

t−1∑
k=tp+1

M∑
m=1

E

∥∥∥∥∥− 1

M

M∑
i=1

Fi(z
k+1/2
i ) + Fm(zk+1/2

m )

∥∥∥∥∥
2

+
2αγ2

M

M∑
m=1

E

∥∥∥∥∥− 1

M

M∑
i=1

Fi(z
t
i) + Fm(ztm)

∥∥∥∥∥
2

+
2γ2

M

t−1∑
k=tp+1

M∑
m=1

E

∥∥∥∥∥ 1

M

M∑
i=1

Fi(z
k+1/2
i )− ḡk+1/2

− Fm(zk+1/2
m ) + Fm(zk+1/2

m , ξk+1/2
m )

∥∥∥∥∥
2

+
2γ2

M

M∑
m=1

E

∥∥∥∥∥ 1

M

M∑
i=1

Fi(z
t
i)− ḡt − Fm(ztm) + Fm(ztm, ξtm)

∥∥∥∥∥
2

=
8γ2H

M

t−1∑
k=tp+1

M∑
m=1

E

∥∥∥∥∥− 1

M

M∑
i=1

Fi(z
k+1/2
i ) + Fm(zk+1/2

m )

∥∥∥∥∥
2

+
8γ2H

M

M∑
m=1

E

∥∥∥∥∥− 1

M

M∑
i=1

Fi(z
t
i) + Fm(ztm)

∥∥∥∥∥
2

+
8γ2

M

t−1∑
k=tp+1

M∑
m=1

E

∥∥∥∥∥ 1

M

M∑
i=1

Fi(z
k+1/2
i )− ḡk+1/2

− Fm(zk+1/2
m ) + Fm(zk+1/2

m , ξk+1/2
m )

∥∥∥∥∥
2

+
8γ2

M

M∑
m=1

E

∥∥∥∥∥ 1

M

M∑
i=1

Fi(z
t
i)− ḡt − Fm(ztm) + Fm(ztm, ξtm)

∥∥∥∥∥
2

.

It remains to estimate

1

M

M∑
m=1

E

∥∥∥∥∥− 1

M

M∑
i=1

Fi(z
k+1/2
i ) + Fm(zk+1/2

m )

∥∥∥∥∥
2

(A1)
≤ 3

M

M∑
m=1

E

∥∥∥∥∥− 1

M

M∑
i=1

Fi(z
k+1/2
i ) +

1

M

M∑
i=1

Fi(z̄
k+1/2)

∥∥∥∥∥
2

+
3

M

M∑
m=1

E

∥∥∥∥∥− 1

M

M∑
i=1

Fi(z̄
k+1/2) + Fm(z̄k+1/2)

∥∥∥∥∥
2

+
3

M

M∑
m=1

E

∥∥∥∥∥− Fm(z̄k+1/2) + Fm(zk+1/2
m )

∥∥∥∥∥
2
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(16)
≤ 6

M

M∑
m=1

E

∥∥∥∥∥− Fm(z̄k+1/2) + Fm(zk+1/2
m )

∥∥∥∥∥
2

+ 3D2

(4)
≤ 6L2

max

M

M∑
m=1

E∥z̄k+1/2 − zk+1/2
m ∥2 + 3D2

= 6L2
maxE [Err(k + 1/2)] + 3D2

and

1

M

M∑
m=1

E

∥∥∥∥∥ 1

M

M∑
i=1

Fi(z
k+1/2
i )− ḡk+1/2 − Fm(zk+1/2

m ) + Fm(zk+1/2
m , ξk+1/2

m )

∥∥∥∥∥
2

(A1)
≤ 2

[
E

∥∥∥∥∥ 1

M

M∑
i=1

Fi(z
k+1/2
i )− ḡk+1/2

∥∥∥∥∥
2

+
2

M

M∑
m=1

E
∥∥∥Fm(zk+1/2

m ) + Fm(zk+1/2
m , ξk+1/2

m )
∥∥∥2 ]

(7)
≤ 4σ2.

Finally, we get

E [Err(t+ 1/2)] ≤ 48γ2L2
maxH

t−1∑
k=tp+1

E [Err(k + 1/2)] + 48γ2L2
maxHE [Err(t)]

+ 32(D2H + σ2)

t−1∑
k=tp+1

γ2 + 32γ2
(
σ2 +D2

)
. (D9)

The estimate for E [Err(t+ 1/3)] is done in a similar way:

E [Err(t)] ≤ 48γ2L2
maxH

t−1∑
k=tp+1

E [Err(k + 1/2)] + 32(D2H + σ2)

t−1∑
k=tp+1

γ2. (D10)

Substituting E [Err(t)] to E [Err(t+ 1/2)], we get

E [Err(t+ 1/2)] ≤ 48γ2L2
maxH

t−1∑
k=tp+1

E [Err(k + 1/2)]

+ 48γ2L2
maxH

(
48γ2L2

maxH

t−1∑
k=tp+1

E [Err(k + 1/2)]

+ 32(D2H + σ2)

t−1∑
k=tp+1

γ2

)

+ 32(D2H + σ2)

t−1∑
k=tp+1

γ2 + 32γ2
(
σ2 +D2

)
.
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With γ ≤ 1
21HLmax

E [Err(t+ 1/2)] ≤ 1

8H

t−1∑
k=tp+1

E [Err(k + 1/2)] + 72(D2H + σ2)γ2(t− tp − 1).

Let us run the recursion:

E [Err(t+ 1/2)] ≤ 1

8H

(
1 +

1

8H

) t−2∑
k=tp+1

E [Err(k + 1/2)]

+
1

8H
· 72(D2H + σ2)γ2(t− tp − 2)γ2(t− tp − 1)

≤ 72(D2H + σ2)γ2
t−1∑

k=tp+1

(
1 +

1

8H

)t−1−j

.

Then one can note that
(
1 + 1

8H

)t−1−j ≤
(
1 + 1

2H

)2H ≤ exp(1) ≤ 3 and then

E [Err(t+ 1/2)] ≤ 216(D2H + σ2)

t−1∑
k=tp+1

γ2 ≤ 216(D2H + σ2)Hγ2.

□

Note that in the general case E [Err(t+ 1/3)] may be less than E [Err(t)], but
since the recurrent (D9) is stronger than (D10), we assume for the simplicity that
E [Err(k + 1/3)] ≥ E [Err(k)]. Then (D7) can be rewritten as

E
[
∥z̄t+1 − z∗∥2

]
≤
(
1− µγ

2

)
E
[
∥z̄t − z∗∥2

]
+

10γ2σ2

M

+

(
7γL2

max

µ
+ 5γ2L2

max

)
E [Err(t+ 1/2)]

≤
(
1− µγ

2

)
E
[
∥z̄t − z∗∥2

]
+

10γ2σ2

M

+

(
7γL2

max

µ
+ 5γ2L2

max

)(
216(D2H + σ2)Hγ2

)
.

Running the recursion, we obtain:

E
[
∥z̄T − z∗∥2

]
= O

((
1− µγ

2

)T
∥z0 − z∗∥2 + γσ2

µM
+

γ2(D2H + σ2)HL2
max

µ2

)
,

or

E
[
∥z̄T − z∗∥2

]
= O

(
exp

(
−µγT

2

)
∥z0 − z∗∥2 + γσ2

µM
+

γ2(D2H + σ2)HL2
max

µ2

)
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Finally, we need tuning of γ = min
{

1
21HLmax

; 2 ln(max{2,µ∥z0−z∗∥2TM/σ2})
µT

}
to get

Õ
(
exp

(
− µT

42HLmax

)
∥z0 − z∗∥2 + σ2

µ2MT
+

(D2H + σ2)HL2
max

µ4T 2

)
.

□

D.2. Non-convex-non-concave problems

Theorem D.6 (Theorem 5.1). Let {ztm}t≥0 denote the iterates of Algorithm 3 for
solving the problem (1). Let Assumptions 1(l), 2(nc), 3 and 5 be satisfied. Also let
H = maxp |kp+1 − kp| is a maximum distance between moments of communication
(kp ∈ I) and ∥z̄t∥ ≤ Ω (for all t). Then if γ ≤ 1

4Lmax
, we have the following estimate:

E

[
1

T

T−1∑
t=0

∥F (z̄t)∥2
]
= O

(
L2
max∥z̄0 − z∗∥2

T
+

(LmaxΩ(D
2H + σ2)H)2/3

T 1/3

+
σ2

M
+ LmaxΩ

√
(D2H + σ2)H

)
.

Proof: Most of the necessary estimates have already been made in the previous
subsection. In particular, Lemmas D.4 and D.5 are valid for us. But Lemma D.3 needs
modification:

Lemma D.7. The following estimate is valid:

−2γE
[
⟨ḡt+1/2, z̄t+1/2 − z∗⟩

]
≤ 2γLmax

√
E
[
∥z̄t+1/2 − z∗∥2

]√
E [Err(t+ 1/2)]

+ γLmaxE
[
∥z̄t+1/2 − z̄t∥2

]
+ γLE [Err(t+ 1/2)] .

(D11)

Proof: First of all, we use the independence of all random vectors ξi = (ξi1, . . . , ξ
i
m)

and select only the conditional expectation Eξt+1/2 on vector ξt+1/2 and get the following
chain of inequalities:

−2γE
[
⟨ḡt+1/2, z̄t+1/2 − z∗⟩

]
= −2γE

[〈
1

M

M∑
m=1

Eξk+1/2 [Fm(zt+1/2
m , ξt+1/2

m )], z̄t+1/2 − z∗

〉]
(7)
= −2γE

[〈
1

M

M∑
m=1

Fm(zt+1/2
m ), z̄t+1/2 − z∗

〉]

= −2γE

[〈
1

M

M∑
m=1

Fm(z̄t+1/2), z̄t+1/2 − z∗

〉]
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+ 2γE

[〈
1

M

M∑
m=1

[Fm(z̄t+1/2)− Fm(zt+1/2
m )], z̄t+1/2 − z∗

〉]
= −2γE

[〈
F (z̄t+1/2), z̄t+1/2 − z∗

〉]
+ 2γE

[〈
1

M

M∑
m=1

[Fm(z̄t+1/2)− Fm(zt+1/2
m )], z̄t+1/2 − z∗

〉]
(6)
≤ 2γE

[〈
1

M

M∑
m=1

[Fm(z̄t+1/2)− Fm(zk+1/2
m )], z̄t+1/2 − z∗

〉]

≤ 2γE

[
∥z̄t+1/2 − z∗∥ ·

∥∥∥∥∥ 1

M

M∑
m=1

Fm(z̄t+1/2)− Fm(zt+1/2
m )

∥∥∥∥∥
]

≤ 2γE

[
∥z̄t+1/2 − z∗∥ · 1

M

M∑
m=1

∥∥∥Fm(z̄t+1/2)− Fm(zt+1/2
m )

∥∥∥]
(4)
≤ 2γLmaxE

[
∥z̄t+1/2 − z∗∥ · 1

M

M∑
m=1

∥∥∥zt+1/2
m − z̄t+1/2

∥∥∥]

≤ 2γLmaxE

[
∥z̄t − z∗∥ · 1

M

M∑
m=1

∥∥∥zt+1/2
m − z̄t+1/2

∥∥∥]

+ 2γLmaxE

[
∥z̄t+1/2 − z̄t∥ · 1

M

M∑
m=1

∥∥∥zt+1/2
m − z̄t+1/2

∥∥∥]

≤ 2γLmax

√
E [∥z̄t − z∗∥2] ·

√√√√√E

( 1

M

M∑
m=1

∥∥∥zt+1/2
m − z̄t+1/2

∥∥∥)2


+ γLmaxE
[
∥z̄t+1/2 − z̄t∥2

]
+ γLmaxE

( 1

M

M∑
m=1

∥z̄t+1/2 − zt+1/2
m ∥

)2
 .

By (A1) it is easy to see that

E

( 1

M

M∑
m=1

∥z̄t+1/2 − zt+1/2
m ∥

)2
 ≤ E

[
1

M

M∑
m=1

∥z̄t+1/2 − zt+1/2
m ∥2

]
.

This completes the proof.

□

Then we have the same as (D6):

E
[
∥z̄t+1 − z∗∥2

]
≤ E

[
∥z̄t − z∗∥2

]
− E

[
∥z̄t+1/2 − z̄t∥2

]
+ 2γLmax

√
E [∥z̄t − z∗∥2]

√
E [Err(t+ 1/2)]

+ γLmaxE
[
∥z̄t+1/2 − z̄t∥2

]
+ γLmaxE [Err(t+ 1/2)]
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+ γ2
(
5L2

maxE
[
∥z̄t+1/2 − z̄t∥2

]
+

10σ2

M
+ 5L2

maxE [Err(t+ 1/2)] + 5L2
maxE [Err(t)]

)
.

Choosing γ ≤ 1
4Lmax

gives

1

2
E
[
∥z̄t+1/2 − z̄t∥2

]
≤ E

[
∥z̄t − z∗∥2

]
− E

[
∥z̄t+1 − z∗∥2

]
+ 2γLmax

√
E [∥z̄t − z∗∥2]

√
E [Err(t+ 1/2)]

+ (5γ2L2
max + γLmax)E [Err(t+ 1/2)] + 5γ2L2

maxE [Err(t)] +
10γ2σ2

M
.

Next we work with

E
[
∥z̄t+1/2 − z̄t∥2

]
= γ2E

∥∥∥∥∥ 1

M

M∑
m=1

Fm(ztm, ξtm)− Fm(ztm) + Fm(ztm)− Fm(z̄t) + Fm(z̄t)

∥∥∥∥∥
2


≥ γ2

2
E
∥∥F (z̄t)

∥∥2 − γ2E

∥∥∥∥∥ 1

M

M∑
m=1

Fm(ztm, ξtm)− Fm(ztm) + Fm(ztm)− Fm(z̄t)

∥∥∥∥∥
2


≥ γ2

2
E
∥∥F (z̄t)

∥∥2 − 2γ2E

∥∥∥∥∥ 1

M

M∑
m=1

Fm(ztm, ξtm)− Fm(ztm)

∥∥∥∥∥
2


− 2γ2E

∥∥∥∥∥ 1

M

M∑
m=1

Fm(ztm)− Fm(z̄t)

∥∥∥∥∥
2


(4)
≥ γ2

2
E
∥∥F (z̄t)

∥∥2 − 2γ2σ2

M
− 2γ2L2

max

M

M∑
m=1

E
[∥∥ztm − z̄t

∥∥2]
=

γ2

2
E
∥∥F (z̄t)

∥∥2 − 2γ2σ2

M
− 2γ2L2

maxE [Err(t)] .

Connecting with previous gives

γ2

4
E
[
∥F (z̄t)∥2

]
≤ E

[
∥z̄t − z∗∥2

]
− E

[
∥z̄t+1 − z∗∥2

]
+ 2γLmax

√
E [∥z̄t − z∗∥2]

√
E [Err(t+ 1/2)]

+ (γLmax + 5γ2L2
max)E [Err(t+ 1/2)] + 6γ2L2

maxE [Err(t)] +
11γ2σ2

M
.

With result of Lemma D.5, we get

γ2

4
E
[
∥F (z̄t)∥2

]
≤ E

[
∥z̄t − z∗∥2

]
− E

[
∥z̄t+1 − z∗∥2

]
+ 2γLmax

√
E [∥z̄t − z∗∥2]

√
216(D2H + σ2)Hγ2

+
11γ2σ2

M
+ 216(γLmax + 11γ2L2

max)(D
2H + σ2)Hγ2.
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Summing over all t from 0 to T − 1 and averaging gives

E

[
1

T

T−1∑
t=0

∥F (z̄t)∥2
]
≤ 4∥z0 − z∗∥2

γ2T
+

44σ2

M

+ 1000(γLmax + 11γ2L2
max)(D

2H + σ2)H

+
120Lmax

√
(D2H + σ2)H

T

T−1∑
t=0

√
E [∥z̄t − z∗∥2]. (D12)

Under the additional assumption that ∥z∗∥ ≤ Ω and ∥z̄t∥ ≤ Ω, from (D12), we obtain

E

[
1

T

T−1∑
t=0

∥F (z̄t)∥2
]
= O

(
∥z0 − z∗∥2

γ2T
+ (γLmax + γ2L2

max)(D
2H + σ2)H

+
σ2

M
+ LmaxΩ

√
(D2H + σ2)H

)
.

With γ = min

{
1

4Lmax
;
(

∥z̄0−z∗∥2

TLmax(D2H+σ2)H

)1/3}
, we have

E

[
1

T

T−1∑
t=0

∥F (z̄t)∥2
]
= O

(
L2
max∥z0 − z∗∥2

T
+

(LmaxΩ(D
2H + σ2)H)2/3

T 1/3

+
σ2

M
+ LmaxΩ

√
(D2H + σ2)H

)
.

□

Appendix E. Experiments

We implement all methods in Python 3.8 using PyTorch [47] and Ray [39] and run
on a machine with 24 AMD EPYC 7552 @ 2.20GHz processors, 2 GPUs NVIDIA
A100-PCIE with 40536 Mb of memory each (Cuda 11.3).

E.1. Federated GAN on MNIST

We continue with further experiments on Generative Adversarial Networks. But first, a
short introduction. A simple GAN setup consists of two parts – the discriminator D,
which aims to distinguish real samples x from adversarial ones by giving a probability
that the sample is real, and the generator G, which tries to fool the discriminator by
generating realistic samples from random noise z. Following [17], the value function
V (G,D) used in such a min-max game can be expressed as

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]. (E1)

As mentioned in main part, we use Deep Convolutional GAN [49]. As optimizers we
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use Algorithm 3 and a combination of Adam with Algorithm 3.
We make up to 3 or 4 replicas and train them for 200 epochs. In these experiments

we try to vary the synchronisation frequencies for the generator and the discriminator
separately. We split the data as follows: one half of the data set is divided equally
between the replicas, and from the other half we take only those digits that correspond
to the order number of the replica.

Usually, to get better performance, researchers vary the number of training steps
done for the generator and the discriminator, pretrain one of the parts or use specific
optimizer. We are more interested in numerical convergence, that is why we do not do
such fine-tuning.

The results of the experiment for Algorithm 3 and Local Adam are reflected in
Figures E1, E4, E2, E3, E5 and E6. Here Hg, Hd – communication frequencies for
generator and discriminator.

Figure E1. Digits generated by global generator during training. 4 replicas, Local SGD (left) and 4 replicas,
Local Adam (right) Hg = Hd = 20.
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Figure E2. Generator and Discriminator Empirical Loss on MNIST during training, Local SGD, 3 replicas,
Hg = 10, Hd = 20.

The experiment shows that we have good global images despite the fact that the
data is heterogeneous. The global (synced) discriminator converges to random guessing,
which is indicated by a binary classification accuracy equal to 0.5, see Figures E4, E6.
Based on [17], this behaviour is expected.
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Figure E3. Generator and Discriminator Empirical Loss on MNIST during training, Local SGD, 3 replicas,
Hg = 20, Hd = 10.
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Figure E4. Accuracy on MNIST, Local SGD, 3 and 4 replicas, Hg = Hd = 20.
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Figure E5. Generator and Discriminator Empirical Loss on MNIST during training, Local Adam, 4 replicas,
Hg = 20, Hd = 10.
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Figure E6. Accuracy on MNIST, Local Adam, 4 replicas, Hg = 20, Hd = 10.
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