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Abstract. In this paper we consider a class of optimization problems
with a strongly convex objective function and the feasible set given by an
intersection of a simple convex set with a set given by a number of linear
equality and inequality constraints. A number of optimization problems
in applications can be stated in this form, examples being the entropy-
linear programming, the ridge regression, the elastic net, the regularized
optimal transport, etc. We extend the Fast Gradient Method applied to
the dual problem in order to make it primal-dual so that it allows not
only to solve the dual problem, but also to construct nearly optimal and
nearly feasible solution of the primal problem. We also prove a theorem
about the convergence rate for the proposed algorithm in terms of the
objective function and the linear constraints infeasibility.

Keywords: convex optimization, algorithm complexity, entropy-linear
programming, dual problem, primal-dual method

Introduction

In this paper we consider a constrained convex optimization problem of the
following form

(P1) min
x∈Q⊆E

{f(x) : A1x = b1, A2x ≤ b2} ,

where E is a finite-dimensional real vector space, Q is a simple closed convex set,
A1, A2 are given linear operators from E to some finite-dimensional real vector
spaces H1 and H2 respectively, b1 ∈ H1, b2 ∈ H2 are given, f(x) is a ν-strongly
convex function on Q with respect to some chosen norm ‖ · ‖E on E. The last
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means that for any x, y ∈ Q f(y) ≥ f(x) + 〈∇f(x), y − x〉 + ν
2‖x − y‖

2
E , where

∇f(x) is any subgradient of f(x) at x and hence is an element of the dual space
E∗. Also we denote the value of a linear function g ∈ E∗ at x ∈ E by 〈g, x〉.

Problem (P1) captures a broad set of optimization problems arising in ap-
plications. The first example is the classical entropy-linear programming (ELP)
problem [1] which arises in many applications such as econometrics [2], modeling
in science and engineering [3], especially in the modeling of traffic flows [4] and
the IP traffic matrix estimation [5,6]. Other examples are the ridge regression
problem [7] and the elastic net approach [8] which are used in machine learning.
Finally, the problem class (P1) covers problems of regularized optimal transport
(ROT) [9] and regularized optimal partial transport (ROPT) [10], which recently
have become popular in application to the image analysis.

The classical balancing algorithms such as [9,11,12] are very efficient for solv-
ing ROT problems or special types of ELP problem, but they can deal only with
linear equality constraints of special type and their rate of convergence estimates
are rather impractical [13]. In [10] the authors provide a generalization but only
for the ROPT problems which are a particular case of Problem (P1) with lin-
ear inequalities constraints of a special type and no convergence rate estimates
are provided. Unfortunately the existing balancing-type algorithms for the ROT
and ROPT problems become very unstable when the regularization parameter
is chosen very small, which is the case when one needs to calculate a good ap-
proximation to the solution of the optimal transport (OT) or the optimal partial
transport (OPT) problem.

In practice the typical dimensions of the spaces E,H1, H2 range from thou-
sands to millions, which makes it natural to use a first-order method to solve
Problem (P1). A common approach to solve such large-scale Problem (P1) is to
make the transition to the Lagrange dual problem and solve it by some first-
order method. Unfortunately, existing methods which elaborate this idea have
at least two drawbacks. Firstly, the convergence analysis of the Fast Gradient
Method (FGM) [14] can not be directly applied since it is based on the as-
sumption of boundedness of the feasible set in both the primal and the dual
problem, which does not hold for the Lagrange dual problem. A possible way
to overcome this obstacle is to assume that the solution of the dual problem
is bounded and add some additional constraints to the Lagrange dual problem
in order to make the dual feasible set bounded. But in practice the bound for
the solution of the dual problem is usually not known. In [15] the authors use
this approach with additional constraints and propose a restart technique to
define the unknown bound for the optimal dual variable value. Unfortunately,
the authors consider only the classical ELP problem with only the equality con-
straints and it is not clear whether their technique can be applied for Problem
(P1) with inequality constraints. Secondly, it is important to estimate the rate
of convergence not only in terms of the error in the solution of the Lagrange
dual problem at it is done in [16,17] but also in terms of the error in the solution
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of the primal problem 4 |f(xk) − Opt[P1]| and the linear constraints infeasibil-
ity ‖A1xk − b1‖H1

, ‖(A2xk − b2)+‖H2
, where vector v+ denotes the vector with

components [v+]i = (vi)+ = max{vi, 0}, xk is the output of the algorithm on
the k-th iteration, Opt[P1] denotes the optimal function value for Problem (P1).
Alternative approaches [18,19] based on the idea of the method of multipliers
and the quasi-Newton methods such as L-BFGS also do not allow to obtain the
convergence rate for the approximate primal solution and the linear constraints
infeasibility.

Our contributions in this work are the following. We extend the Fast Gradient
Method [14,20] applied to the dual problem in order to make it primal-dual so
that it allows not only to solve the dual problem, but also to construct nearly
optimal and nearly feasible solution to the primal problem (P1). We also equip
our method with a stopping criterion which allows an online control of the quality
of the approximate primal-dual solution. Unlike [9,10,16,17,18,19,15] we provide
the estimates for the rate of convergence in terms of the error in the solution
of the primal problem |f(xk) − Opt[P1]| and the linear constraints infeasibility
‖A1xk − b1‖H1 , ‖(A2xk − b2)+‖H2 . In the contrast to the estimates in [14], our
estimates do not rely on the assumption that the feasible set of the dual problem
is bounded. At the same time our approach is applicable for the wider class
of problems defined by (P1) than approaches in [9,15]. In the computational
experiments we show that our approach allows to solve ROT problems more
efficiently than the algorithms of [9,10,15] when the regularization parameter is
small.

1 Preliminaries

1.1 Notation

For any finite-dimensional real vector space E we denote by E∗ its dual. We
denote the value of a linear function g ∈ E∗ at x ∈ E by 〈g, x〉. Let ‖ · ‖E denote
some norm on E and ‖ · ‖E,∗ denote the norm on E∗ which is dual to ‖ · ‖E

‖g‖E,∗ = max
‖x‖E≤1

〈g, x〉.

In the special case when E is a Euclidean space we denote the standard Euclidean
norm by ‖ · ‖2. Note that in this case the dual norm is also Euclidean. By ∂f(x)
we denote the subdifferential of the function f(x) at a point x. Let E1, E2 be
two finite-dimensional real vector spaces. For a linear operator A : E1 → E2 we
define its norm as follows

‖A‖E1→E2
= max
x∈E1,u∈E∗

2

{〈u,Ax〉 : ‖x‖E1
= 1, ‖u‖E2,∗ = 1}.

4 The absolute value here is crucial since xk may not satisfy linear constraints and
hence f(xk)−Opt[P1] could be negative.
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For a linear operator A : E1 → E2 we define the adjoint operator AT : E∗2 → E∗1
in the following way

〈u,Ax〉 = 〈ATu, x〉, ∀u ∈ E∗2 , x ∈ E1.

We say that a function f : E → R has a L-Lipschitz-continuous gradient if it is
differentiable and its gradient satisfies Lipschitz condition

‖∇f(x)−∇f(y)‖E,∗ ≤ L‖x− y‖E .

We characterize the quality of an approximate solution to Problem (P1) by
three quantities εf , εeq, εin > 0 and say that a point x̂ is an (εf , εeq, εin)-solution
to Problem (P1) if the following inequalities hold

|f(x̂)−Opt[P1]| ≤ εf , ‖A1x̂− b1‖2 ≤ εeq, ‖(A2x̂− b2)+‖2 ≤ εin. (1)

Here Opt[P1] denotes the optimal function value for Problem (P1) and the vector
v+ denotes the vector with components [v+]i = (vi)+ = max{vi, 0}. Also for any
t ∈ R we denote by dte the smallest integer greater than or equal to t.

1.2 Dual Problem

Let us denote Λ = {λ = (λ(1), λ(2))T ∈ H∗1 ×H∗2 : λ(2) ≥ 0}. The Lagrange dual
problem to Problem (P1) is

(D1) max
λ∈Λ

{
−〈λ(1), b1〉 − 〈λ(2), b2〉+ min

x∈Q

(
f(x) + 〈AT1 λ(1) +AT2 λ

(2), x〉
)}

.

We rewrite Problem (D1) in the equivalent form of a minimization problem.

(P2) min
λ∈Λ

{
〈λ(1), b1〉+ 〈λ(2), b2〉+ max

x∈Q

(
−f(x)− 〈AT1 λ(1) +AT2 λ

(2), x〉
)}

.

We denote

ϕ(λ) = ϕ(λ(1), λ(2)) = 〈λ(1), b1〉+〈λ(2), b2〉+max
x∈Q

(
−f(x)− 〈AT1 λ(1) +AT2 λ

(2), x〉
)

(2)
Note that the gradient of the function ϕ(λ) is equal to (see e.g. [14])

∇ϕ(λ) =

(
b1 −A1x(λ)

b2 −A2x(λ)

)
, (3)

where x(λ) is the unique solution of the problem

max
x∈Q

(
−f(x)− 〈AT1 λ(1) +AT2 λ

(2), x〉
)
. (4)

Note that this gradient is Lipschitz-continuous (see e.g. [14]) with constant

L =
1

ν

(
‖A1‖2E→H1

+ ‖A2‖2E→H2

)
.
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It is obvious that
Opt[D1] = −Opt[P2]. (5)

Here by Opt[D1], Opt[P2] we denote the optimal function value in Problem (D1)
and Problem (P2) respectively. Finally, the following inequality follows from the
weak duality

Opt[P1] ≥ Opt[D1]. (6)

1.3 Main Assumptions

We make the following two main assumptions

1. The problem (4) is simple in the sense that for any x ∈ Q it has a closed
form solution or can be solved very fast up to the machine precision.

2. The dual problem (D1) has a solution λ∗ = (λ∗(1), λ∗(2))T and there exist
some R1, R2 > 0 such that

‖λ∗(1)‖2 ≤ R1 < +∞, ‖λ∗(2)‖2 ≤ R2 < +∞. (7)

1.4 Examples of Problem (P1)

In this subsection we describe several particular problems which can be written
in the form of Problem (P1).

Entropy-linear programming problem [1].

min
x∈Sn(1)

{
n∑
i=1

xi ln (xi/ξi) : Ax = b

}
for some given ξ ∈ Rn++ = {x ∈ Rn : xi > 0, i = 1, ..., n}. Here Sn(1) = {x ∈
Rn :

∑n
i=1 xi = 1, xi ≥ 0, i = 1, ..., n}.

Regularized optimal transport problem [9].

min
X∈Rp×p

+

γ
p∑

i,j=1

xij lnxij +

p∑
i,j=1

cijxij : Xe = a1, X
T e = a2

 , (8)

where e ∈ Rp is the vector of all ones, a1, a2 ∈ Sp(1), cij ≥ 0, i, j = 1, ..., p are
given, γ > 0 is the regularization parameter, XT is the transpose matrix of X,
xij is the element of the matrix X in the ith row and the jth column.

Regularized optimal partial transport problem [10].

min
X∈Rp×p

+

γ
p∑

i,j=1

xij lnxij +

p∑
i,j=1

cijxij : Xe ≤ a1, XT e ≤ a2, eTXe = m

 ,

where a1, a2 ∈ Rp+, cij ≥ 0, i, j = 1, ..., p, m > 0 are given, γ > 0 is the
regularization parameter and the inequalities should be understood component-
wise.
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2 Algorithm and Theoretical Analysis

We extend the Fast Gradient Method [14,20] in order to make it primal-dual so
that it allows not only to solve the dual problem (P2), but also to construct a
nearly optimal and nearly feasible solution to the primal problem (P1). We also
equip it with a stopping criterion which allows an online control of the quality of
the approximate primal-dual solution. Let {αi}i≥0 be a sequence of coefficients
satisfying

α0 ∈ (0, 1],

α2
k ≤

k∑
i=0

αi, ∀k ≥ 1.

We define also Ck =
∑k
i=0 αi and τi = αi+1

Ci+1
. Usual choice is αi = i+1

2 , i ≥ 0. In

this case Ck = (k+1)(k+2)
4 . Also we define the Euclidean norm on H∗1 ×H∗2 in a

natural way

‖λ‖22 = ‖λ(1)‖22 + ‖λ(2)‖22

for any λ = (λ(1), λ(2))T ∈ H∗1 ×H∗2 . Unfortunately we can not directly use the
convergence results of [14,20] for the reason that the feasible set Λ in the dual
problem (D1) is unbounded and the constructed sequence x̂k may possibly not
satisfy the equality and inequality constraints.

Theorem 1. Let the assumptions listed in the subsection 1.3 hold and αi = i+1
2 ,

i ≥ 0 in Algorithm 1. Then Algorithm 1 will stop after not more than

Nstop = max


⌈√

8L(R2
1 +R2

2)

ε̃f

⌉
,

⌈√
8L(R2

1 +R2
2)

R1ε̃eq

⌉
,


√

8L(R2
1 +R2

2)

R2ε̃in


−1

iterations. Moreover after not more than

N = max


⌈√

16L(R2
1 +R2

2)

εf

⌉
,

⌈√
8L(R2

1 +R2
2)

R1εeq

⌉
,


√

8L(R2
1 +R2

2)

R2εin


− 1

iterations of Algorithm 1 the point x̂N will be an approximate solution to Problem
(P1) in the sense of (1).

Proof. From the complexity analysis of the FGM [14,20] one has

Ckϕ(ηk) ≤ min
λ∈Λ

{
k∑
i=0

αi (ϕ(λi) + 〈∇ϕ(λi), λ− λi〉) +
L

2
‖λ‖22

}
(9)
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ALGORITHM 1: Fast Primal-Dual Gradient Method

Input: The sequence {αi}i≥0, accuracy ε̃f , ε̃eq, ε̃in > 0
Output: The point x̂k.
Choose λ0 = (λ

(1)
0 , λ

(2)
0 )T = 0.

Set k = 0.
repeat

Compute

ηk = (η
(1)
k , η

(2)
k )T = arg min

λ∈Λ

{
ϕ(λk) + 〈∇ϕ(λk), λ− λk〉+

L

2
‖λ− λk‖22

}
.

ζk = (ζ
(1)
k , ζ

(2)
k )T = arg min

λ∈Λ

{
k∑
i=0

αi (ϕ(λi) + 〈∇ϕ(λi), λ− λi〉) +
L

2
‖λ‖22

}
.

Set
λk+1 = (λ

(1)
k+1, λ

(2)
k+1)T = τkζk + (1− τk)ηk.

Set

x̂k =
1

Ck

k∑
i=0

αix(λi) = (1− τk−1)x̂k−1 + τk−1x(λk).

Set k = k + 1.
until |f(x̂k) + ϕ(ηk)| ≤ ε̃f , ‖A1x̂k − b1‖2 ≤ ε̃eq, ‖(A2x̂k − b2)+‖2 ≤ ε̃in;

Let us introduce a set ΛR = {λ = (λ(1), λ(2))T : λ(2) ≥ 0, ‖λ(1)‖2 ≤ 2R1, ‖λ(2)‖2 ≤
2R2} where R1, R2 are given in (7). Then from (9) we obtain

Ckϕ(ηk) ≤ min
λ∈Λ

{
k∑
i=0

αi (ϕ(λi) + 〈∇ϕ(λi), λ− λi〉) +
L

2
‖λ‖22

}
≤

≤ min
λ∈ΛR

{
k∑
i=0

αi (ϕ(λi) + 〈∇ϕ(λi), λ− λi〉) +
L

2
‖λ‖22

}
≤

≤ min
λ∈ΛR

{
k∑
i=0

αi (ϕ(λi) + 〈∇ϕ(λi), λ− λi〉)

}
+ 2L(R2

1 +R2
2). (10)

On the other hand from the definition (2) of ϕ(λ) we have

ϕ(λi) = ϕ(λ
(1)
i , λ

(2)
i ) = 〈λ(1)i , b1〉+ 〈λ(2)i , b2〉+

+ max
x∈Q

(
−f(x)− 〈AT1 λ

(1)
i +AT2 λ

(2)
i , x〉

)
=

= 〈λ(1)i , b1〉+ 〈λ(2)i , b2〉 − f(x(λi))− 〈AT1 λ
(1)
i +AT2 λ

(2)
i , x(λi)〉.
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Combining this equality with (3) we obtain

ϕ(λi)− 〈∇ϕ(λi), λi〉 = ϕ(λ
(1)
i , λ

(2)
i )− 〈∇ϕ(λ

(1)
i , λ

(2)
i ), (λ

(1)
i , λ

(2)
i )T 〉 =

= 〈λ(1)i , b1〉+ 〈λ(2)i , b2〉 − f(x(λi))− 〈AT1 λ
(1)
i +AT2 λ

(2)
i , x(λi)〉−

− 〈b1 −A1x(λi), λ
(1)
i 〉 − 〈b2 −A2x(λi), λ

(2)
i 〉 = −f(x(λi)).

Summing these inequalities from i = 0 to i = k with the weights {αi}i=1,...k we
get, using the convexity of f(·)

k∑
i=0

αi (ϕ(λi) + 〈∇ϕ(λi), λ− λi〉) =

= −
k∑
i=0

αif(x(λi)) +

k∑
i=0

αi〈(b1 −A1x(λi), b2 −A2x(λi))
T , (λ(1), λ(2))T 〉 ≤

≤ −Ckf(x̂k) + Ck〈(b1 −A1x̂k, b2 −A2x̂k)T , (λ(1), λ(2))T 〉.

Substituting this inequality to (10) we obtain

Ckϕ(ηk) ≤ −Ckf(x̂k)+

+ Ck min
λ∈ΛR

{
〈(b1 −A1x̂k, b2 −A2x̂k)T , (λ(1), λ(2))T 〉

}
+ 2L(R2

1 +R2
2).

Finally, since

max
λ∈ΛR

{
〈(−b1 +A1x̂k,−b2 +A2x̂k)T , (λ(1), λ(2))T 〉

}
=

= 2R1‖A1x̂k − b1‖2 + 2R2‖(A2x̂k − b2)+‖2,

we obtain

ϕ(ηk) + f(x̂k) + 2R1‖A1x̂k − b1‖2 + 2R2‖(A2x̂k − b2)+‖2 ≤
2L(R2

1 +R2
2)

Ck
. (11)

Since λ∗ = (λ∗(1), λ∗(2))T is an optimal solution of Problem (D1) we have for
any x ∈ Q

Opt[P1] ≤ f(x) + 〈λ∗(1), A1x− b1〉+ 〈λ∗(2), A2x− b2〉.

Using the assumption (7) and that λ∗(2) ≥ 0 we get

f(x̂k) ≥ Opt[P1]−R1‖A1x̂k − b1‖2 −R2‖(A2x̂k − b2)+‖2. (12)

Hence

ϕ(ηk) + f(x̂k) = ϕ(ηk)−Opt[P2] +Opt[P2] +Opt[P1]−Opt[P1] + f(x̂k)
(5)
=

= ϕ(ηk)−Opt[P2]−Opt[D1] +Opt[P1]−Opt[P1] + f(x̂k)
(6)

≥

≥ −Opt[P1] + f(x̂k)
(12)

≥ −R1‖A1x̂k − b1‖2 −R2‖(A2x̂k − b2)+‖2. (13)
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This and (11) give

R1‖A1x̂k − b1‖2 +R2‖(A2x̂k − b2)+‖2 ≤
2L(R2

1 +R2
2)

Ck
. (14)

Hence we obtain

ϕ(ηk) + f(x̂k)
(13),(14)

≥ −2L(R2
1 +R2

2)

Ck
. (15)

On the other hand we have

ϕ(ηk) + f(x̂k)
(11)

≤ 2L(R2
1 +R2

2)

Ck
. (16)

Combining (14), (15), (16) we conclude

‖A1x̂k − b1‖2 ≤
2L(R2

1 +R2
2)

CkR1
,

‖(A2x̂k − b2)+‖2 ≤
2L(R2

1 +R2
2)

CkR2
,

|ϕ(ηk) + f(x̂k)| ≤ 2L(R2
1 +R2

2)

Ck
. (17)

As we know for the chosen sequence αi = i+1
2 , i ≥ 0 it holds that Ck =

(k+1)(k+2)
4 ≥ (k+1)2

4 . Then in accordance to (17) after given in the theorem
statement number Nstop of the iterations of Algorithm 1 the stopping criterion
will fulfill and Algorithm 1 will stop.

Now let us prove the second statement of the theorem. We have

ϕ(ηk) +Opt[P1] = ϕ(ηk)−Opt[P2] +Opt[P2] +Opt[P1]
(5)
=

= ϕ(ηk)−Opt[P2]−Opt[D1] +Opt[P1]
(6)

≥ 0.

Hence
f(x̂k)−Opt[P1] ≤ f(x̂k) + ϕ(ηk) (18)

On the other hand

f(x̂k)−Opt[P1]
(12)

≥ −R1‖A1x̂k − b1‖2 −R2‖(A2x̂k − b2)+‖2. (19)

Note that since the point x̂k may not satisfy the equality and inequality con-
straints one can not guarantee that f(x̂k) − Opt[P1] ≥ 0. From (18), (19) we
can see that if we set ε̃f = εf , ε̃eq = min{ εf2R1

, εeq}, ε̃in = min{ εf2R2
, εin} and

run Algorithm 1 for N iterations, where N is given in the theorem statement,
we obtain that (1) fulfills and x̂N is an approximate solution to Problem (P1) in
the sense of (1). ut

Note that other authors [9,10,16,17,18,19,15] do not provide the complexity anal-
ysis for their algorithms when the accuracy of the solution is given by (1).
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3 Preliminary Numerical Experiments

To compare our algorithm with the existing algorithms we choose the problem (8)
of regularized optimal transport [9] which is a special case of Problem (P1). The
first reason is that despite insufficient theoretical analysis the existing balancing
type methods for solving this type of problems are known to be very efficient in
practice [9] and provide a kind of benchmark for any new method. The second
reason is that ROT problem have recently become very popular in application
to image analysis based on Wasserstein spaces geometry [9,10].

Our numerical experiments were carried out on a PC with CPU Intel Core i5
(2.5Hgz), 2Gb of RAM using Matlab 2012 (8.0). We compare proposed in this
article Algorithm 1 (below we refer to it as FGM) with the following algorithms

– Applied to the dual problem (D1) Conjugate Gradient Method in the Fletcher–
Reeves form [21] with the stepsize chosen by one-dimensional minimization.
We refer to this algorithm as CGM.

– The algorithm proposed in [15] and based on the idea of Tikhonov’s regu-
larization of the dual problem (D1). In this approach the regularized dual
problem is solved by the Fast Gradient Method [14]. We will refer to this
algorithm as REG;

– Balancing method [12,9] which is a special type of a fixed-point-iteration
method for the system of the optimality conditions for the ROT problem. It
is referred below as BAL.

The key parameters of the ROT problem in the experiments are as follows

– n := dim(E) = p2 – problem dimension, varies from 24 to 94;
– m1 := dim(H1) = 2

√
n and m2 = dim(H2) = 0 – dimensions of the vectors

b1 and b2 respectively;
– cij , i, j = 1, p are chosen as squared Euclidean pairwise distance between the

points in a
√
p×√p grid originated by a 2D image [9,10];

– a1 and a2 are random vectors in Sm1(1) and b1 = (a1, a2)T ;
– the regularization parameter γ varies from 0.001 to 1;
– the desired accuracy of the approximate solution in (1) is defined by its

relative counterpart εrelf and εrelg as follows

εf = εrelf · f(x(λ0)) εeq = εrelg · ‖A1x(λ0)− b1‖2,

where λ0 is the starting point of the algorithm. Note that εin = 0 since no
inequality constraints are present in the ROT problem.

Figure 1 shows the number of iterations for the FGM, BAL and CGM meth-
ods depending on the inverse of the regularization parameter γ. The results
for the REG are not plotted since this algorithm required one order of mag-
nitude more iterations than the other methods. In these experiment we chose
n = 2401 and εrelf = εrelg = 0.01. One can see that the complexity of the FGM
(i.e. proposed Algorithm 1) depends nearly linearly on the value of 1/γ and this
complexity is smaller than that of the other methods when γ is small.
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Fig. 1: Complexity of FGM, BAL and CGM as γ varies

Figure 2 shows the the number of iterations for the FGM, BAL and CGM
methods depending on the relative error εrel. The results for the REG are not
plotted since this algorithm required one order of magnitude more iterations
than the other methods. In these experiment we chose n = 2401, γ = 0.1 and
εrelf = εrelg = εrel. One can see that in half of the cases the FGM (i.e. proposed
Algorithm 1) performs better or equally to the other methods.

Conclusion

This paper proposes a new primal-dual approach to solve a general class of prob-
lems stated as Problem (P1). Unlike the existing methods, we managed to provide
the convergence rate for the proposed algorithm in terms of the primal prob-
lem error |f(x̂k −Opt[P1]| and the linear constraints infeasibility ‖A1x̂k − b1‖2,
‖(A2x̂k − b2)+‖2. Our numerical experiments show that our algorithm performs
better than existing methods for problems of regularized optimal transport which
are a special instance of Problem (P1) for which there exist efficient algorithms.
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