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Abstract

In this paper we consider resource allocation problem stated as a convex mini-
mization problem with linear constraints. To solve this problem, we use gradient and
accelerated gradient descent applied to the dual problem and prove the convergence
rate both for the primal iterates and the dual iterates. We obtain faster convergence
rates than the ones known in the literature. We also provide economic interpretation
for these two methods. This means that iterations of the algorithms naturally corre-
spond to the process of price and production adjustment in order to obtain the desired
production volume in the economy. Overall, we show how these actions of the economic
agents lead the whole system to the equilibrium.

1 Introduction
In this paper we consider a resource allocation problem in an economy consisting of dis-
tributed set of producers which are managed by a centralized price adjustment mechanism.
Our approach is based on the state-of-the-art convex optimization methods, i.e. we consider
the resource allocation as a convex optimization problem, solve it by first-order methods,
provide convergence analysis, and give an economic interpretation of the steps of these meth-
ods.

The problem of optimal resource allocation is to maximize producers’ aggregated profits
by sharing available resources. Popularized and advocated mainly in the monograph [1],
the mechanisms of decentralized resource allocation gained a lot of attention in economics
and operations research since then, see e.g. [3, 6, 10] and references therein. Each producer
seeks to minimize its own costs and, in total, all the producers need to produce a certain
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amount of products. This problem can be cast as an optimization problem with the objective
corresponding to the aggregated cost function of all producers and constraints corresponding
to the condition for the necessary volume of production. We assume that constraints are
linear and separable. In this optimization problem, primal variables are production bundles
and dual variables represent prices of resources.

Solution of this optimization problem depends on the way, how agents in this economy
can exchange information with each other. One of the mechanisms is called Walrasian in
the literature [2]. This mechanism is an iterative process. At each iteration, some agents
formulate a supply for others. Further, the second agents, based on the supply, form the
optimal demand. Then, the first agents again form the optimal supply based on demand
and so on until the system comes to Walrasian equilibrium. In the economic literature,
this iterative process is called the Walrasian tâtonnement. For simplicity, let us consider an
economy with only one good. We assume that there are some small producers and one big
consumer (Center). Each producer has its own cost function and this functions are unknown
to the Center. The Center sets a price for the good and producers provide the produced
quantity for this price. The goal of the Center is to iteratively find such a price that all the
factories produce the certain amount of good in total. This will be a Walrasian equilibrium
in the system. One example of such situation can be a centrally governed economic like in
USSR. The price set by the Center plays the role of control parameter of the system and
the goal is to provide production determined by plan. Another example could be farmers as
producers and some large retail company as the Center. Retail company knows the demand
for the good and sets the price so that the produced amount is equal to the demand. In the
literature, an iterative numerical algorithm, which corresponds to Walrasian mechanism is
based either on the dichotomy method (for one-product economy) [9] or the ellipsoid method
(for many-product economy) [6]. These algorithms are effective in the case when the amount
of producers are small.

In this paper, following [12], we consider a different price adjustment mechanism. In
particular, we consider the resource allocation problem without centralized price control,
each producer setting up its own price for selling products to the Center. The Center knows
the amount which needs to be produced by all the producers in total, selects the most
advantageous offers (i.e. selects the offers with the best price) and tries to purchase the
product in the required volume. Producers adjust the volume of product and the prices,
based on the volume bought from them by the Center and the demand from the Center
for this particular factory. In their paper [12], the authors use dual subgradient method
with averaging as a numerical algorithm for this problem. The main advantage of their
algorithm is that they provide convergence rate for the whole primal-dual sequence unlike
the optimization literature which gives convergence rate for the running average. Their

algorithm has optimal for convex nonsmooth optimization convergence rate O
(

1√
t

)
, t being

the iteration counter. In contrast to [12], in this paper, under an additional assumption of
strongly convexity of the primal objective, we consider the dual optimization problem as
a composite minimization problem, meaning that the objective in the dual problem is a
sum of two functions a smooth and a simple non-smooth. We use gradient descent to
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obtain convergence rate O
(

1

t

)
and accelerated gradient descent to obtain convergence rate

O

(
1

t2

)
.

The paper is organized as follows. In Section 2 we consider the primal problem and
describe its economical interpretation. In Section 3 we describe the method of subgradient
projection for the resource allocation problem and give the interpretation for the step. In
Section 4 we use composite gradient method for resource allocation problem and obtain
estimation for the convergence rate. In Section 5 we consider accelerated composite gradient
descent. And in Section 6 we show some experiments, that verify our theory.

2 Problem statement
In this section, we provide the statement of the resource allocation problem. For simplicity,
we start with a one-product economy. The case of many products will be considered in
Appendix. We assume that there is a Center and n producers which produce one product.
Each producer has its own cost function fk(xk), k = 1, . . . , n representing the total cost
of production of a volume xk ∈ R – the volume of product produced by the producer k
in one year. Since the producers are independent, the cost functions of the producers are
unknown to the Center, and each producer knows only its own cost function. Each producer
is also entitled to set its own price for product, but the price does not affect the quality
of the product, i.e. all producers produce the same product, only at different prices. The
Center buys product from the producers and chooses its strategy in such a way that the
total production volume per year by all producers is not less than C. To do so, the Center
needs to find yk - the volume of product which is purchased from the producer k. Then, each
producer produces at least the volume yk of the product, and the goal of the system is to
minimize the total cost of production. Thus, we consider the following resource allocation
problem

(P ) min
n∑

k=1

yk>C, xk>yk;

yk>0, xk>0, k=1, ..., n,

f(x) =
n∑
k=1

fk(xk),

where cost functions fk(xk) , k = 1, . . . , n are increasing and µ-strongly convex, i.e.
f ′′k (x) > µ, ∀x > 0, k = 1, . . . , n.

Remark 1. We point that, from the optimization point of view the variables yk, k = 1, ..., n
are not necessary. We introduce them in order to the constructed dual problem and primal-
dual method for solving the primal-dual pair of problems has an economic interpretation.
The reformulation (P) is one of our contributions.

Remark 2. Assumption of strong convexity of functions fk(xk), k = 1, . . . , n holds, for
example, when these functions are twice continuously differentiable and have positive second
derivative. Economically this means that the production cost grows faster than the volume
of the production. In other words, the production cost of a new unit of volume grows as
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the volume of production grows. For example, this happens for Agriculture. If the producer
grows wheat, then the more he wants to produce from one hectare, the more he should invest
in fertilizers, chemicals from pests, or even genetic technology. For a factory the producer
has to invest more and more in more advanced facilities such as robots, production machines,
etc.

Introducing dual variables pk, k = 1, ..., n and using the duality theory, we obtain

min
n∑

k=1
yk>C, xk>yk, yk>0;

xk>0, k=1, ..., n

f(x) = min
n∑

k=1
yk>C yk>0;

xk>0, k=1, ..., n

{
f(x) +

n∑
k=1

max
pk>0

pk(yk − xk)
}

= − min
p1, ..., pn>0

{ n∑
k=1

max
xk>0

(pkxk − fk(xk))− min
n∑

k=1
yk>C; yk>0

n∑
k=1

pkyk

}
[y∗k∗ = C, where k∗ = arg min

k
pk and y∗k = 0 for k 6= k∗]

= − min
p1, ..., pn>0

{ n∑
k=1

max
xk>0

(pkxk − fk(xk))− C min
k=1, ..., n

pk

}
= − min

p1, ..., pn>0

{ n∑
k=1

{
pkxk(pk)− fk(xk(pk))

}
− C min

k=1, ..., n
pk

}
,

where
xk(pk) = argmax

xk>0

{
pkxk − fk(xk)

}
, k = 1, 2, . . . , n. (1)

Then the dual problem (up to a sign) has the following form

(D) ϕ(p1, . . . , pn) =
n∑
k=1

{
pkxk(pk)− fk(xk(pk))

}
− C min

k=1, ..., n
pk → min

p1, ..., pn>0.

Note that, the Slater’s constraint qualification condition holds for the primal problem
(P ). Thus, the strong duality holds and both the primal problem (P ) and the dual problem
(D) have solutions. Throughout the paper, we solve the dual problem by different first-order
methods, interpret the steps of these methods and show, how the primal variables xk, yk,
k = 1, ..., n can be reconstructed. We point that primal-dual gradient methods [4, 5, 8] are
not applicable here since the dual problem (D) is a composite optimization problem.

3 Subgradient descent
For the sake of completeness, in this section, we consider dual problem (D) as a non-smooth
optimization problem and apply subgradient method to solve it with the rate O(1/

√
t). We

also provide an economic interpretation of the numerical procedure based on subgradient
method. The material of this section is not new and mostly follows [9], but we include it to
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be able to compare, in the next sections, its convergence rate and interpretation with faster
approaches based on composite gradient descent.

To solve the problem (D), we use the projected subgradient method with the step given
by

pt+1 =
[
pt − hg(pt)

]
+
, (2)

where h is the stepsize, which we determine later. The subgradient of the objective function
in the dual problem (D) can be written in the following form

g(p1, . . . , pn) = x(p)− Cλ(p), (3)

where x(p) = (x1(p1), . . . , xn(pn))>, λ(p) = (λ1(p1), . . . , λn(pn))> and
n∑
k=1

λk(pk) = 1, λk(pk) >

0 if k ∈ Arg min
j=1, ..., n

pj and λk(pk) = 0, if k /∈ Arg min
j=1, ..., n

pj. Note that here and below

g(p1, . . . , pn) ∈ ∂ϕ(p1, . . . , pn) is an arbitrary subgradient, i.e. an arbitrary element of
the convex compact set — subdifferential.

General projected subgradient method

Input: h – stepsize, p0 – starting point.

1. Set ptk, k = 1, . . . , n and calculate

xk(p
t
k) = argmax

xk>0

{
ptkxk − fk(xk)

}
, k = 1, 2, . . . , n.

2. Form a vector λ(pt) as λt = (λt1, . . . , λ
t
n)>, where

n∑
k=1

λtk = 1 and if

k ∈ Arg min
j=1, ..., n

ptj, then λtk > 0, otherwise, if k /∈ Arg min
j=1, ..., n

ptj, then λtk = 0

3. Do the step
pt+1 =

(
pt − hg(pt1, . . . , p

t
n)
)

+
,

where
g(pt1, . . . , p

t
n) = x(pt)− Cλ(pt).

Next, we discuss the economic interpretation of the steps of the subgradient method.
First of all, Cλk(pt) can be seen as the volume the Center intends to purchase from the k-th
producer on t iteration. Indeed, the dual variable p corresponds to the vector of prices set
by the producers and non-zero components of the vector λ can correspond only to those
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producers, who have minimal price. Since
∑n

k=1: k∈Arg min
j=1, ..., n

pj
λtk = 1 and all λtk are non-

negative, λtk for k ∈ Arg min
j=1, ..., n

pj can be seen as the relative proportions of purchase form

the producers having minimal price. Thus, Cλk(pt) can be seen as the volume the Center
intends to purchase from the k-th producer on t iteration.

Further, each k-th component of the subgradient (3) can be interpreted as the difference
between the production xk(pk) of the k-th factory and the volume Cλk of the Center’s
demand for this factory. For some factories, for which Cλtk is positive, it can happen that
xk(pk)−Cλtk < 0. This is a signal for the k-th producer that the demand exceeds the supply
and the k-th price can be increased together with the increase of the produced volume.

Finally, the subgradient step is the production adjustment steps for each producer, i.e.
each producer counts how much its production differs from the desired volume of the Center’s
purchase from this producer this year. If the Center does not want to buy anything from the
producer or buys less than it produced, then the producer lowers the price. If the Center is
ready to buy more than the producer produced, the producer raises the price. In the case
of equality, the producer does not change anything.

As a result the policy for the Center and producers is as follows.

Subgradient method for the resource allocation

Input: ε > 0 – accuracy, p0 – starting point.

1. Set the stepsize h = ε
nC2 .

2. Given the price vector pt for the current year, producers calculate the
optimal production plan for these prices as

xk(p
t
k) = argmax

xk>0

{
ptkxk − fk(xk)

}
, k = 1, 2, . . . , n.

and communicates this information to the Center.

3. The Center determines the shares of purchases for each producer, i.e.

forms a vector λ(pt) as λt = (λt1, . . . , λ
t
n)>, where

n∑
k=1

λtk = 1, λtk > 0 if

k ∈ Arg min
j=1, ..., n

ptj and λtk = 0, if k /∈ Arg min
j=1, ..., n

ptj and sends this vector to

all factories.

4. Each factory adjusts the price for the next year as follows

pt+1 =
(
pt − h(x(pt)− Cλ(pt))

)
+
.

(4)
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To state the convergence rate result, we need introduce an upper bound for the optimal
value of the prices.

Lemma 1. Let the p∗ be a solution to the dual problem (D). Then

‖p∗‖2 6
√
npmax. (5)

where

pmax :=
n

C

(
n∑
k=1

fk

(
2C

n

)
−

n∑
k=1

fk(0)

)
. (6)

The proof of this lemma is deferred to the Appendix.
Then, we can formulate the following theorem about convergence rate

Theorem 1 ( [9]). Let Algorithm (4) be run with starting point p0 satisfying 0 6 p0
k 6

pmax, k = 1, . . . , n for

N =

⌈
164(Cnpmax)

2

ε2

⌉
steps. Then

f(xN)− f(x∗) 6 ε, C −
n∑
k=1

xNk 6
ε

3pmax
, (7)

where xN =
1

N

N−1∑
t=0

x(pt)

Note that the number of iterations N to achieve accuracy ε is very large. To improve
the number of iterations, in the following sections we consider the methods based on the
composite optimization approach.

4 Composite gradient method for the resource allocation
problem

In this section we consider a non-accelerated composite gradient method to solve the dual
problem (D), including its interpretation and convergence rate estimate. The problem (D)
can be rewritten as

ϕ(p1, . . . , pn) = ψ(p1, . . . , pn) + g(p1, . . . , pn),

where

ψ(p1, . . . , pn) =
n∑
k=1

{
pkxk(pk)− fk(xk(pk))

}
= 〈p, x(p)〉 − f(x(p)) (8)

is convex function. Gradient of this function

∇ψ(p) = x(p), (9)
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satisfies Lipschitz condition (see e.g. [11])

‖∇ψ(p1)−∇ψ(p2)‖2 6 Lψ‖p1 − p2‖2, ∀ p1, p2 > 0, (10)

where Lψ =
n

µ
(see e.g. [9]) and

g(p1, . . . , pn) = −C min
k=1, ..., n

pk

is convex non smooth function. The idea is to use first-order information about ψ and use
the function g as a whole, see the main projected gradient step (11). This allows the method
to work in accordance with the smoothness properties of ψ, i.e. be faster since ψ is smooth.
The price is that the step (11) has to be simple enough. The next lemma shows that this is
indeed the case and the solution can be found explicitly.

General composite projected gradient method

Input: N > 0 – number of steps, Lψ – Lipschitz constant of gradient ψ, p0 –
starting point.

1. Find
xk(p

t
k) = argmax

xk>0

{
ptkxk − fk(xk)

}
, k = 1, 2, . . . , n.

2. Do the step

pt+1 = argmin
p>0

{〈
∇ψ(pt), p− pt

〉
− C min

k=1, ..., n
pk +

Lψ
2
‖p− pt‖2

2

}
. (11)

Lemma 2. Let p̃t+1 = pt − 1

Lψ
x(pt). Then pt+1 in (11) is defined as follows

pt+1
k = max

(
pt+1
center, p̃

t+1
k

)
, k = 1, . . . , n,

where if
n∑
k=1

(
−p̃t+1

k

)
+
>

C

Lψ
than pt+1

center = 0, else pt+1
center > 0 is a solution of equation

n∑
k=1

(
pt+1
center − p̃t+1

k

)
+

=
C

Lψ
.

The proof of Lemma 2 can be found in Appendix. Note that the step (11) can be rewritten
as

pt+1 =

[
pt − 1

Lψ

(
x(pt)− Cλ(pt+1)

)]
+

, (12)
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where λ(pt+1) is such that
n∑
k=1

λk(p
t+1
k ) = 1, λk(p

t+1
k ) > 0 if k ∈ Arg min

j=1, ..., n
pt+1
j and λk(pt+1

k ) =

0, if k /∈ Arg min
j=1, ..., n

pt+1
j . This equality looks very similar to equality (2).

4.1 Composite gradient method for the resource allocation problem

In this subsection, we apply general projected gradient method to the resource allocation
problem and give its interpretation, i.e. describe the strategy of the Center and producers,
and state the convergence rate theorem for this method. First of all, from (10), since∇ψ(p) =
x(p), the constant Lψ determines the relation between prices p and production x(p), i.e. says,
what is the maximum change in the production if the price changes. From Lemma 2, each
year t the Center, knowing the prices and production of each producer, forms a prediction

p̃t+1
k = ptk−

1

Lψ
xk(p

t
k) for the lowest possible producers’ prices vector for the next year. After

that, the goal of the Center is to set its purchase price pt+1
center to satisfy the total demand

C. To explain, how it is done, let us look at (12), which looks very similar to (2). The
key difference is that in (12) λ depends on the unknown price vector pt+1

k , resulting in the
implicit definition of this price vector as a solution to nonlinear equation. But, Cλ(pt+1) is
still an estimate of the purchase from each producer for the next year and the Center chooses
to buy only from the producers having the lowest price. By Lemma 2, the solution of (12)
can be written as

pt+1 =

[
p̃t+1 +

C

Lψ
λ(pt+1)

]
+

,

where
λk(p

t+1
k ) =

Lψ
C

(
pt+1
center − p̃t+1

k

)
+
.

Thus, the estimate for the purchase from the k-th producer is Lψ
(
pt+1
center − p̃t+1

k

)
+
, i.e. if

the predicted price p̃t+1
k is higher than pt+1

center, there will be no purchase from this producer.
Again, by Lemma 2, if for the smallest possible price pt+1

center = 0, the total purchased amount

Lψ
n∑
k=1

(
−p̃t+1

k

)
+
is greater than C, the Center sets its price pt+1

center = 0. Otherwise, it deter-

mines such price pt+1
center that the total estimated purchase Lψ

n∑
k=1

(
pt+1
center − p̃t+1

k

)
+
is exactly

C. Having defined pt+1
center, the Center informs the producers about this price.

From the perspective of the producer, similarly to section 3, each producer k, knowing the
price ptk for the current year t, determines the optimal production plan xk(ptk) for this price
and reports the price and production to the Center. After receiving pt+1

center from the center,
each producer adjusts its price pt+1

k for the next year as pt+1
k = max

(
pt+1
center, p̃

t+1
k

)
. This

means that the lowest possible price p̃t+1
k is compared to the Center’s price. If pt+1

center > p̃t+1
k ,

the producer can increase the price up to pt+1
center and the Center will buy. On the other hand,

if pt+1
center < p̃t+1

k , there is no sense for the producer to sell at the price pt+1
center and have a loss.

We summarize the strategies of the Center and producers in Algorithm (13).

9



Note that at equilibrium the Center will purchase from all producers and its price will
be constant at all iterations. That is, all producers will be able to set a minimum price for
the next year so that the Center buys from them the optimal volume.

Composite gradient method for the resource allocation

Input: N > 0 – number of steps, Lψ – Lipschitz constant of gradient ψ,
p0 – starting point.

1. Knowing the prices ptk, k = 1, . . . , n for the current year t, produc-
ers calculate the optimal plan for the production according these
prices

xk(p
t
k) = argmax

xk>0

{
ptkxk − fk(xk)

}
, k = 1, 2, . . . , n.

2. The Center forms a prediction for the lowest possible producers’
prices vector for the next year

p̃t+1
k = ptk −

1

Lψ
xk(p

t
k), k = 1, 2, . . . , n.

3. The Center determines the price pt+1
center at which it will purchase

product for the next year t+ 1 and sends this price to all factories.

• If
n∑
k=1

(
−p̃t+1

k

)
+
>

C

Lψ
then pt+1

center = 0;

• Else pt+1
center > 0 and solves equation

n∑
k=1

(
pt+1
center − p̃t+1

k

)
+

=
C

Lψ

4. Each producer adjusts the price for the next year as follows

pt+1
k = max

(
pt+1
center, p̃

t+1
k

)
, k = 1, . . . , n.

(13)

Theorem 2. Let Algorithm (13) be run for N steps with starting point p0 satisfying 0 6 p0
k 6

10



pmax, k = 1, . . . , n, where pmax is given in (6). Then

f(xN)− f(x∗) 6 f(xN) + ϕ(p∗) 6 ϕ(pN) + f(xN) 6
82p2

maxn
2

Nµ
,[

C −
n∑
k=1

xNk

]
+

6
82pmaxn

2

3Nµ
,

where pN =
1

N

N∑
t=1

pt and xN =
1

N

N−1∑
t=0

x(pt).

The proof of this theorem is deferred to the Appendix.
Let us make a remark on the complexity of this procedure. Assume that we want to solve

problem (P ) with accuracy ε in the following sense

f(xN)− f(x∗) 6 ε, C −
n∑
k=1

xNk 6
ε

3pmax
. (14)

To solve this problem, we consider the dual problem (D), and solve it by the composite
gradient method starting with p0 satisfying 0 6 p0

k 6 pmax, k = 1, . . . , n, where pmax is
given in (6).

Theorem 2 states that Algorithm will find the solution no later than after N =
82p2

maxn
2

εµ
iterations.

5 Accelerated composite gradient method for the resource
allocation problem

In this section we use accelerated composite gradient method to solve the resource allocation
problem. Accelerated algorithm allows to improve the convergence rate in comparison to
previous section.

We can rewrite 17 step as follows

yt+1 = argmin
p>0

{
αt+1

(〈
∇ψ(pt+1), p− pt+1

〉
− C min

k=1, ..., n
pk

)
+

1

2
‖p− yt‖2

2

}
= argmin

p>0

{ 〈
x(pt+1), p− pt+1

〉
+ C max

k=1, ..., n
(−pk) +

1

2αt+1

‖p− yt‖2
2

}
= argmin

p>0

{
max

k=1, ..., n
(−pk) +

1

2Cαt+1

‖p−
(
yt − αt+1x(pt+1)

)
‖2

2

}
.

Define ỹt+1 = yt − αt+1x(pt+1) and then, using Lemma 2, we obtain the following solution:

• If
n∑
k=1

(
−ỹt+1

k

)
+
> Cαt+1 then yt+1

center = 0 and

yt+1
k = max

(
0, ỹt+1

k

)
, k = 1, . . . , n.

11



• Else yt+1
center > 0 is determined from

n∑
k=1

(
yt+1
center − ỹt+1

k

)
+

= Cαt+1

and
yt+1
k = max

(
yt+1
center, ỹ

t+1
k

)
, k = 1, . . . , n.

Accelerated composite gradient descent scheme

Input: N > 0 – number of steps, Lψ – Lipschitz constant of gradient ψ, p0, y0, w0

– starting points, α0 = A0 = 0.

1. Find αt+1 as the largest root of the equation

At+1 := At + αt+1 = Lψα
2
t+1. (15)

2. Calculate
pt+1 =

αt+1y
t + Atw

t

At+1

. (16)

3. Calculate

yt+1 = argmin
p>0

{
αt+1

(〈
∇ψ(pt+1), p− pt+1

〉
+ g(p)

)
+

1

2
‖p− yt‖2

2

}
. (17)

4. Calculate
wt+1 =

αt+1y
t+1 + Atw

t

At+1

. (18)

5. Set

xt+1 =
1

At+1

t+1∑
i=0

αix(pi) =
αt+1x(pt+1) + Atx

t

At+1

.

We apply this general method to the resource allocation problem. Let us make some
remarks on the interpretation.

Note that in the non-accelerated method we have fixed Lψ, which we interpreted as the
expectation of the Center on how the amount of production (of any producer) changes, if
the purchase price is changed by one. This was the upper bound for this value. In the
accelerated method this role is played by αt, which is adjusted on each iteration and allows
to have faster convergence. Vector wt+1 can be interpreted as an average of the historical
price data yt, t ≥ 0. As we prove in next theorem, wt+1 is a good approximation for the
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solution of the dual problem. This price can give a hint to each producer on the value of
the predicted price for the next period. Thus, this average historical price is combined with
the prediction price yt from the previous period to form pt+1. Then the optimal production
plan is calculated and, similarly to the non-accelerated method, producers predict the price
for next year ỹt+1 and communicate it to the Center. After getting from the Center yt+1

center,
each producer adjust the prediction price for the next year.

Theorem 3. Let Algorithm (20) be run for N steps with starting points p0 = y0 = w0

satisfying 0 6 p0
k 6 pmax, k = 1, . . . , n, where pmax is given in (6). Then

f(xN)− f(x∗) 6 f(xN) + ϕ(w∗) 6 ϕ(wN) + f(xN) 6
148n2p2

max

(N + 1)2µ
,[

C −
n∑
k=1

xNk

]
+

6
148n2Rpmax
5(N + 1)2µ

,

where xN =
1

AN

N∑
t=0

αtx(pt)

The proof of this theorem mostly follows the steps of the Theorem 2 in the previous
section, but we give all steps for the reader’s convenience in Appendix.

6 Numerical experiments
In this section we compare and verify the algorithms presented in the paper. All the algo-
rithms were implemented in the programming language Python.

Firstly, we compare composite projected gradient method and accelerated composite
gradient descent on a simple problem. We assume that there are 100 local producers of some
long-living product, for example, wood. All this producers sell it to pulp and paper company
(Center). Center needs to buy 10000 tons of wood. Each local producer has the following
cost function:

fk(xk) = αkxk +
µ

2
x2
k, k = 1, . . . , 100, (19)

where αk is the different local costs of production and transportation for each producer, µ
is the costs of production that depends on technology and risks, that’s why the same for
producers. We consider this problem with random αk ∈ N [100; 400], µ = 2. Next in graphics
the left side will be experiments for one start with random α and the right side will be the
mean of 20 random starts. The practical convergence rate for the objective value of the dual
problem (D) is shown in log scale in fig. 1. The convergence rate for the constraint feasibility
is shown in log scale in fig. 2. The convergence rate for the value of the duality gap is shown
in log scale in fig. 3.

13



Accelerated composite gradient descent for the resource allocation

Input: N > 0 – number of steps, Lψ Lipschitz constant of gradient ψ, p0 = y0 = w0

– starting point.

1. In the current year t producers find αt+1 as the largest root of the equation

At+1 := At + αt+1 = Lψα
2
t+1.

2. All producers calculate the average price pt+1 as the following convex combi-
nation

pt+1
k =

αt+1y
t
k + Atw

t
k

At+1

, k = 1, . . . , n

and calculate the optimal plan for the production according to this price as

xk(p
t+1
k ) = argmax

xk>0

{
pt+1
k xk − fk(xk)

}
, k = 1, 2, . . . , n.

3. Each producer predicts the price for the next year t+ 1 as

ỹt+1
k = ytk − αt+1xk(p

t+1), k = 1, . . . , n

and sends this information to the Center.

4. The Center determines the prediction price yt+1
center at which it will purchase

product for the next year t+ 1 as

• If
n∑
k=1

(
−ỹt+1

k

)
+
> Cαt+1 then yt+1

center = 0

• Else yt+1
center > 0 and is determined from

n∑
k=1

(
yt+1
center − ỹt+1

k

)
+

= Cαt+1,

and sends this price to all producers.

5. Each producer adjusts the prediction price for the next year as

yt+1
k = max

(
yt+1
center, ỹ

t+1
k

)
, k = 1, . . . , n.

and calculates the historical price for for the next year

wt+1
k =

αt+1y
t+1
k + Atw

t
k

At+1

, k = 1, . . . , n.

(20)
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Figure 1: Projected gradient vs Accelerated gradient descent, 100 factories, cost func-
tions (19), Dual value in log scale, 1 run and mean of 20 run

Figure 2: Projected gradient vs Accelerated gradient descent, 100 factories, cost func-
tions (19), Inexactness of constraints in log scale, 1 run and mean of 20 run

Figure 3: Projected gradient vs Accelerated gradient descent, 100 factories, cost func-
tions (19), Value of duality gap in log scale, 1 run and mean of 20 run

From the plots we can see that both methods work well. Projected gradient is monotone
and converges in accordance with theoretical convergence rates. Accelerated gradient descent
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is non-monotone, faster than projected gradient and converges in accordance with theoretical
convergence rates.

Secondly, we consider, how the results depend on the strong convexity parameter µ. For
that, we consider functions (19) with α ∈ N [100; 400] and µ ∈ {1, 5, 25, 125}. We make 20
runs with random α and show the mean of this runs. Next in graphics the left side will be
experiments for Projected gradient and the right side will be experiments for Accelerated
gradient descent. The practical convergence rate for the objective value of the dual problem
(D) is shown in log scale in fig. 4. The convergence rate for the constraint feasibility is shown
in log scale in fig. 5. The convergence rate for the value of the duality gap is shown in log
scale in fig. 6.

Figure 4: Projected gradient vs Accelerated gradient descent, 100 factories, cost func-
tions (19), Dual value in log scale, mean of 20 run

Figure 5: Projected gradient vs Accelerated gradient descent, 100 factories, cost func-
tions (19), Inexactness of constraints in log scale, mean of 20 run
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Figure 6: Projected gradient vs Accelerated gradient descent, 100 factories, cost func-
tions (19), Duality gap value in log scale, mean of 20 run

These plots show that the theoretical dependence on µ in both theorems is correct and
occurs in practice.

Conclusion
In this paper, we considered the resource allocation problem as a convex optimization prob-
lem. To solve this problem, we use and interpret gradient and accelerated gradient descent
applied to the special variant of dual problem. We obtain the convergence rate both for
the primal iterates and the dual iterates. We obtain faster convergence rates than the ones
known in the literature (for interpretable methods) and generalize our methods for the case
of multiple producers and products.
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7 Appendix
Proof of Lemma 1.

Set x̄1 = . . . = x̄n =
2C

n
and ȳ1 = . . . = ȳn =

C

n
. And define x̄ = (x̄1, . . . , x̄n)> and

ȳ = (ȳ1, . . . , ȳn)>. Notice that the point
(
x̄>, ȳ>

)> satisfies the Slater’s condition as

2C

n
= x̄k > ȳk =

C

n
, k = 1, . . . , n.

Because the cost functions fk(xk), k = 1, . . . , n are increasing due to the economic inter-
pretation, we obtain

n∑
k=1

fk(0) = min
n∑

k=1

yk>C, yk>0,

xk>0, k=1, ..., n

n∑
k=1

fk(xk)

= min
n∑

k=1

yk>C, yk>0,

xk>0, k=1, ..., n


n∑
k=1

fk(xk) +
n∑
k=1

(yk − xk) pk︸︷︷︸
= 0


6 max

p>0
min

n∑
k=1

yk>C, yk>0,

xk>0, k=1, ..., n

{
n∑
k=1

fk(xk) +
n∑
k=1

(yk − xk) pk

}

= min
n∑

k=1
yk>C, yk>0,

xk>0, k=1, ..., n

{
n∑
k=1

fk(xk) +
n∑
k=1

(yk − xk) p∗k

}

6
n∑
k=1

fk(x̄k) +
n∑
k=1

(ȳk − x̄k) p∗k

6
n∑
k=1

fk(x̄k)−
C

n

n∑
k=1

p∗k.

Since p∗k > 0, k = 1, . . . , n we obtain that

‖p∗‖1 6 pmax,

where

pmax =
n

C

(
n∑
k=1

fk

(
2C

n

)
−

n∑
k=1

fk(0)

)
.

And since that we obtain the upper bound for each component

p∗k 6 pmax, k = 1, . . . , n
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from which we obtain the statement of the Lemma.
Proof of Lemma 2.
Using (8), we can rewrite the step as

pt+1 = argmin
p>0

{
C max

k=1, ..., n
(−pk) +

〈
x(pt), p− pt

〉
+
Lψ
2

(
‖p‖2

2 − 2
〈
p, pt

〉
+ ‖pt‖2

2

)}
= argmin

p>0

{
C max

k=1, ..., n
(−pk) +

Lψ
2

(
‖p‖2

2 − 2
〈
p, pt

〉
+

2

Lψ

〈
x(pt), p− pt

〉
+ ‖pt‖2

2

)}
= argmin

p>0

{
max

k=1, ..., n
(−pk) +

Lψ
2C
‖p−

(
pt − 1

Lψ
x(pt)

)
‖2

2

}
.

Let us define γ =
C

Lψ
. Then to determine pt+1 it is necessary to solve the following problem

max
k=1, ... n

(−pk) +
1

2γ
‖p− p̃t+1‖2

2 → min
pk>0, k=1, ... n,

which we can rewrite as the following equivalent problem

ηt+1 +
1

2γ
‖p− p̃t+1‖2

2 → min
ηt+160, ηt+1>−pk, k=1, ... n

where ηt+1 ∈ R. The Lagrangian is

L(p, ηt+1, z, w) = ηt+1 +
1

2γ
‖p− p̃t+1‖2

2 +
n∑
k=1

zk(−pk − ηt+1) + wηt+1

with dual variable z ∈ Rn
+ and w ∈ R+. Let (p∗, η∗t+1, z

∗, w∗) be a solution, then the
optimality conditions are:

−p∗k 6 η∗t+1, k = 1, . . . , n. (21)
z∗k > 0, k = 1, . . . , n. (22)

z∗k(p
∗
k + η∗t+1) = 0, k = 1, . . . , n. (23)

1

γ
(p∗k − p̃t+1

k )− z∗k = 0, k = 1, . . . , n. (24)

n∑
k=1

z∗k = 1 + w∗. (25)

w∗η∗t+1 = 0. (26)
w∗ > 0. (27)
η∗t+1 6 0. (28)

• If η∗t+1 = 0.

20



– If η∗t+1 = −p∗k = 0, then from (24) and (22) obtain, that

z∗k =
1

γ
(−p̃t+1

k ) =
1

γ
(−p̃t+1

k )+. (29)

– If p∗k > −η∗t+1 = 0 then from (23) and (24)

z∗k = 0, p∗k = p̃t+1
k .

Also since in this case p∗k > 0, then p̃t+1
k > 0. And using this we obtain

z∗k = 0 =
1

γ
(−p̃t+1

k )+. (30)

Then, using (29), (30), (25) and (27) obtain, that

n∑
k=1

(−p̃t+1
k )+ = γ(1 + w∗) > γ.

As a result, we obtain that for
n∑
k=1

(−p̃t+1
k )+ > γ the case then η∗t+1 = 0 and solution

determines as
p∗k = max{0, p̃t+1

k }.

• If η∗t+1 < 0 then w∗ = 0.

– If p∗k = −η∗t+1 then from (24) obtain

z∗k =
1

γ
(−η∗t+1 − p̃t+1

k )+. (31)

– If p∗k > −η∗t+1 then from (23) and (24) we obtain that z∗k = 0, p∗k = p̃t+1
k . Also

since in this case p̃t+1
k = p∗k > −η∗t+1, then

z∗k = 0 =
1

γ
(−η∗t+1 − p̃t+1

k )+. (32)

Finally using (31), (32) and (25) obtain that

n∑
k=1

(−η∗t+1 − p̃t+1
k )+ = γ.

and solution determines as

p∗k = max{−η∗t+1, p̃
t+1
k }.
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So, define pt+1
center = −η∗t+1 we finishes the proof.

Proof of Theorem 2.
Let’s consider the step

pt+1 = argmin
p>0

{〈
∇ψ(pt), p− pt

〉
− C min

k=1, ..., n
pk +

Lψ
2
‖p− pt‖2

2

}
︸ ︷︷ ︸

Φ(p,pt)

.

The function Φ(p, pt) is convex with respect to the variable p, thеn from the definition of
pt+1 follows that 〈

∇pt+1Φ(pt+1, pt), p− pt+1
〉
> 0, ∀p > 0. (33)

Define function

Φ̃(p, pt) =
〈
∇ψ(pt), p− pt

〉
− C min

k=1, ..., n
pk =

〈
∇ψ(pt), p− pt

〉
+ g(p),

which is convex with respect to the variable p. From (33) we obtain

0 6
〈
∇pt+1Φ(pt+1, pt), p− pt+1

〉
=
〈
∇pt+1Φ̃(pt+1, pt) + Lψ(pt+1 − pt), p− pt+1

〉
conv−ty
6 Φ̃(p, pt)− Φ̃(pt+1, pt) + Lψ

〈
pt+1 − pt, p− pt+1

〉
. (34)

Notice, that

Lψ
〈
pt+1 − pt, p− pt+1

〉
= Lψ

〈
pt+1, p

〉
+ Lψ

〈
pt, pt+1

〉
− Lψ

〈
pt+1, pt+1

〉
− Lψ

〈
pt, p

〉
=
L

2
〈p, p〉 − Lψ

〈
pt, p

〉
+
Lψ
2

〈
pt, pt

〉
− Lψ

2
〈p, p〉+ Lψ

〈
p, pt+1

〉
− Lψ

2

〈
pt+1, pt+1

〉
− Lψ

2

〈
pt+1, pt+1

〉
− Lψ

2

〈
pt, pt

〉
+ Lψ

〈
pt, pt+1

〉
=
Lψ
2
‖p− pt‖2

2 −
Lψ
2
‖p− pt+1‖2

2 −
Lψ
2
‖pt+1 − pt‖2

2. (35)

Substituting this inequality to (34), we obtain

0 6 Φ̃(p, pt)− Φ̃(pt+1, pt) +
Lψ
2
‖p− pt‖2

2 −
Lψ
2
‖p− pt+1‖2

2 −
Lψ
2
‖pt+1 − pt‖2

2

=
〈
∇ψ(pt), p− pt

〉
+ g(p)−

〈
∇ψ(pt), pt+1 − pt

〉
− g(pt+1) +

Lψ
2
‖p− pt‖2

2

− Lψ
2
‖p− pt+1‖2

2 −
Lψ
2
‖pt+1 − pt‖2

2

Finally, since (10) we can rewrite as

ψ(p1) 6 ψ(p2) +
〈
∇ψ(p2), p1 − p2

〉
+
Lψ
2
‖p1 − p2‖2

2, ∀p1, p2 > 0 (36)
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we obtain that

ψ(pt+1) 6 ψ(pt) +
〈
∇ψ(pt), p− pt

〉
+ g(p)− g(pt+1) +

Lψ
2
‖p− pt‖2

2 −
Lψ
2
‖p− pt+1‖2

2

or

ϕ(pt+1) 6 ϕ(pt) +
〈
∇ψ(pt), p− pt

〉
− g(pt) + g(p) +

Lψ
2
‖p− pt‖2

2 −
Lψ
2
‖p− pt+1‖2

2.

Summing these inequalities from t = 0 to t = N − 1 we get, using the convexity of ϕ and
that it is true for all p > 0

ϕ(pN) 6
1

N
min
p>0

{
N−1∑
t=0

[
ϕ(pt) +

〈
∇ψ(pt), p− pt

〉
− g(pt)

]
+ g(p) +

Lψ
2
‖p− p0‖2

2

}
, (37)

where pN =
1

N

N∑
t=1

pt. Let us define the starting point p0 satisfying 0 6 p0
k 6 pmax, k =

1, . . . , n, where pmax is given in (6). Then we obtain that

‖p0‖2 6
√
npmax.

Let us introduce a set

B+
3R(0) = {p : p > 0,

∣∣∣∣p− p0
∣∣∣∣

2
6 3R},

where ∣∣∣∣p0 − p∗
∣∣∣∣

2
+ ‖p0‖2 6 2‖p0‖2 + ‖p∗‖2 = 3pmax

√
n = R, (38)

herewith all the obtaining pt will consist in B+
2R(0) :

‖pt‖2 6 2R, (39)

since (second paragraph [7])

‖pt‖2 = ‖pt − p0‖2 + ‖p0‖2 6 ‖pt − p∗‖2 + ‖p∗ − p0‖2 + ‖p0‖2

6 2‖p∗ − p0‖2 + ‖p0‖2 = 2‖p∗‖2 + 3‖p0‖2 = 5pmax
√
n 6 2R.

Since that we can rewrite (37) as

ϕ(pN) 6
1

N
min
p>0

{
N−1∑
t=0

[
ϕ(pt) +

〈
∇ψ(pt), p− pt

〉
− g(pt)

]
+ g(p) +

Lψ
2
‖p− p0‖2

2

}

6
1

N
min

p∈B+
3R(0)

{
N−1∑
t=0

[
ψ(pt) +

〈
∇ψ(pt), p− pt

〉]
+ g(p) +

Lψ
2
‖p− p0‖2

2

}
.
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Notice that the minimum is taken over the set B+
3R(0) = B+

3R(p0) and not over the set
B+

3R(p∗), since the p∗ is not known and, according to the definition of R, p∗ ∈ B+
R(p0). Define

p̃ = argmin
p∈B+

3R(0)

{
N−1∑
t=0

[
ψ(pt) +

〈
∇ψ(pt), p− pt

〉]
+ g(p)

}
,

then, since

‖p̃− p0‖2
2 6 2‖p̃‖2

2 + 2‖p0‖2
2 6 18R2 +

2

9
R2 =

164

9
R2

we obtain

ϕ(pN) 6
1

N
min

p∈B+
3R(0)

{
N−1∑
t=0

[
ψ(pt) +

〈
∇ψ(pt), p− pt

〉]
+ g(p) +

Lψ
2
‖p− p0‖2

2

}

6
1

N
min

p∈B+
3R(0)

{
N−1∑
t=0

[
ψ(pt) +

〈
∇ψ(pt), p− pt

〉]
+ g(p)

}
+
Lψ
2N
‖p̃− p0‖2

2

6
1

N
min

p∈B+
3R(0)

{
N−1∑
t=0

[
ψ(pt) +

〈
∇ψ(pt), p− pt

〉]
+ g(p)

}
+

82LψR
2

9N
.

Notice, that

− 1

N
min

p∈B+
3R(0)

{
N−1∑
t=0

[
ψ(pt) +

〈
∇ψ(pt), p− pt

〉]
+ g(p)

}

=
1

N
max

p∈B+
3R(0)

{
N−1∑
t=0

[〈
x(pt), pt − p

〉
+

n∑
k=1

fk(xk(p
t))−

〈
x(pt), pt

〉]
− g(p)

}

=
1

N

N−1∑
t=0

f(x(pt)) +
1

N
max

p∈B+
3R(0)

{
N−1∑
t=0

〈
−x(pt), p

〉
− g(p)

}
conv−ty
> f(xN) +

1

N
max

p∈B+
3R(0)

{
N−1∑
t=0

〈
−x(pt), p

〉
− g(p)

}

= f(xN) + max
p∈B+

3R(0)

{
−
〈
xN , p

〉
+ C min

k=1, ... ,n
pk

}
,

where xN =
1

N

N−1∑
t=0

x(pt). Since

C min
k=1, ... ,n

pk −
n∑
k=1

xNk min
k=1, ... ,n

pk > C min
k=1, ... ,n

pk −
n∑
k=1

xNk pk,
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we obtain

max
p∈B+

3R(0)

{
−
〈
xN , p

〉
+ C min

k=1, ... ,n
pk

}
= max

p∈B+
3R(0)

p1=...=pn=p

{
−
〈
xN , p

〉
+ C min

k=1, ... ,n
pk

}

= max
p∈B+

3R(0)

p1=...=pn=p

{
Cp−

n∑
k=1

xNk p

}
=

3R√
n

[
C −

n∑
k=1

xNk

]
+

.

Thus, we obtain the following estimation

ϕ(pN) + f(xN) +
3R√
n

[
C −

n∑
k=1

xNk

]
+

6
82LψR

2

9N
. (40)

Considering the weak duality −f(x∗) 6 ϕ(p∗), obtain

f(xN)− f(x∗) 6 f(xN) + ϕ(p∗) 6 ϕ(pN) + f(xN)

6 ϕ(pN) + f(xN) +
3R√
n

[
C −

n∑
k=1

xNk

]
+

6
82LψR

2

9N
= ε.

Using (39), (40) and (D) we get

R√
n

[
C −

n∑
k=1

xNk

]
+

6

6ϕ(pN )︷ ︸︸ ︷〈
xN , pN

〉
− C min

k=1, ... ,n
pNk︸ ︷︷ ︸

>−
2R√
n

[
C−

n∑
k=1

xNk

]
+

−f(xN) +f(xN) +
3R√
n

[
C −

n∑
k=1

xNk

]
+

6 ε.

(41)

And since R = 3pmax
√
n and Lψ =

n

µ
we obtain the statement of the theorem.

Proof of Theorem 3.
Let’s consider the step

yt+1 = argmin
p>0

{
αt+1

(〈
∇ψ(pt+1), p− pt+1

〉
− C min

k=1, ..., n
pk

)
+

1

2
‖p− yt‖2

2

}
︸ ︷︷ ︸

Ψ(p,pt+1)

.

The function Ψ(p, pt) is convex with respect to the variable p, then from the definition of
yt+1 follows that 〈

∇yt+1Ψ(yt+1, pt+1), p− yt+1
〉
> 0, ∀p > 0. (42)
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Define function

Ψ̃(p, pt) =
〈
∇ψ(pt), p− pt

〉
− C min

k=1, ..., n
pk =

〈
∇ψ(pt), p− pt

〉
+ g(p),

which is convex with respect to the variable p. From (42) we obtain

0 6
〈
∇yt+1Ψ(yt+1, pt+1), p− yt+1

〉
=
〈
αt+1∇yt+1Ψ̃(yt+1, pt+1) + (yt+1 − yt), p− yt+1

〉
conv−ty
6 αt+1Ψ̃(p, pt+1)− αt+1Ψ̃(yt+1, pt+1) +

〈
yt+1 − yt, p− yt+1

〉
. (43)

Using (35), we obtain

0 6 αt+1Ψ̃(p, pt+1)− αt+1Φ̃(yt+1, pt+1) +
1

2
‖p− yt‖2

2 −
1

2
‖p− yt+1‖2

2 −
1

2
‖yt+1 − yt‖2

2

= αt+1

〈
∇ψ(pt+1), p− pt+1

〉
+ αt+1g(p)− αt+1

(〈
∇ψ(pt+1), yt+1 − pt+1

〉
+ g(yt+1)

)
+

1

2
‖p− yt‖2

2 −
1

2
‖p− yt+1‖2

2 −
1

2
‖yt+1 − yt‖2

2

Notice, that

− αt+1

(〈
∇ψ(pt+1), yt+1 − pt+1

〉
+ g(yt+1)

)
− 1

2
‖yt+1 − yt‖2

2

= αt+1

(〈
∇ψ(pt+1), yt+1 − yt

〉
+
〈
∇ψ(pt+1), yt − pt+1

〉
− g(yt+1)

)
− 1

2
‖yt+1 − yt‖2

2

(16), (18)
= At

〈
∇ψ(pt+1), wt − pt+1

〉
− αt+1g(yt+1) + At+1

〈
∇ψ(pt+1), pt+1 − wt+1

〉
−

A2
t+1

2α2
t+1

‖pt+1 − wt+1‖2
2

(15)
6 At

〈
∇ψ(pt+1), wt − pt+1

〉
− αt+1g(yt+1)

+ At+1

(〈
∇ψ(pt+1), pt+1 − wt+1

〉
− L

2
‖pt+1 − wt+1‖2

2

)
(36)
6 Atψ(wt)− Atψ(pt+1)− αt+1g(yt+1) + At+1ψ(pt+1)− At+1ψ(wt+1)

= Atψ(wt)− αt+1g(yt+1) + αt+1ψ(pt+1)− At+1ψ(wt+1) + Atg(wt)− Atg(wt)

(18),conv−ty
6 Atψ(wt) + αt+1ψ(pt+1)− At+1ψ(wt+1) + Atg(wt)− At+1g(wt+1)

= Atϕ(wt) + αt+1ψ(pt+1)− At+1ϕ(wt+1)

Finally, using this, we obtain that

At+1ϕ(wt+1)− Atϕ(wt) 6 αt+1

(
ψ(pt+1) +

〈
∇ψ(pt+1), p− pt+1

〉
+ g(p)

)
+

1

2
‖p− yt‖2

2 −
1

2
‖p− yt+1‖2

2.

26



Sum all the inequalities for t = 0, . . . , N − 1. Then, for any p > 0

ANϕ(wN)− A0ϕ(w0) 6
N−1∑
t=0

αt+1

(
ψ(pt+1) +

〈
∇ψ(pt+1), p− pt+1

〉
+ g(p)

)
+

1

2
‖p− y0‖2

2 −
1

2
‖p− yN‖2

2.

Whence, since C0 = α0 = 0

ANϕ(wN) 6
N∑
t=0

αt
(
ψ(pt) +

〈
∇ψ(pt), p− pt

〉
+ g(p)

)
+

1

2
‖p− y0‖2

2.

Taking in the right hand side the minimum in p > 0 we obtain

ANϕ(wN) 6 min
p>0

{
N∑
t=0

αt
(
ψ(pt) +

〈
∇ψ(pt), p− pt

〉
+ g(p)

)
+

1

2
‖p− y0‖2

2

}
. (44)

Put the vector y0 = (y0
1, . . . , y

0
n)>, where y0 — vector of initial prices. And its components

such as
0 6 y0

k 6 pmax, k = 1, . . . , n,

then we obtain that
‖y0‖2 6

√
npmax.

Let us introduce a set B+
2R(0) = {p : p > 0, ‖p‖2 6 2R}, where R determines from (38).

Since (39) we obtain

ANϕ(wN) 6 min
p>0

{
N∑
t=0

αt
(
ψ(pt) +

〈
∇ψ(pt), p− pt

〉
+ g(p)

)
+

1

2
‖p− y0‖2

2

}

6 min
p∈B+

2R(0)

{
N∑
t=0

αt
(
ψ(pt) +

〈
∇ψ(pt), p− pt

〉
+ g(p)

)
+

1

2
‖p− y0‖2

2

}
.

And since
‖p− y0‖2

2 6 2‖y0‖2
2 + 2‖p‖2

2 6 8R2 +
2

9
R2 =

74

9
R2

obtain the following

ANϕ(wN) 6 min
p∈B+

2R(0)

{
N∑
t=0

αt
(
ψ(pt) +

〈
∇ψ(pt), p− pt

〉
+ g(p)

)}
+

37

9
R2.
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Notice, that

− min
p∈B+

2R(0)

{
N∑
t=0

αt
(
ψ(pt) +

〈
∇ψ(pt), p− pt

〉
+ g(p)

)}

= max
p∈B+

2R(0)

{
N∑
t=0

αt

(〈
x(pt), pt − p

〉
− g(p)−

〈
x(pt), pt

〉
+

n∑
k=1

fk(xk(p
t))

)}

=
N∑
t=0

αtf(x(pt)) + max
p∈B+

2R(0)

{
N∑
t=0

αt
(〈
−x(pt), p

〉
− g(p)

)}
conv−ty
> Atf(xN) + At max

p∈B+
2R(0)

{
−
〈
xN , p

〉
+ C min

k=1, ... ,n
pk

}
= Atf(xN) + At max

p∈B+
2R(0)

p1=...=pn=p

{
−
〈
xN , p

〉
+ C min

k=1, ... ,n
pk

}

= Atf(xN) + At max
p∈B+

2R(0)

p1=...=pn=p

{
Cp−

n∑
k=1

xNk p

}

= Atf(xN) + At
2R√
n

[
C −

n∑
k=1

xNk

]
+

,

where xN =
1

AN

N∑
t=0

αtx(pt). Thus, we obtain the following estimation

ϕ(wN) + f(xN) +
2R√
n

[
C −

n∑
k=1

xNk

]
+

6
37R2

9AN
. (45)

Since w∗ is an optimal solution of Problem (D), we have, for any x > 0

f(x∗) 6 f(x)− 〈x, w∗〉+ C min
k=1, ... ,n

w∗k.

Using the estimation (5), we get

f(xN)− f(x∗) > − R

3
√
n

[
C −

n∑
k=1

xNk

]
+

.

Considering the weak duality f(x∗) > −ϕ(w∗), obtain

f(xN) + ϕ(wN) = f(xN) + f(x∗)− f(x∗) + ϕ(w∗)− ϕ(w∗) + ϕ(wN)

> f(xN)− f(x∗) > − R

3
√
n

[
C −

n∑
k=1

xNk

]
+

.
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This and (45) give [
C −

n∑
k=1

xNk

]
+

6
37R
√
n

15AN
. (46)

And also due to the weak duality, we obtain

f(xN)− f(x∗) 6
37R2

9AN
. (47)

Let us show that the lower bound for the sequence At, t > 0 is

At >
(t+ 1)2

4Lψ
, ∀t > 1 (48)

where Lψ is the Lipschitz constant for the gradient of ψ.
For t = 1, since α0 = 0 and A1 = α0 + α1 = α1, we have from (15)

A1 = α1 =
1

Lψ
>

1

Lψ
.

Let us now assume that (48) holds for some t > 1 and prove that it holds for t+ 1. From
(15) we have a quadratic equation for αt+1

Lψα
2
t+1 − αt+1 − At = 0.

Since we need to take the largest root, we obtain,

αt+1 =
1 +

√
1 + 4LψAt
2Lψ

=
1

2Lψ
+

√
1

4L2
ψ

+
At
Lψ

>
1

2Lψ
+

√
At
Lψ

>
1

2Lψ
+

1√
Lψ

t+ 1

2
√
Lψ

=
t+ 2

2Lψ
,

where we used the induction assumption that (48) holds for t. Using the obtained inequality,
from (15) and (48) for t, we get

At+1 = At + αt+1 >
(t+ 1)2

4Lψ
+
t+ 2

2Lψ
>

(t+ 2)2

4Lψ
.

So, using this estimation and that R = 3pmax
√
n and Lψ =

n

µ
we obtain the statement of

the theorem from (46) and (47).
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7.1 The resource allocation problem in vector case

In this section we consider the vector case of resource allocation problem. Let us consider the
same problem as the problem from Section 2. But now each producer produces m different
products, having its own cost function fk(xk), k = 1, . . . , n representing the total cost of
production of the volume xk ∈ Rm which is the number of tons of products produced by the
producer k in one year. So, we have production matrix X ∈ Rm×n, where each row represents
the vector of production for one product by each producer and each column represents the
production for one producer of each product. Let us define xj• the j row of matrix and
x•k the k column of matrix. The Center buys product from the producers and chooses its
strategy in such a way that the total production volume per year by all producers is not
less cm tons of product m. To do so, the Center needs to find yjk - the volume of product j
which is purchased from the producer k. And in this case we can write down the following
resource allocation problem

(P1)
n∑
k=1

fk(x•k)→ min
n∑

k=1
yjk>cj , j=1, ...,m;

x•k>y•k,y•k>0, k=1, ..., n,

where the cost functions fk(x•k) k = 1, . . . , n are increasing for each variable xj,k and µ-
strongly convex.

Introducing dual variables p•k, k = 1, . . . , n and using the duality, we obtain

min
n∑

k=1

yjk>cj , j=1, ...,m;

x•k>y•k,y•k>0, k=1, ..., n,

n∑
k=1

fk(x•k) = min
n∑

k=1
yjk>cj , j=1, ...,m;

y•k>0, k=1, ..., n

{ n∑
k=1

fk(x•k) +
n∑
k=1

max
p•k>0

p>•k(y•k − x•k)
}

= − min
p•1, ..., p•n>0

{ n∑
k=1

max
x•k>0

(p>•kx•k − fk(x•k))− min
n∑

k=1
yjk>cj ; y•k>0

n∑
k=1

p>•ky•k

}

= − min
p•1, ..., p•n>0

{ n∑
k=1

{
p>k x•k(p•k)− fk(x•k(p•k))

}
−

m∑
j=1

cj min
k=1, ..., n

pjk

}
,

where
x•k(p•k) = argmax

x•k>0

{
p>•kxk − fk(x•k)

}
, k = 1, 2, . . . , n. (49)

Then the dual problem (up to a sign) has the following form

(D1) ϕ(p•1, . . . , p•n) =
n∑
k=1

{
p>•kx•k(p•k)−fk(x•k(p•k))

}
−

m∑
j=1

cj min
k=1, ..., n

pjk → min
p•1, ..., p•n>0.

Let us consider this problem as the composite optimization problem. We can rewrite the
dual problem as

ϕ(p•1, . . . , p•n) = ψ(p•1, . . . , p•n) + g(p•1, . . . , p•n),
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where

ψ(p•1, . . . , p•n) =
n∑
k=1

{
p>•kx•k(p•k)− fk(x•k(p•k))

}
(50)

is convex function, which gradient satisfying Lipschitz condition with constant Lψ =
n

µ
. And

convex non-smooth composite function

g(p•1, . . . , p•n) = −
m∑
j=1

cj min
k=1, ..., n

pjk.

We define x̄•k =

(
2c1

n
, . . . ,

2cm
n

)>
, k = 1, . . . , n and ȳ•k =

(c1

n
, . . . ,

cm
n

)>
, k =

1, . . . , n, and similarly to Lemma 1, using the Slater’s condition, we obtain the following
Lemma.

Lemma 3. Let the p∗j•, j = 1, . . . , m be a solution to the dual problem (D1). Then it satisfies
the inequality

‖p∗j•‖2 6
√
np̄max.

where

p̄max :=
n

min
j=1,...,m

cj

(
n∑
k=1

fk (x̄•k)−
n∑
k=1

fk(0)

)
. (51)

7.1.1 Composite gradient method

In this subsection to solve the resource allocation problem in vector case we use composite
gradient method from the Section 4. Let us define vectors ȳ =

(
y>•1, . . . , y

>
•n
)
∈ Rmn,

p̄ =
(
p>•1, . . . , p

>
•n
)
∈ Rmn and x̄(p̄) =

(
x•1(p•1)>, . . . , x•n(p•n)>

)
∈ Rmn, then the step of

the method can be rewritten as follows

ȳt+1 = argmin
p̄>0

{〈
x̄(p̄t+1), p̄− p̃t+1

〉
+ g(p•1, . . . , p•n) +

Lψ
2
‖p̄− ȳt‖2

2

}
= argmin

p̄>0

{
n∑
k=1

〈
x•k(p

t+1
•k ), p•k − pt+1

•k
〉
−

m∑
j=1

cj min
k=1, ..., n

pjk +
Lψ
2

n∑
k=1

‖p•k − yt•k‖2
2

}

= argmin
p̄>0

{
m∑
j=1

(〈
xj•(p

t+1
j• ), pj• − pt+1

j•
〉
− cj min

k=1, ..., n
pjk +

Lψ
2
‖pj• − ytj•‖2

2

)}
,

where pj• = (pj1, . . . , pjn)>, i.e. from the summation of the producers, we moved to the
summation of products. Note that we can divide the step into m independent problems for
each product, so for product j, we have

yt+1
j• = argmin

pj•>0

{〈
xj•(p

t+1
j• ), pj• − pt+1

j•
〉
− cj min

k=1, ..., n
pjk +

L̄ψ
2
‖pj• − ytj•‖2

2

}
,
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where pj• – is price vector of all producers for product j and xj•(pj•) – is vector of optimal

plans for the production of product j for all producers. Define p̃t+1
j• = ptj•−

1

Lψ
xj•(p

t+1
j• ) and

then, using Lemma 2, we obtain the following solution:

• If
n∑
k=1

(
−p̃t+1

jk

)
+
>

cj
Lψ

then pt+1
j.center = 0.

• Else pt+1
j.center > 0 is determined from

n∑
k=1

(
pt+1
j.center − p̃t+1

jk

)
+

=
cj
Lψ

and the solution is determined as

pt+1
jk = max

(
pt+1
j.center, p̃

t+1
jk

)
, k = 1, . . . , n.

Theorem 4. Let Algorithm (52) be run for N steps with starting points p0
j•, j = 1, . . . , m

satisfying 0 6 p0
jk 6 p̄max, k = 1, . . . , n, where p̄max is given in (51). Then

n∑
k=1

fk(x
N
•k)−

n∑
k=1

f(x∗•k) 6
n∑
k=1

fk(x
N
•k) + ϕ(p̄∗) 6 ϕ(p̄N) +

n∑
k=1

fk(x
N
•k) 6

82p̄2
maxn

2m

Nµ
,

m∑
j=1

[
cj −

n∑
k=1

xNjk

]
+

6
82p̄maxn

2m

3Nµ
,

where pN•k =
1

N

N∑
t=1

pt•k, xN•k =
1

N

N−1∑
t=0

x•k(p
t
•k) and p̄N = (pN•1, . . . , p

N
•n)

Proof of Theorem 4. Similarly to the proof of the theorem 2 we can obtain the
equation (37), but in this case we can write dawn this equation as

ϕ(p̄N) 6
1

N
min
p̄>0

{
N∑
t=0

m∑
j=1

〈
xj•(p

t+1
j• ), pj•

〉
−

n∑
k=1

fk(x•k) + g(p̄) +
L̄ψ
2

m∑
j=1

‖pj• − p0
j•‖2

2

}
,

where p̄N = (pN1 , . . . , p
N
n ). Let us introduce a set B+

3R̄
(0) =

{
p : p > 0, ‖p‖2 6 2R̄

}
, where

R̄ = 3
√
np̄max determines similarly to (38). Since we also have equation similarly to (39) we

obtain that ptj• ∈ B+
3R̄

(0), ∀t. So, we obtain

ϕ(p̄N) 6
1

N
min
p̄>0

{
N∑
t=0

m∑
j=1

〈
xj•(p

t+1
j• ), pj•

〉
−

n∑
k=1

fk(x•k) + g(p̄) +
L̄ψ
2

m∑
j=1

‖pj• − p0
j•‖2

2

}

=
1

N
min

p̄j•∈B+
3R̄

(0)

{
N∑
t=0

m∑
j=1

〈
xj•(p

t+1
j• ), pj•

〉
−

n∑
k=1

fk(x•k) + g(p̄) +
L̄ψ
2

m∑
j=1

‖pj• − p0
j•‖2

2

}
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And since
‖pj• − p0

j•‖2
2 6 2‖p0

j•‖2
2 + 2‖pj•‖2

2 6 18R̄2 +
2

9
R̄2 =

164

9
R̄2

obtain the following

ϕ(p̄N) 6
1

N
min

p̄j•∈B+
3R̄

(0)

{
N∑
t=0

m∑
j=1

〈
xj•(p

t+1
j• ), pj•

〉
−

n∑
k=1

fk(x•k) + g(p̄)

}
+

82mL̄ψ
9N

R̄2.

Notice, that

− 1

N
min

p̄j•∈B+
3R̄

(0)

{
N∑
t=0

(
m∑
j=1

〈
xj•(p

t+1
j• ), pj•

〉
−

n∑
k=1

fk(x•k) + g(p̄)

)}

=
1

N

N∑
t=0

n∑
k=1

fk(x•k) +
1

N
max

p̄j•∈B+
3R̄

(0)

{
N∑
t=0

−
m∑
j=1

〈
xj•(p

t+1
j• ), pj•

〉
+

m∑
j=1

cj min
k=1, ..., n

pjk

}
conv−ty
>

n∑
k=1

fk(x
N
•k) + max

pj•∈B+
3R̄

(0)

pj1=...=pjn=pj

{
m∑
j=1

(
−
〈
xNj•, pj•

〉
+ cj min

k=1, ..., n
pjk

)}

=
n∑
k=1

fk(x
N
•k) + max

pj•∈B+
3R̄

(0)

pj1=...=pjn=pj

{
m∑
j=1

(
−

n∑
k=1

xNjkpj + cjpj

)}

=
n∑
k=1

fk(x
N
•k) +

3R̄√
n

m∑
j=1

[
cj −

n∑
k=1

xNjk

]
+

,

where xN•k =
1

N

N∑
t=0

x•k(p
t
•k). Thus, we obtain the following estimation

ϕ(w̄N) +
n∑
k=1

fk(x
N
•k) +

3R̄√
n

m∑
j=1

[
cj −

n∑
k=1

xNjk

]
+

6
82L̄ψR̄

2m

9N
.

And similarly to (41) we obtain

m∑
j=1

[
cj −

n∑
k=1

xNjk

]
+

6
82L̄ψR̄m

√
n

9N
.

And due to the weak duality, we obtain
n∑
k=1

fk(x
N
•k)−

n∑
k=1

fk(x
∗
•k) 6

82L̄ψR̄
2m

9N
.

And since R̄ = 3
√
np̄max and Lψ =

n

µ
we obtain the statement of the theorem.
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Composite gradient method for the resource allocation (vector case)

Input: N > 0 – number of steps, Lψ – Lipschitz constant of gradient ψ,
p0
j•, j = 1, . . . , m – starting point.

1. Knowing the prices pt•k, k = 1, . . . , n for the current year t, produc-
ers calculate the optimal plan for the production according these
prices as

x•k(p
t+1
•k ) = argmax

xk>0

{ m∑
j=1

pt+1
jk xjk − fk(xk)

}
, k = 1, 2, . . . , n.

2. Each factory predicts the price for the next year t + 1 for product
j = 1, . . . ,m as

p̃t+1
jk = ptjk −

1

Lψ
xjk(p

t
jk), k = 1, 2, . . . , n

and send this information to the Center.

3. The Center determines the price pt+1
j.center at which it will purchase

product j for the next year t+ 1 as

• If
n∑
k=1

(
−p̃t+1

jk

)
+
>

C

Lψ
then pt+1

j.center = 0;

• Else pt+1
j.center > 0 is determined from

n∑
k=1

(
pt+1
j.center − p̃t+1

jk

)
+

=
C

Lψ
,

and sends this price to all producers.

4. Each producer adjusts the price for product j = 1, . . . ,m for the
next year as follows

pt+1
jk = max

(
pt+1
j.center, p̃

t+1
jk

)
, k = 1, . . . , n.

(52)
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7.1.2 Accelerated composite gradient method

In this subsection, to solve the resource allocation problem in vector case, we use accelerated
composite gradient method from the Section 5. Similarly to the previous subsection the step
of the method we can be rewritten as

ȳt+1 = argmin
p̄>0

{
αt+1

(〈
x̄(p̄t+1), p̄− p̃t+1

〉
+ g(p•1, . . . , p•n)

)
+

1

2
‖p̄− ȳt‖2

2

}
= argmin

p̄>0

{
αt+1

(
n∑
k=1

〈
x•k(p

t+1
•k ), p•k − pt+1

•k
〉
−

m∑
j=1

cj min
k=1, ..., n

pjk

)
+

1

2

n∑
k=1

‖p•k − yt•k‖2
2

}

= argmin
p̄>0

{
m∑
j=1

(
αt+1

(〈
xj•(p

t+1
j• ), pj• − pt+1

j•
〉
− cj min

k=1, ..., n
pjk

)
+

1

2
‖pj• − ytj•‖2

2

)}
,

where pj• = (pj1, . . . , pjn)>, i.e. from the summation of the producers, we moved to the
summation of products. Note that we can divide the step into m independent problems for
each product, so for product j we have

yt+1
j• = argmin

pj•>0

{
αt+1

(〈
xj•(p

t+1
j• ), pj• − pt+1

j•
〉
− cj min

k=1, ..., n
pjk

)
+

1

2
‖pj• − ytj•‖2

2

}
,

where pj• – is price vector of all producers for product j and xj•(pj•) – is vector of optimal
plans for the production of product j for all producers. Define ỹt+1

j• = ytj• − αt+1xj•(p
t+1
j• )

and then, using Lemma 2, we obtain the following solution:

• If
n∑
k=1

(
−ỹt+1

jk

)
+
> cjαt+1 then yt+1

j.center = 0.

• Else yt+1
j.center > 0 is determines from

n∑
k=1

(
yt+1
j.center − ỹt+1

jk

)
+

= cjαt+1

and the solution is determined as

yt+1
jk = max

(
yt+1
j.center, ỹ

t+1
jk

)
, k = 1, . . . , n.
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Accelerated composite gradient descent for resource allocation (vector case)

Input: N > 0 – number of steps, Lψ – Lipschitz constant of gradient ψ,
p0
j• = y0

j• = w0
j•, j = 1, . . . , m – starting points.

1. In the current year producers find αt+1 as the largest root of the
equation

At+1 := At + αt+1 = Lψα
2
t+1.

2. All producers calculate the average price pt+1
j• for product j =

1, . . . ,m as

pt+1
jk =

αt+1y
t
jk + Atw

t
jk

At+1

, k = 1, . . . , n

and calculate the optimal plan for the production as

x•k(p
t+1
•k ) = argmax

xk>0

{ m∑
j=1

pt+1
jk xjk − fk(xk)

}
, k = 1, 2, . . . , n.

3. Each producer predict the price for the next year t+ 1 for product
j = 1, . . . ,m as

ỹt+1
jk = ytjk − αt+1xjk(p

t+1
k ), k = 1, . . . , n

and send this information to the Center.

4. The Center determines the prediction prices yt+1
j.center for each prod-

uct j = 1, . . . ,m for the next year as

• If
n∑
k=1

(
−ỹt+1

jk

)
+
> cjαt+1 then yt+1

j.center = 0

• Else yt+1
j.center > 0 and determines from

n∑
k=1

(
yt+1
j.center − ỹt+1

jk

)
+

= cjαt+1.

5. Each producer adjusts the prediction price for the next year as
follows

yt+1
jk = max

(
yt+1
j.center, ỹ

t+1
jk

)
, k = 1, . . . , n.

and calculate the historical price for product j = 1, . . . ,m for the
next year

wt+1
jk =

αt+1y
t+1
jk + Atw

t
jk

At+1

, k = 1, . . . , n.

(53)
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Theorem 5. Let Algorithm (53) be run for N steps with starting points p0
j• = y0

j• = w0
j•, j =

1, . . . , m satisfying 0 6 p0
jk 6 p̄max, k = 1, . . . , n, where p̄max is given in (51). Then

n∑
k=1

fk(x
N
•k)−

n∑
k=1

f(x∗•k) 6
n∑
k=1

fk(x
N
•k) + ϕ(w̄∗) 6 ϕ(w̄N) +

n∑
k=1

fk(x
N
•k) 6

148p̄2
maxn

2m

(N + 1)2µ
,

m∑
j=1

[
cj −

n∑
k=1

xNjk

]
+

6
148p̄maxmn

2

5(N + 1)2µ
,

where xN•k =
1

AN

N∑
t=0

αtx•k(p
t
•k) and w̄N = (wN•1, . . . , w

N
•n).

Proof of Theorem 5. Similarly to the proof of the theorem 3 we can obtain the
equation (44), but in this case we can write dawn this equation as

ANϕ(w̄N) 6 min
p̄>0

{
N∑
t=0

αt

(
m∑
j=1

〈
xj•(p

t+1
j• ), pj•

〉
−

n∑
k=1

fk(x•k) + g(p)

)
+

1

2

m∑
j=1

‖pj• − y0
j•‖2

2

}
,

where w̄N = (wN1 , . . . , w
N
n ). Since we also have equations similarly to (39) we obtain that

ptj•, w
t
j•, y

t
j• ∈ B+

2R̄
(0), ∀t, where B+

2R̄
(0) =

{
p : p > 0, ‖p‖2 6 2R̄

}
, R̄ = 3

√
np̄max. So, we

obtain

ANϕ(w̄N) 6 min
p̄>0

{
N∑
t=0

αt

(
m∑
j=1

〈
xj•(p

t+1
j• ), pj•

〉
−

n∑
k=1

fk(x•k) + g(p)

)
+

1

2

m∑
j=1

‖pj• − y0
j•‖2

2

}

= min
p̄j•∈B+

2R̄
(0)

{
N∑
t=0

αt

(
m∑
j=1

〈
xj•(p

t+1
j• ), pj•

〉
−

n∑
k=1

fk(x•k) + g(p)

)
+

1

2

m∑
j=1

‖pj• − y0
j•‖2

2

}

And since
‖pj• − y0

j•‖2
2 6 2‖y0

j•‖2
2 + 2‖pj•‖2

2 6 8R̄2 +
2

9
R̄2 =

74

9
R̄2

obtain the following

ANϕ(w̄N) 6 min
p̄j•∈B+

2R̄
(0)

{
N∑
t=0

αt

(
m∑
j=1

〈
xj•(p

t+1
j• ), pj•

〉
−

n∑
k=1

fk(x•k) + g(p)

)}
+

37m

9
R̄2.
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Notice, that

− min
p̄j•∈B+

2R̄
(0)

{
N∑
t=0

αt

(
m∑
j=1

〈
xj•(p

t+1
j• ), pj•

〉
−

n∑
k=1

fk(x•k) + g(p)

)}

=
N∑
t=0

n∑
k=1

fk(x•k) + max
p̄j•∈B+

2R̄
(0)

{
N∑
t=0

αt

(
−

m∑
j=1

〈
xj•(p

t+1
j• ), pj•

〉
+

m∑
j=1

cj min
k=1, ..., n

pjk

)}
conv−ty
> At

n∑
k=1

fk(x
N
•k) + At max

pj•∈B+
2R̄

(0)

pj1=...=pjn=pj

{
m∑
j=1

(
−
〈
xNj•, pj•

〉
+ cj min

k=1, ..., n
pjk

)}

= At

n∑
k=1

fk(x
N
•k) + At max

pj•∈B+
2R̄

(0)

pj1=...=pjn=pj

{
m∑
j=1

(
−

n∑
k=1

xNjkpj + cjpj

)}

= At

n∑
k=1

fk(x
N
•k) + At

2R̄√
n

m∑
j=1

[
cj −

n∑
k=1

xNjk

]
+

,

where xN•k =
1

AN

N∑
t=0

αtx•k(p
t
•k). Thus, we obtain the following estimation

ϕ(w̄N) +
n∑
k=1

fk(x
N
•k) +

2R̄√
n

m∑
j=1

[
cj −

n∑
k=1

xNjk

]
+

6
37R̄2m

9AN
.

And similarly to (46) we obtain

m∑
j=1

[
cj −

n∑
k=1

xNjk

]
+

6
37R̄m

15AN
.

And due to the weak duality, we obtain

n∑
k=1

fk(x
N
•k)−

n∑
k=1

fk(x
∗
•k) 6

37R̄2m

9AN
.

And using the estimation (48) for the At, t > 0 we obtain the statement on the Theorem.
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