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Abstract

This paper is devoted to the study of stochastic optimization problems under the
generalized smoothness assumption. By considering the unbiased gradient oracle
in Stochastic Gradient Descent, we provide strategies to achieve in bounds the
summands describing linear rate. In particular, in the case Ly = 0, we obtain in the

convex setup the iteration complexity: N = O (LlRlog % + M) for Clipped

€
Stochastic Gradient Descent and N = O (LlR log %) for Normalized Stochastic
Gradient Descent. Furthermore, we generalize the convergence results to the case
with a biased gradient oracle, and show that the power of (Lg, L1 )-smoothness
extends to zero-order algorithms. Finally, we demonstrate the possibility of linear
convergence in the convex setup through numerical experimentation, which has
aroused some interest in the machine learning community.

1 Introduction

In many real-world scenarios, systems are often noisy and complex, making deterministic optimization
infeasible. Therefore, this work focuses on a stochastic optimization problem:

min {£(x) i= Been [£(2.)]}. 0

where f : R? — R is a convex function and where we assume that optimization algorithms only have
access to the gradient oracle g : R? x D — R? with stochastic gradient E [V f(z,¢)] = Vf(z) and
bias b(z) terms:

g(z,8) = Vf(z,8) + b(z). )

Frequently, to solve problem (I]) one uses what is likely already a classic optimization algorithm,
namely Stochastic Gradient Descent (SGD) [[10] or its variations, which have demonstrated their
effectiveness in different settings, for instance, federated learning [60} 33, 58]], deep learning [[15} 64,
18], reinforcement learning [7, 139] and others. Among the variants of SGD, it is worth noting the
Normalized Stochastic Gradient Descent (NSGD) 27, 166] which has received widely attention from
the community because it addresses challenges in optimization for machine learning [8]. And it’s
also worth noting the Clipped Stochastic Gradient Descent (ClipSGD) [24], which is commonly used
to stabilize the training of deep learning models [48] [25].

Many standard literatures analyze stochastic optimization algorithms with unbiased gradient oracle (2).
In particular, SGD [36, [1 1], NSGD [65} 30], ClipSGD [25} [34]]. However, there are a number of
applications where gradient oracle (2)) is biased. For example, sparsified SGD [4], delayed SGD [53],
etc. Zero-order algorithms [46, [16] occupy a special place in the class of stochastic methods with
biased gradient oracle (Z)). They are motivated by various applications, including multi-armed bandit
[52} 38]], online optimization [/1} 16} 3], hyperparameter tuning [28} 47]].
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In our work, we investigate the convergence of first-order algorithms: ClipSGD, NSGD, and zero-
order algorithms: ZO-ClipSGD, ZO-NSGD, assuming convexity and (Lg, L )-smoothness.

We emphasize the following points:

Algorithm step size. Zero-order algorithms do not have access to the exact (stochastic) gradient in
particular, as well as every algorithm with a biased gradient oracle, so we focus on creating first-order
methods whose step size does not depend on knowledge of the gradient at a given point. We use the
developed first-order algorithms as a basis for creating zero-order methods [22].

Linear convergence. Historically [45]], stochastic Gradient Descent for flx) = |x|*", n=15, d =5000
optimization first- and zero-order algorithms have e == )= ()7 when JVAx) = 2
achieved the desired accuracy with a linear rate of
convergence only in strongly convex case and under
assumption of standard smoothness. However, the
work of [44] showed that if the generalized smooth-
ness assumption is satisfied in a deterministic convex 108
optimization problem, then gradient descent has Y B e Trat PAYRRYEN R PSR S
two regimes: linear convergence rate as long as
|V f(@®)|| > %’ and a sublinear convergence rate
in the other case (see the example of the power of Figure 1: Changing regimes demonstration
norm function in Figure[I). Considering these points, our work answers the following question:
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Can linear convergence rate in stochastic convex optimization be achieved for first- and zero-order
algorithms with constant step size?

1.1 Main Contributions
More specifically, our contributions are the following:

» We provide strategies to obtain summands that describe the linear convergence rate. In partic-
ular, we show that using clipping or normalization techniques can achieve the desired results.

* We improve convergence results for ClipSGD and NSGD with unbiased gradient oracle ()
in the convex setting assuming (Lg, L1 )-smoothness (see Table . Moreover, we show that
in the case Ly = 0, NSGD can converge in the convex setup with a linear convergence rate to

the desired accuracy, requiring N = @) (L1 R) iterations and B = O (%) batch size.

* We generalize ClipSGD, and NSGD to the case of a biased gradient oracle, showing how
the bias accumulates over iterations (this result may be of independent interest).

* We provide the first convergence results for the zero-order algorithms ZO-ClipSGD (Algo-
rithm , and ZO-NSGD (Algorithm in the convex and (Lg, L1)-smooth setting. We show
that the power of generalized smoothness extends to zero-order methods as well, achieving
summands characterizing the linear convergence rate (see Table []).

* We demonstrate on a numerical example of logistic regression (which is of particular interest
to the machine learning community) that indeed, zero- and first-order stochastic algorithms
can converge with linear rates in a convex setup.

1.2 Formal Setting and Assumptions

In this subsection, we introduce and discuss main assumptions and notations used throughout paper.
Notations. We use (x,y) := Zle x;; to denote standard inner product of z,y € R?. We denote

Euclidean norm in R? as ||z|| := \/Zg'l:l z2. In particular, this norm ||z|| := \/(x, z) is related to
the inner product. We use P|] to define probability measure which is always known from the context,
E[-] denotes mathematical expectation. We use the following notation B%(r) := {z € R : ||z| < r}
to denote Euclidean ball (I2-ball) and S¢(r) := {z € R? : ||z| = r} to denote Euclidean sphere. We
denote 0 < M < oo as the upper bound of the gradient norm ||V f(x) || For simplicity, we denote
f*:=f(z*)and R = ||2° — 2*||. We use O(-) to hide the logarithmic coefficients.
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Table 1: Comparison of convergence results of SGD variants to the most related work [20] in the convex and

(Lo, L1)-smooth setup. Notation: ) < (Lo+L1c) ™" —step size; ¢ > 0 clipping radius; R = (n + ]‘fZR + 5);

(&
€ = desired accuracy; d = dimension; SLCR = summand with linear convergence rate.

Algorithm Number 7(E)itlzv\I]terations Bat;? BSize Maximum#lioise Level SLCR? Reference

) M + gQR? + L2R? X X X Gaash et al. [20]
ClipSGD o (ff log L + &) o(=xr) x /  Theorem.1|(Ours)
NSGD o ((L R+ L) log 5) 16) (o MRS) X v Theorem%(Ours)
Z0-ClipSGD o (% log L + ) o (d”RU ) o ( TR i fR }) /  Theorem[5.2|(Ours)
ZONSGD O ((LlR 4 Lol log ) o (4 ”R‘“J) S e i {6 /  Theorem[5.4|(Ours)

Assumptions on objective function. Throughout this paper, we refer to the standard L-smoothness
assumption, which is widely used in the literature [e.g.|51] and has the following form:

Assumption 1.1 (L-smoothness). Function f is L-smooth if for any z,y € R is satisfied:
IVf(y) = V@) < Lily —=|.

Despite the widespread use of Assumption[I.I] our work focuses on the more general smoothness
assumption, which has recently attracted increased interest. In particular, in [62] it was shown that
norm of Hesse matrix correlates with norm of gradient function when training neural networks, and
in [44] it was shown that using generalized smoothness it is possible to significantly improve the
convergence of algorithms. (Lg, L1)-smoothness [62,[63]] has been proposed as a natural relaxation
of standard smoothness assumption.

Assumption 1.2 ((Lg, L1 )-smoothness). A function f : R? — Ris (L, L1 )-smooth if the following
inequality is satisfied for any z,y € R? with ||y — z| < L%

IVi(y) = V@) < (Lo + Li V(@)D [ly — =] -

Assumption [1.2]in the case L; = 0 covers the standard Assumption Moreover, (Lo, L1)-
smoothness is strictly more general than L-smoothness, see the examples in [62] [12} 34} 26].

Remark 1.3 (Clarification regarding Lo = 0). In this paper we often emphasize the case Ly = 0
in Assumption It is worth noting that the class of functions that do not reach their infimum z*
(converge to an asymptote) satisfies this case. Explicit examples of functions with Ly = 0 are the
exponent of the inner product and the logistic function (see [26]] for details).

Assumptions on gradient oracle. In our analysis, we consider cases with both unbiased and biased
gradient oracle (2). Therefore, we assume that the bias and variance of gradient oracle (2)) are bounded:

Assumption 1.4 (Bounded bias). There exists constant ( > 0 such that the bias is bounded if

Yz € R%:
[b(2)[| < ¢
Assumption 1.5 (Bounded variance). There exists constant 02 > 0 such that the variance is bounded
if Vo € R%:
E|lig(x.€) - Elg(, &)l

Assumption [T.4]is organic [see, e.g.[43]], and the case ( = 0 corresponds to the unbiased gradient
oracle (). Assumption [I.5]is often used by the community [e.g. 32, [37], and is sometimes called
heavy-tailed noise [23]].

1.3 Paper Organization

Next, our paper has the following structure. In Section 2] we discuss related work. In Section 3] We
start to present the main results of our work, in particular, we provide the first strategy for obtaining a
summand characterizing the linear rate in the convergence estimate. In Section ] we analyze NSGD
in the convex setting, showing in which regime linear convergence can be observed. We provide
a first analysis of zero-order algorlthms under (Lg, L1)-smoothness in Sectlonl 5l In Sectlon@ we
discuss the results obtained. While, in Section[7] we show experimentally about the poss1b1hty of
linear convergence in the convex setting. Finally, Section [§]concludes our paper. All missing proofs
of Lemmas and Theorems are provided in the supplementary materials (Appendix).



2 Related Works

In this section, we will discuss the most related works.

Algorithms under (L, L;)-smoothness. Generalized smoothness was first introduced in [62],
which analyzed ClipSGD in the non-convex setting. A number of works [156, 1411 [19} 40} 29, |59, 157]]
followed that also focused on the non-convex setup, including ClipSGD [63} 161} 134], NSGD [63} 31]].
After that, there was interest in research on algorithms in the convex deterministic setting: Clipped
Gradient Descent [34], Normalized Gradient Descent [13]], Gradient Descent with Polyak step size
M = va(rfk(%)flp [54], and 7, = m [26, 55]. Moreover, in [44], it was theoretically
shown that it is possible to significantly improve the convergence of algorithms in the (strongly)
convex setting by achieving linear convergence rate. However, much less attention has been paid to the
stochastic convex setting. Perhaps the only results are [26} 20], which considers SGD and ClipSGD
achieving only a sublinear convergence rate. Moreover, in the case Ly = 0 in the Assumption, the
algorithms from [26, 20] cannot converge to the desired accuracy. In our work, we focus on the
stochastic convex setup, showing that existing convergence results can be significantly improved.

Zero-order algorithms. The work of [21] showed that to achieve optimal estimates of iteration
N and oracle T complexity in zero-order algorithms, one should base it on a first-order algorithm
using a gradient approximation as the biased gradient oracle (2)), which uses only information
about the objective function f. Using this technique a number of works have achieved the best
convergence results in various settings including distributed optmization [2l], federated optimization
[49], overparameterization [42]], Polyak-Lojasiewicz condition [23], etc. However, all these works
assumed standard smoothness (Assumption [I.T)) and achieved only sublinear convergence rates. In
our work, we present convergence results for zero-order algorithms under (Lg, L1 )-smoothness.

3 Clipped Stochastic Gradient Descent

In this section we begin to present the main results of our work. In particular, we analyze the conver-
gence of SGD variants under convexity and (Lo, L1)-smoothness with step size independent of the
gradient norm. We assume that the gradient oracle (Z)) is unbiased ¢ = 0, i.e., Assumption|[I.5]takes:

E||Vf(z,&) - Vi(@)|*] <o

As a first strategy to obtain the summands that characterize the linear rate, we consider the clipping
technique. Applying this technique we produce the ClipSGD, which has the following form:

Algorithm 1 Clipped Stochastic Gradient Descent Method (ClipSGD)

Input: initial point z, € RY, iterations IV, batch size B, step size 1, > 0 and clipping radius ¢ > 0
fork=0to N —1do
1. Draw fresh i.i.d. samples £F, ..., €%

2. Vf(ab &by = L8 vi(ak, ef)
3. clip,(V f(a*,£*)) = min {1, qorSgmy | V/ (2", €9)
4. L 2k - clip,(V f (%, €5)

end for

Return: 2V

Algorithm I|uses the clipped stochastic gradient clip,(V f(x, £)), which normalizes the gradient only
if |[Vf(z,€)|| > c. Next theorem provides the convergence result for ClipSGD.

r N
Theorem 3.1. Let function f satisfy Assumption ((Lo, L1)-smoothness) and unbiased
gradient oracle @) satisfy Assumption[I.3](bounded variance), then Algorithm[I)\with constant

step size nr, = 1 < [4(Lo + Llc)]f1 and arbitrary clipping radius c guarantees error:
K R? o? MR R
E N_*<<1_@) 0y _ * - 4z -,
] = £ 5 (0= F) G-+ g+ 5 [t + T )l

where 0 < K < N is number of iterations for which ||V f (z*)|| < § is satisfied.




It should be noted that the results of Theorem [3.1]are given with a choice of step size independent
of the gradient at the current point. This choice of step allows us to separate the constants Ly and

L1 in the final estimates. The summand n(% is a typical ClipSGD characterizing the sublinear

K)
rate (see e.g. [23]). However, it is worth noting that by substituting n = (Lo + Lic) ™, then the
summand with Ly : ’;‘\}f};’; already improves existing results both assuming standard smoothness [25]]

and generalized smoothness [20]. The first summand (1 — %)K (f(z%) — f*), which characterizes
the linear rate, deserves special attention. To the best of our knowledge, this is the first result for
ClipSGD showing such a summand in a convex setting. Moreover, by substituting = (Lo + Lic) ™1,

it is not hard to see that in the regime Ly = 0 (see Remark [I.3), Algorithm [I] at a batch size
B=0 ("; (n+ ME 4+ %)) requires only N = O (LlRlogé + Ll%Rz) iterations. This iteration

C2
complexity significantly outperforms standard results in the L-smoothness setting (Assumption [I.T),
since [37] shows a lower bound consisting only of a sublinear convergence rate. Moreover, comparing
to the closest work to the problem setting, then even when o = 0 [20] does not guarantee convergence
to the desired accuracy, offering an estimate of N = O (L%RQ) that is independent of accuracy .

4 Normalized Stochastic Gradient Descent

In the previous section, we showed that it is possible to obtain in the final convergence estimate a
summand characterizing the linear rate. In addition, we highlighted the regime Ly = 0, in which

. . . . . » 2 . .
ClipSGD has the following iteration complexity: N = O <L1Rlog% + %) However, with this
iteration complexity, it cannot be said that the algorithm can converge with linear rate to the desired
accuracy. Such an estimate can characterize that the algorithm converges with linear rate as long as

the gradient norm is large HV f (") H > ¢, and then slows down to the sublinear rate. However, it
is worth noting that the summand responsible for the sublinear rate depends on the clipping radius:

2
%. That is, if we take c smaller, the ClipSGD will take longer to converge to the linear rate.
Thus, noticing that the regime HV f (a:k) H > cis a gradient normalization, then considering NSGD, it
seems that one can achieve a true linear convergence rate to the desired accuracy.

In this section, we consider a normalization technique to obtain the summand characterizing the linear
rate. Applying this technique we produce the NSGD, which has the following form (see Algorithm2)):

Algorithm 2 Normalized Stochastic Gradient Descent Method (NSGD)

Input: initial point o € RY, iterations number N, batch size B and step size 1 > 0
fork=0to N —1do
1. Draw fresh i.i.d. samples &5, ..., €%

2. Vf(ah &%) = L8 Vf(ak,eF)

k1 k Vf(z".£")
SO/ A e 2]
end for
Return: zV

The following theorem provides a convergence result for Algorithm 2]

r N\
Theorem 4.1. Let function f satisfy Assumption ((Lo, Ly1)-smoothness) and unbiased
gradient oracle @) satisfy Assumption[I.3](bounded variance), then Algorithm[2lwith hyper-
parameter A > 0 and constant step size qi, = 1 < A/ [2(Lo + L1)\)] guarantees:

N * n & 0 * UQMR
E[f@")] - f S (1-F) (@) 1)+ 5 +R.
N J

From Theorem.T| we can see that we have indeed got rid of the summand characterizing the sublinear
rate from the deterministic part. Thus, we see that it is normalization that allows us to achieve the

summand characterizing the linear rate (1 — %) N (f(2°) — f*). However, note that by substituting

N
1= A/ [2(Lo + L1 \)], we obtain a summand with Lg : (1 - %@) (f(z°) — f*), which is in fact



sublinear since it depends on the hyperparameter A (it follows from the third summand that A ~ £/R),
and with L : (1 — R+:1 (f(2%) — f*), which is indeed linear since it does not depend on ) in any

way. That is, Algorithm , which uses batch parallelization, requires N = O ((LlR + L"TRz) log %)

iterations. Similar to the reasoning in the previous section, it is worth highlighting the regime
Lo = 0 (see Remark[I.3). Then we obtain a very surprising result on iteration complexity, namely, to
achieve the desired accuracy NSGD converge with a linear rate of N = O (L Rlog =) iterations.
This estimate breaks all existing bounds on first-order algorithms [37], given the specificity of the
problem formulation, namely convexity. However, to achieve this rate over iterations, NSGD requires

. 2 3 . . .
abatch size B =0 (%) We emphasize that the fact that NSGD requires a large batch size is
not surprising (see, e.g., [14]), in contrast to the true linear convergence rate in the convex setup.

5 Zero-Order Algorithms

In this section, we consider another class of algorithms: optimization algorithms that have access
only to an objective function value f possibly with some bounded adversarial noise |§(z)| < A:

f(z.€) = f(z,€) + (). G
In (3), A means the maximum possible allowable noise level at which the desired accuracy can still
be achieved. In [5]], the importance of considering A as a third optimality criterion for zero-order
algorithms was shown. In particular, in some applications [9], the larger noise level A is, the cheaper
the call to the inexact oracle f in (3).

Since this class of algorithms does not have access to the stochastic gradient V f (z, £), the gradient
oracle (2) will be the gradient approximation with Ly randomization [52 46]:

8o (e.6)) = 5 (Fo+1e.8) = flo—1e0) e @

where 7 > 0 is a smoothing parameter, e is a random vector uniformly distributed in S%(1).

Due to the fact that the gradient approximation is the biased gradient oracle (2), in order to create
zero-order algorithms by basing on the results in Sections [3|and 4] it is necessary to first generalize
the results of Theorems @ E] (note that in these regimes it is not necessary to know the (stochastic)
norm of the gradient with step size) to the case of gradient oracle with bias.

Next, we present convergence results for the following two zero-order algorithms: ZO-ClipSGD
(Algorithm 3)) and ZO-NSGD (Algorithm 4.

5.1 ZO-ClipSGD Method

The first algorithm we consider in this section is ZO-ClipSGD. This algorithm is a modification
of ClipSGD (Algorithm [T, which uses instead of the original ||V f(z, £)|, the stochastic gradient
approximation (@), which is the biased gradient oracle (Z). The ZO-ClipSGD has the following form:

Algorithm 3 Zero-Order Clipped Stochastic Gradient Descent Method (ZO-ClipSGD)

Input: initial point z, € RY, iterations N, batch size B, step size . > 0 and clipping radius ¢ > 0
fork=0to N —1do
1. Draw fresh i.i.d. samples ¥, ..., ég and e, ..., e%

2. g(ab, {e",€"}) = 5 i, g(ak, {eF, &F}) via @)

3. clip,(g(*, {e*,€°})) = min {1, e iZrgrpy | 8, e, €°)

4. aht ok — e clip,(g(a*, {e¥, £FY))
end for

Return: zV

Before proceeding to present the convergence results of Algorithm [3] we note that the gradient
approximation (@) is a biased gradient oracle, so we cannot directly use the results obtained in



Theorem [3.1] Thus, in order to obtain estimates for the iteration complexity N, oracle complexity
T and maximum noise A, we first need to generalize the results of Theorem [3.1]to the case with a
biased gradient oracle (2).

Lemma 5.1. Let function f satisfy Assumption and biased gradient oracle @) (¢ > 0) satisfy
Assumption then Algorithmwith step size Ny =1 < [4(Lo + L1c)] " guarantees error:

B[] - 1< (1= 2) ) - )+ R (T ¢?) 4 ¢
~ R n(N — K) B ’
where c is arbitrary clipping radius, R = (77 + % + %) 0 < K < N is the number of iterations
for which the condition ||V f(z¥)|| < & is satisfied.

Lemma [5.1|shows how the bias accumulates over iterations, thus converging to the error floor. By
estimating the second moment and the bias of the gradient approximation @) and substituting them
into Lemma 5.1] we find three optimality criteria for ZO-ClipSGD.

r N
Theorem 5.2. Let function f satisfy Assumption [I.2] gradient approximation @) satisfy
Assumption then Algorithm |3| with step size n, = n < [4(Lo + L1 c)]_1 converges to
desired € accuracy after:

1 R MR (1. 1
N:(’)(Rlog—i—R); T=(’)<d02R<log+R>)
ne e me ec?n @ e €

number of iterations and zero-order oracle calls at

A< ° min {6, 5}
VAR(Lo + L M) VdR
2

maximum noise level, where ¢ > 0 is clipping radius, E [HVf(m, €)||2} <%

. /

It is not hard to see from Theorem@]that in the generalized smoothness condition, the iteration
complexity at ZO-ClipSGD is the same as the first-order method of Algorithm |1} This effect is
similar in the standard smoothness condition as well. The oracle complexity is d times worse than
its first-order counterpart due to the restriction to the oracle (Algorithm [3uses only the zero-order
oracle (3)). It is worth noting that the maximum noise level A outperforms [33]], showing that
generalized smoothness not only allows us to reach the summands characterizing the linear rate, but
also improves the estimate on the maximum noise level (it is A that affects the error floor, in other
words, the accuracy of the solution, to control the asymptote). See the proof in the Appendix

5.2 ZO-NSGD Method

Similar to the first-order algorithms, in this subsection we answer the question whether linear
convergence can be achieved by the zero-order method in a convex setup. To answer this question,
we consider the Zero-Order Normalized Stochastic Gradient Descent Method.

Algorithm 4 Zero-Order Normalized Stochastic Gradient Descent Method (ZO-NSGD)

Input: initial point xy € R?, iterations number N, batch size B, step size ni, > 0
fork=0to N —1do
1. Draw fresh i.i.d. samples £F, ..., &% and ef, ..., ek

2. g(z", {e",&¥}) = LS°7  g(a®, {eb, €F}) via @)

k1 kE_ . . _g@"{e" "))
3.8 28 =k gFqem e
end for

Return: zV

In a similar way as in the previous subsection, we first generalize Theorem [4.1]to the case with a
biased gradient oracle to substitute estimates on the bias and the second moment of the gradient
approximation to find optimality criteria for the gradient-free algorithm ZO-NSGD.



Lemma 5.3. Let function f satisfy Assumption |1.2| ((Lo,L1)-smoothness) and
biased gradient oracle @) (¢ > 0) satisfy Assumption (bounded variance), then Algo-

rithm || with hyperparameter X > 0 and step size np =1 < A/ [2(Lo + L1\)] guarantees:

B[] - 5 (1= 5) 060 -+ 5 (5 +¢) +ar

From Lemma[5.3|we can see how the inaccuracy accumulates over the iteration. The summand with
¢ 2is unimprovable for first-order unaccelerated algorithms (see, e.g., [17,23]]). Now, having obtained
the results for the biased NSGD we can use them to derive convergence results for Algorithm 4]

r N
Theorem 5.4. Let function f satisfy Assumption ((Lo, L1)-smoothness) and gradient
approximation (@) satisfy Assumption[I.3|(bounded variance), then ZO-NSGD with step size
ne =1 < A/ [2(Lo + L1 \)] converges to desired € accuracy (E [f(scN)] —f*< 5) after:

) 4
voo(Bul)s  roo(MEY
n € e n

number of iterations and zero-order oracle calls (3) at

£3/2 £3/2
A < min< &, ———
~ VAR3/2(Ly 4+ L1 M) { VdR3/2 }

maximum noise level, where X\ > 0 is hyperparameter, E [HVf(:L’, §)H2} <52

N J
It is not hard to see that given a restricted oracle , Theorem shows that ZO-NSGD re-

quires N = O (75; log é) iterations to achieve the desired accuracy, which corresponds to a lin-

ear rate. However, it is worth noting that, as in Theorem @ if we take the maximum step size
n = M [2(Lo 4+ L1 \)], then the summand with L still shows sublinear convergence O <L°R2 ),

€

despite the presence of the summand with L;. But in the Ly = 0 regime, we can say unambiguously
that the zero-order algorithm ZO-NSGD can converge with a linear rate to the desired accuracy in

the convex setup if we take the batch size B = O (ﬁ%) Theoremshows that the power of

generalized smoothness (together with Batch parallelization) extends to zero-order algorithms. Com-
paring the result of ZO-NSGD with Theorem[5.2] we can see that for a significant improvement in
iteration complexity N we “pay” for a deterioration in both oracle complexity 7" and maximum noise
level A, which seems quite natural. See the proof of Lemma[5.3]and Theorem 5.4]in Appendix

6 Discussion and Future Works

In Sections3}f5] we gave two strategies for obtaining summands that characterize the linear rate in
convergence estimates of algorithms for the convex setting: clipping (see Section[3) and normalization
(see Section ) techniques. Although these summands are quite unexpected for the convex setup and
improve the estimates on the iteration complexity, we cannot claim linear convergence in general,
since the convergence is dominated by the summands characterizing the sublinear rate. However, as
we noted in Theorems[d.T)and[5.4] in the regime Ly = 0, the NSGD and ZO-NSGD methods break
all existing bounds on iteration complexity, demonstrating that it is possible to converge with linear
rate to the desired accuracy with the condition of using Batch parallization. This result is pleasantly
surprising and opens up a number of directions for future research.

In this paper we have focused on iteration complexity, so we see a careful analysis of the optimality
criterion in the aggregate as future work. In particular, it seems interesting to show that M is indeed
bounded, e.g., using the technique from [40] and evaluating with respect to the smoothness constants
Ly and L;. The existence of the regime Ly = 0 which allows one to achieve a linear convergence rate
in the convex setting prompts the following question: can the iteration complexity be improved by
assuming, for example, strong convexity, the PL condition, etc.? It is also interesting to see if similar
effects are found in accelerated, adaptive algorithms, variational inequalities, distributed learning,
nonsmooth (or increased smoothness) problems, overparameterization, online optimization, etc.



7 Numerical Experiments

In this section, we numerically analyze the algorithms presented in this paper and show that linear
convergence in stochastic convex optimization is possible. For this illustration, we have chosen a
problem that is of particular interest in the machine learning community: the logistic regression
problem on wla dataset [50]. We consider the following convex problem statement (T)):

zERC

M
min [(@) = 3237 fi@), file) = log (1+ exp(—yi - (42)0)

where f;() is the loss on the i-th data point, A € R™*? is an instances matrix, y € {—1,1} isa
label vector and = € R? is a vector of weights. It is easy to show, that logistic regression function is
L-smooth (see Assumption i with L = ﬁ V Amax (AT A), where Ayay (AT A) denotes the largest

eigenvalue of the matrix AT A. Moreover, such a problem statement is a special case of (T)) with &
being a random variable with the uniform distribution on {1, ..., M }.

Comparison of Step Strategies for Logistic Regression logistic Regression Problem on wla Dataset
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Z0O-NSGD

fix¥)— f* (log scale)
fix¥) - f* (log scale)

10-5] === Standard smoothness step s ClipSGD
= Ours step size 1078 == NSGD
0 5000 10000 15000 20000 25000 0 100000 200000 300000 400000 500000
Iteration k Iteration k
Figure 2: Linear convergence demonstration. Figure 3: Comparison of the considered algorithms.

In all tests we used the following parameters: M = 2477 - number of data, d = 300 - problem dimen-
sion, B = 10 - batch size, h = 1075 - smoothing parameter, A = 10~9 - noise level. Figureshows
a comparison of two step strategies of the NSGD algorithm. The blue line (see "Standard smoothness
step"), which corresponds to the theoretical step size in the L-smoothness setting demonstrates
slow (sublinear) convergence. In particular, NSGD with this choice of step advanced the function
from 0.02014151259 to 0.01731953499 in 25000 iterations. The red line (see "Ours step size"),
which corresponds to the next step size n = m, demonstrates linear convergence that significantly

outperforms the strategy with the theoretical step size. Moreover, Figure [2|demonstrates that indeed
the first-order algorithm can converge with linear rate to the desired accuracy in a convex setup!

Figure 3] demonstrates the convergence dynamics of all the algorithms considered in this paper. In
particular, as in Figure 2] NSGD (see red line) shows a real linear convergence. ClipSGD (see
), which used a step size n = ﬁ, where ¢ = 10~ is the clipping radius, shows two modes
1

of convergence: as long as HV f(z*) H > c the algorithm converges with a linear rate matching the

NSGD, as soon as HV f(z*) H < c the algorithm slows down to the sublinear rate. The dynamics
are similar for zero-order algorithms: ZO-NSGD (see ), ZO-ClipSGD (see blue line).
Expectedly, these algorithms converge slower on the first iterations than their first-order counterparts
due to restricted access to the oracle @]) However, it is worth noting that ZO-NSGD also exhibits
linear convergence, thereby outperforming the first-order ClipSGD algorithm after 55000 iterations.

8 Conclusion

In this paper, we considered a stochastic convex optimization problem under the generalized smooth-
ness condition of the objective function. We are the first who have provided strategies to achieve
summands characterizing linear rate, thereby improving the iteration complexity (see Sections [3]
and [)). In Section [5] we showed that this effect of generalized smoothness extends to zero-order
algorithms as well. Moreover, we highlight the regime Ly = 0, under which we theoretically
guarantee linear convergence for the NSGD and ZO-NSGD algorithms (subject to the use of batch
parallization). This is the first result demonstrating linear convergence in such a problem setting, thus
opening up a number of future works (see Section [6]). Finally, in Section[7|we show using numerical
experiments that linear convergence in such a problem formulation is also possible in practice.
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APPENDIX
Power of Generalized Smoothness in Stochastic Convex
Optimization: First- and Zero-Order Algorithms

A Aucxiliary Results

In this section we provide auxiliary materials that are used in the proof of Theorems.

A.1 Basic inequalities and assumptions

Basic inequalities. For all a,b € R? (d > 1) the following equality holds:
2(a,b) — [[b]1* = llall* — lla — b]|*, Q)
(a,b) < [lal - bl (©6)

Squared norm of the sum For all ay, ..., a,, € R?, where n = {2, 3}
lay + ..+ anll3 < nllar]l3 + .. +nflaq 3. )

Generalized-Lipschitz-smoothness. Throughout this paper, we assume that the (Lo, L;)-
smoothness condition (Assumption [I.2) is satisfied. This inequality can be represented in the
equivalent form for any z,y € R%:

fly) = f@) <(Vf(z),y—=

4 Lot L V£l
where Lo, Ly > 0 forany z € R% and ||y — z|| < L%

+ 5 ly =1, ®)

Variance decomposition. If £ is random vector in R? with bounded second moment, then
E|llg+al’] =E [l -EE] +E[IE[E] - all’], ©)

for any deterministic vector a € R<.

A.2 Auxiliary Lemma about Generalized Smoothness

If Assumptionholds, then it also holds that Yz € R<:

IV £@)II* < 2(Lo + Ly [IV £ (@)D (f (z) = ), (10)
where f* = inf, f(x).
Proof. We start the proof by applying @) for y = =z — mv f(x), where
ly —z| = % < 2. Then we can obtain:
®
rt (o @) 0 s e e
O
A.3 Wirtinger-Poincare inequality
Let f is differentiable, then for all z € R%, ye € S%(v):
E[f(e+70)) < ZE[IV/( + 7o) an
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B Clipped Stochastic Gradient Descent (Proof of the Theorem [3.1)

We start by using (Lo, L1 )-smoothness (see Assumption [1.2):

£t — 1) 2 (), b1 — by L EITTCD s e
= i (Vf(a¥), clip, (Vf(z*,€")))
5 k
(Lo + Ly |V £(2*)])) etip, (VF(2*, %) | (12)

2

Next, we consider three cases depending on the gradient norm: HV f(z*) H > ¢ — the full gradient is
clipped and ¢ < HVf(xk) H < cand HVf(xk) H < 5 — the full gradient is not clipped.

B.1 First case: ||V f(z*)|| > ¢

In this case aV f(z*) = clip, (V f(2*)) with o = min {1 therefore we

have the following

’ Wf(a:k)n} = VIEHT

—n(Vf(z"),clip, (f(fc’“7£’“))>@—%\\vf " = g5 letip. (V7 €)1
+ 5 [elip, (V£ (a*,€")) = aVf(*)|”
~S VAN = 5o lletip, (V")

+ 5 [lclip, (Vf(a*,€5)) - elip, (V")) |
=~ VAN = 5= [Jetip, (V£ (*,€")"
+ 5 |elip, (VF(a*, €5)) = elip, (V£(a")) .

Using that clipping is a projection on onto a convex set, namely ball with radius ¢, and thus is Lipshitz
operator with Lipshitz constant 1, we can obtain:

) (VF(*),E [clip, (Fa*,€)]) < _% V(") - == {Hchpr (V" €9 }
+ %]E {HVf x szicell ]
-9 - LR [nchpc (V76 ]
no’
2B
~ =196 =52 [l (976% €)1
L lvsEh]e?
vl (13)

We now consider the cases depending on the relation between c and o

‘ In the case ¢ > /20 ‘ We have in (T3):

(L3}
<

—n (VF(*).E [elip, (Vf(a*,€")]) < =T V@) - 5= |[ltip, (V£(*, )]

n[|VFh)] o?
+ 2cB

=~ [[Jelip, (Vf(a",€5)]"]
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- ZvsaEh)| (1 - 02)

<—2E [Hchpc (V5" €9)|]
Zvrah)|

_ Uﬂvg g E | [lclip, (V£ (a*,€")|"]
-2 vsah].

Plugging this into (T2) and choosing 7 < m we have:

B v )] - ) D I g [jeip, (97064, 69) 7] - 2 w14
(Lo + Ly ||V f(a*
2

VD e, il 1= atac)

- v s + TR0 [||chpc<w €)|]
~lIvset H—ﬂE[Hchpc(w €9)[°] @ = n(Lo+ Lrc)
~vsEh]. (14)

Using the convexity assumption of the function, we have the following:
COR <<Vf( "), ot —ar)

2w sh) ) la* ~ o

< [[VFE| «° =2

—_——

R

Hence we have: .
fk) ~ 1 s

Vs = L

Then substituting (T3) into (T4) we obtain:
E[f(a*)] - fa*) < =L |V @h)|| < =[5 (£") - ).

This inequality is equivalent to the trailing inequality:

E[f@)] - < (1- ) (7 - 1)

Then for k = 0,1,2,..., N — 1 iterations that satisfy the conditions HVf(xk)H > ¢ > /20, then
ClipSGD has linear convergence

B[]~ 1 < (1 55) " (7a) ~ ).

‘ In the case ¢ < /20 ‘ We have in (T3):
o
<

9 )| - 2L [etp, (V" €9)]]

n[|V£(*)] o?
2cB

—n (Vf(2*),E [clip, (f(z*,£"))])

_|_
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1) - o [Jetp, (V" €]

nMo?
2¢B
Plugging this into (T2)) and choosing n < m we have:
@ \Y )
E[f(**))] - fa*) £ T [ VF@H)] - M E | |lctip, (V/(a*,€")]/’
2(Lo+ L1 ||V , Mo?
Tt hlvre ‘b, (et (V54 €5)F] + 27
\V4 k
v sa) - DD [eip, (954, €9) 7] (- n1o
772 nMo?
& [etp, (Va6 ] + 2220
-7 ||Vf )| - JE [||chpc (VS €9)[1] (1 = (Lo + Lic))
nMo?
2c¢B
cn & nMo?
-2 v + - as)
Using the convexity assumption of the function, we have the following:
f@®) = fr < (Vf(ah), 2" — %)
@
< Vi [l=* -
<[V F@OI = - ]| ff*H
¥
Hence we have: .
Ivreh) > L= 1)12_ " (17)
Then substituting (T7) into (I6) we obtain:
Mo? Mo?
E[fa**)] = f@*) < =T | VI 6| + T2 < —g5 (@b - )+ T
This inequality is equivalent to the trailing inequality:
nMo?

E[f* ] - /" < (1= 5) (fe) - 1) + L2

Then for k = 0,1,2, ..., N — 1 iterations that satisfy the conditions HVf(x’“)H > cand ¢ < V20,
then ClipSGD has linear convergence

MRo?
2B

B[] - £ < (1- 29)" (1) - 1) +

B.2 Second case: 5 < ||V f(zF)|| < ¢

In this case V f(z*) = clip, (Vf(2*)) with & = min {1, W} = 1, therefore we have the
following
(V). clip, (Vf(a*,€")) @ =L [V |* = I |etip, (V£ (a*, ")

+ 50 ctip, (Vf(x €9) — aV (")
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= ~2|[VS | = 7 ||etip, (V£(=*, €9)]
+ 4 [etip, (V7 (a*,€")) = clip, (V"))
<—fIIVf )| = 3 lltip, (V£ (2", €5
+ 3 ||etip, (V£(z*, ")) — ctip, (V£())].

Using that clipping is a projection on onto a convex set, namely ball with radius ¢, and thus is Lipshitz
operator with Lipshitz constant 1, we can obtain:

1 {(VI(a").E [elip, (V/(e*.€")]) < =T [V - 3B [|lelip. (V/(o*.69)]"]
+ 2 [[V/(*, %) - V)]

2

|9 )| - U [etp, (V5 € ] + 17
2
o) |~ et (V5" €] + 17
Plugging this into (12)) and choosing 1 < m we have:
. (1) . .
E[f@")] - fa*) S = VI@h)|| - 3B [elip, (V/(=*,€9)|]
n*(Lo + Ly ||V £ ("))
o 21 INICID i e, (950,40 7] + 22
I NPT
- 4 HVf(:L‘ )||+QB
= 5E |lltio, (754 €] (L= (Lo + L [75GH)]))
< —*HVf H+§~ (18)
Using the convexity assumption of the function, we have the following:
f@®) = f* < (Vf(ah),a" —a*)
s o+ o)
< [VFEH][]2" =]
——
R
Hence we have: . .
Vit > L= ;%_f : (19)
Then substituting (T9) into (I8) we obtain:
ne N
E[f(*)] - @) < - L) vieh) | + 2 < - K et - )+ 22

This inequality is equivalent to the trailing inequality:

E k+1Y] _ px < (1 _ E) k UL

] - < (1= ) () - 1) + 2%

Then for & = 0,1,2,..., N — 1 iterations that satisfy the conditions § < HVf(xk)H < ¢, then
ClipSGD has linear convergence

E[fe)] -5 < (1- )" (1) - 1) + 228
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Let7-1 = {mg-lvmflrlvmg_lv" mlll(_l 1} = {k € {071a27'~'7N_ 1}‘ ||vf(xk’€k)|| 2 %}’ where

K = |Ty|. Then for k € T; ClipSGD shows linear convergence:

1 1 nMao?  no?
Fy-1 <|1- Fy < F —
LT = < 4L1R> N= ( 4L1R> i, T e T 0B

( 1 )K MRo?  202R
1— 4+

<..< _

== 4R 2B B
. 1 \% M Ro? N 202R

= AL R T 2R cB '

where Fj, = E [f(z*)] — f*, and we used that F}, < Fj,_;.

B.3 Third case: |V f(z")|| < &

‘We introduce an indicative function:
Ny, = 1{||Vf(a" &")| > c}.

Then the following is true:

@

BN =E[NF] = P [[VF@",€)] > o] <P[|[Vr(a* € M) > 5] <
where 1n @ we used HVf(xk,&k)H < ||Vf &r) — H + HVf
||V f(aF &F) — H + 5, and in @ we used Markov’s 1nequa11ty
Let i1 = [ka“ —z ||] and F,.1 = E [f(xk“) — f*], then given that

Cc

IV f (=¥, &5)]]

e L) e e

Clipc (vf('rk7€k)) = vf(zkvgk)(l - Nk) + vf(’rkvsk)Nk
= V(=¥ &%) + (
we get with n < m

i = 18— 20 (E [clip, (Vf(a*,€"))] .a* — ") + nE [|elip, (Vf (2, €")]|[’]

+°E [Hchpc (V(a*,€)) H]

@7‘% —277<Vf(xk),xk —:U*> +277‘E

(rorremy ) 76t em

+n°E [Hchpv ViE*, €9)| ]

gr,%f277Fk+2n E < v xk,ék)Nk ||x07:z:*||

[V f (", &)l
NI
|

@
< r? —2mF, +2n ||E (-

c > s
+1°E [|elip, (V/(a", €")
c
(e )™
)

)N on —z"
Nk_

2

—

+ 27 elip, (V/(",€)) = VI @) [*] + 202 |V £ ")

:L‘k
— xk
)

5 I c
=7k = 20k 2| _<|Vf<mk,£'f>|| B

+21°E [HclipC (Vf(xk,gk)) —clip, (Vf z*

&
&) R

(
(
VI(
@)|*] + 202 [V £
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0.2
> 2B

)

(20)

2n

<

—r,%—277<Vf(:vk),xk—x*>—277<IEKm—1> Vi (z* gkm} @ —x>




Cc

2rt-mper o B | (eppgy —1) T e | »
+ 27K [|[V£(2*, €5 = VI @N)|] + 202 |95 )|

| () R |
+ @ + 2% |V ()|

. |
R

2 2 2
+ 2L a? (Lo + L || V£ )]) P

<r2_2pF, +2n|E ¢
=k “*”H KIW(

e 1) v (xk’gkm’“] ‘R

222
+ TIBU +4772(L0+L16)Fk
222
=1} = 20F (1= 20 (Lo + Lac)) + —5”
C
+E|{——m— 1]V xk,kNHR
’7‘ (eraram —1) T e
2+ e (g =) vt o

<r2—pF+~"—4+2|E|( =—— — 1) Vf(z", )R ]||| R. (22)

Let’s find the upper bound of the last summand:

0|8 | (rpprgny ~1) T €|

@ N S
Z”RE[”W( 0l (1 wwewn)“’“}

< 2nRE [||Vf(z*, %) - R]

<R (E[||Vf(2* &%) = VFEP)| - Re] + ||V F(5) || ER])

< 2R <\/E (1954, 65) = V@) ] - E D] + [V B w)

€0 202 ¢ 402
Z oLz 2
= 2nR<cB T3 02B>
8no’R
- ”CB . (23)

2 2

Substituting into the initial formula and rearrange the summands, we obtain
@ 2n%o
NF < 1=+ S+ 2

5212 | (rergegny —1) T €]

220 N 8no’R
B cB

R

2 2
S Tk Tkt

Let 75 = {mOTZ,mZ—Z,mQTZ,...,mZ\%_K} = {ke{0,1,2,...,N = 1}|||Vf(=")|| < £}, where
|72] = N — K. Then rearranging and summing over all k € 75 we obtain

1 1 1 2no?  802R
_KZF'CSMZ@"%H)*MZ( 5t CB>

keTs keTs

FN']l[TQ]SN
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-y 2no?  80%R < 3 2no?  80%R
n(N - K) B ¢cB T n(N-K) B cB "’

Hence we obtain:
R? 2o n 802R

FN'MTQ]Sn(N—K) B B’

Combining all cases we have:
E[f(a")] = f* < Fy-1[Ti] + Fy - 1[T2]

n R? o’MR 2no? 80’R
1--2) R .
( QR) N -—K) T 2B B B

C Normalized Stochastic Gradient Descent (Proof of the Theorem {4.1)

Let’s introduce the notation G(z*, £%) = ﬁ, then using (Lo, L1 )-smoothness (see Assump-
tion[1.2):
® . Lo+ Ly ||V f(2F) 2
f(.%‘k+1) _ f(l‘k) < <Vf($(}k),l‘k+1 _ $k> + ’2| H ka—&-l _ xk‘”
n?(Lo + Ly ||V f (= 2

k
= - (Vf(z"),G(z" €")) + M [G* €M7 @4

2

Next, we consider 4 cases of the relation ||V f(2*)|| and |V f (2", €¥)|| with respect to the hyperpa-
rameter A.

C.1 First case: ||V f(z")|| > Aand |V f(z*,&F)|| > A
Let us evaluate first summand of (24) with a = ||V f(a*)[| "
(V)G 6) B T viah | - gL lleer e
+ LGt €5 - av st
= 2 [V76h)] - 5= |Gt €h))

+

2;’2(1 IAG(2*,&F) = AaV f(z)”

__n N = Gk e8P
5 VD] = 5 [GG", 9]
+ % clipy (V£(a*,€")) — clip, (V£ (z*))||"

Using that clipping is a projection on onto a convex set, namely ball with radius A, and thus is Lipshitz
operator with Lipshitz constant 1, we can obtain:

0 (Vf(a*).E [G(a*,€)]) < - va’“)u - ooE [HG (", €" \!2}

o [nw S e
In the case: 0 < o < % Using this in (25), we have the following with 7, < %1
E[f(z51)] — f(ab) 2. (Vf("),E[G(z" €M)]) + ot ng“Vf(xk)H)E [HG@’“&’”HQ}
2 Gl - g [lowt ] + g 19t - vl
(Lo +L12||Vf($’“)!|)]E G, eh)]
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=3 1976 + gy 97106 - V1G]

2X%«
e T gy (5 1o+ L [V
~gB[loetenr] <1‘ V7]
<~ 2| VA +
< =2|IVIEH)| + V)|
-2V 20

The step size will be constant, depending on the hyperparameter \:

NGl 1 A A

>
2(Lo + Ly |V f(xF A T 2(Lo+ L))’
(Lo + L1 ||V f(xF)])) Q(Lomq-h) 2(LOW+L1)\) (Lo + L)

_ A
Thus, nk =1 < 5750

Using the convexity assumption of the function, we have the following:

=
8
E
N—
I
~
*
~

Vf(xk)wk — 33*>

V)] [|l2* - |
VFE e =]
—_———

R

IN A A

Hence we have:
fla®) = f*

[vseh)) = {80

27)
Then substituting (27) into (26) we obtain:

n Ui *
E[f@" )] = f@h) < =7 [VFAEN] < =5 (F@) = 1),
This inequality is equivalent to the trailing inequality:

E[f@)] - < (1- 1%) (P = ).
Then for k = 0,1,2,..., N — 1 iterations that satisfy the conditions ||V f(z*,£")|| > v/20 and
||Vf(:ck) || > /20 NSGD shows linear convergence:

B[] -5 < (1- 1) () - 7).

[vEh]]

In the case: % < 0. Using this in (Z3), we have the following with 7, < SIOPES MmN TETIE

2 :L‘k 9
B[] - £ C - (V) E (6" 6]) + T LE”W( Wee 6 )]
D 1 vsah) - LE[lo6t )] + paE[IVF6F.5) - Trah)|]

2 z* i
K (L0+L12||Vf( g G, e)]°]

= —2|IVS )| + 535 1IV7*. 65 = )]
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- I [lot.e0))] (1 _ o+ I ”Vf(xk)”)>

IV (=Rl
no*
-5 ||Vf || 2220 B
20
<—T|viah+ g (28)

The step size will be constant, depending on the hyperparameter \:

(NGl I 1 A A

_ >
2(Lo + Ly ||V f(x¥ by ~2(Lo+ L1N)’
(Lo + L1 ||V f(xF)]]) Q(Lomq-h) 2(LOW+L1)\) (Lo + L))

_ A
Thus, nk =1 < 5750

Using the convexity assumption of the function, we have the following:

F@®) — <V f(ah), 2 —a*)
@ .
< [VsEh)
< |ViEH[]a° =27 .
—_——
R
Hence we have: . )
[vseh)) > =L )
Then substituting (29) into (28] we obtain:
2M " o2 M
E[f* )] - S04 < =5 VA + Fag < 506~ 1)+ Tag

This inequality is equivalent to the trailing inequality:

E [/ )] 1 < (1- 5%) (P& = 57) +

no?M
2)2B

Then for £k = 0,1,2,..., N — 1 iterations that satisfy the conditions HVf(mk,ﬁk)H > X and
||Vf(a:k) || > Xand 0 > 1/2\ NSGD shows linear convergence:

02MR

E[f)] -1 < (1- 1) () — 1) + S0k,

2R
C.2 Second case: ||V f(zF)|| < Xand ||V f(z*, &¥)|| > A
Let us evaluate first summand of (24) with o = A7 1:

(Vi) Gt 69) & =T seh | - o leeh e

+ o |Gt €5 - aviah)*

< —fHVf = iHG (x H
oy et )|
—5HVf ) - %HG@ € )H2

+ o |[etipy (V£(a¥,€") = clipy (V£(a"))]|

2
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Using that clipping is a projection on onto a convex set, namely ball with radius A, and thus is Lipshitz
operator with Lipshitz constant 1, we can obtain:

—n (Vf(").E [G@",€9]) < —2[|[VF(ah)| - =E [[Ga*, €]
SE[Iviatey-viah]. 6o

Ik
Using this, we have the following with 7, < %

.Tk
k,ﬁk)]> + (LO + Ly ||Vf( )H)E [HG(xk7€k)’|2}

E[f**)] - 1) D —n (Vi(h).E [0

2
D JIvse 52 (e ] + g 19 € - wseh ]
(Lo +L12||Vf(‘”k)||)]g {||G (a", €M) Hz}
= -1 |vih) + o [V, ]
- Be ot el (1- 22 Té}% !
<~ [VrE") + ;7%;
< =2 ||IViEh)]|+ % -

The step size will be constant, depending on the hyperparameter A:
|V ()| _ 1 A A

- >
2(Lo+ Ly |V f(xF 1 A T 2(Lo+ L))’
(Lo + Ly [V £ (=*)]) 2(L0W+Ll) 2(L0W+Ll)\) (Lo + L1A)

Thus, n, =7 < 72(L0+L1/\)

Using the convexity assumption of the function, we have the following:

f@®) = £ < (Vf(ah),2" —a*)
@
< [[VrEd| =" - =7
< HVf(ack)H on —z*
Hence we have: . .
V(") > %. (32)
Then substituting (32)) into (3T) we obtain:
o2 2
E[f@*)] - fa*) < ~J[VFh)| + 55 < 5w (F@) = ) + 5.

This inequality is equivalent to the trailing inequality:
2

E[f@*)] = /" < (1= 55) (f&") = 1) + 5.

Then for £ = 0,1,2,..., N — 1 iterations that satisfy the conditions HVf(xk)H < X and
||Vf(wk, &r) || > A NSGD shows linear convergence:

o2

R

E[f)] - < (1 55) " (@) - 7 + 5o
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C.3 Third case: ||V f(z*)|| < A and ||V f(z*, &%) < A

[vi@H)]

1
sToriereny ad o = [VAED]

Using this in (24), we have the following with 7, <

E[f(e*)] - (") 2 —n (Vi) E [Gat, %))

2 a i
U TR

:f%WVﬂﬁm?~iEMGﬂswﬂ
+ 5B [[|6at, ) - avi@ah)|]

n? (Lo + Ly ||V f (2" 2
0 12|| H E[HG Cﬂk €k H }

= -1 |vs6h)| + o1 [[le6* e~ avsah)]

2 L() Ll V(x
- JE|[cat e[ (1‘ e ]Vf(H ’“>fll )H)>

n n
< 2| V56" + 52 [[l66F, ) - aviEh)|]

< 5 IviEh]|+ JB{|e@E" €’€ H+HWf Iy

_n f(a*)
S e R | +| wre ]
1 2\ ||V f(z
v st |\*—JL———ﬂ
2195+ 200 33

The step size will be constant, depending on the hyperparameter A:

|V f ()| B 1 A A

= > .
2 (Lo + L1 |V f(2* ( 1 ) ( A )*2L0+L1A
( IVFEOD 2 (Lopoptmy +L1) 2 (Logoptamy + LA ( )
Thus, n, =n < m
Using the convexity assumption of the function, we have the following:

f@®) = f* < (Vf(ah),a" —a")

[V £ @) =" =27
IV Jla° =] -
R

GO
—

[VANVA\=: VAN

Hence we have:

IV f (") = (34)

Then substituting (34) into (33)) we obtain:
E[f)] = fa) < =2 [ VA6H)] + 200 < =S5 () = £ + 200
This inequality is equivalent to the trailing inequality:
E[f")] = £ < (1= 5% ) (F@") = £7) + 20
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Then for k = 0,1,2,..., N — 1 iterations that satisfy the conditions ||V f(z")|| < A NSGD shows
linear convergence:

B[] - 1 < (1 55) " (1) — 1) + AR

C.4 Fourth case: ||V f(z¥)|| > X and ||V f(zF,€")| < A

k
Using this in (24), we have the following with 7, < c Il anda =\ L

= 2(Lo+L1[IVF(=R))

E[f*)] = f(2*) 4 —n(Vf(a"),E [G(z" €")])
2(Lo+ L1 ||V f(z*
n ( 0+ 2” f( )H)E [||G(xk,£k)||2:|
= LV - 5L ||E (6", 9] |

+ % | [G(a*,€5)] — aVf(h)|?

2(Lo + Li IV F(zF 2
n?(Lo + 12H I )H) [HG (", €")]| }
=L IV + 3% [E PG, €] - 77

n*(Lo + Ly HVf H)

2

AV f(x

__n
= o IVsEt H [nw sk ||

n*(Lo + Ly HVf

-V €)

2

o
=~ V7@l +2AH KIIVM ] ”)W(xk’sk)}
n*(Lo + Ly ||Vf

2
) + L (”w e 1) me’as’wnﬂ
n?(Lo + L1 ||V £( wk

2
__ A2 P NITE:
< gz lvrenl +2AE_Hw<xk,sk>||2” ﬂx’“”]
n?(Lo + L1 |V f(@*)|))
2
2(L Ly ||V f(zF
=—iuw<xk>u2+”< o+ VIO |
2(L Ly ||V f(aF
B k n(Lo + Ly |V f(2¥)]]) nA
“5”W @I (1‘ NG A
< -TIvsah) + 2 35)

26



The step size will be constant, depending on the hyperparameter A:

IviEHI 1 _ A >
z = = > .
2o+ LVI@ON 2 (Lo oty + 1) 2 (Lot + Lar) — 2(Eo1ad)
A
Thus, gy =n < Lot LN

Using the convexity assumption of the function, we have the following:

©
< [V [ — 27|
< ||Vf(xk)H on —z* | .
R
Hence we have: . )
|V f(™)] > %. (36)
Then substituting (36)) into we obtain:
A A
E[f(@*)] — f(@*) < — 7 IVF)] + 75 < — 506N = )+ T

This inequality is equivalent to the trailing inequality:

E[f@ ] -1 < (1- 15) (P - 1) + 5

Then for ¥ = 0,1,2,...,N — 1 iterations that satisfy the conditions HVf(wk)H > X and
|V f(z*, &%) < A NSGD shows linear convergence:

E[f)] 1 < (1- 1) (1) — 1) + 2AR

Combining all the cases considered, we obtain the convergence rate of NSGD:

B[] - £ 5 (1- D) () -+ MR R

D Zero-Order Clipped Stochastic Gradient Descent Method

This section consists of two parts: 1) a generalization of the convergence result of ClipSGD (Al-
gorithm to the biased gradient oracle g(z*, &%) = V f(2*, ¢*) + b(z*), where b(z¥) is biased
bounded by ¢ > 0 : Hb(mk) H < (; 2) deriving convergence estimates of ZO-ClipSGD directly.

D.1 Biased Clipped Stochastic Gradient Descent Method (Proof of the Lemma |S.1)

We start by using (Lg, L1)-smoothness (see Assumption :

f(karl) _ f(xk) @ <Vf(xk)’xk+1 _ xk> + Lo+ Ly !Vf(xk)H kaﬂ _ ka?
= —n(Vf("),clip, (g(z",£")))
2 k
L BVTEID oy, (gt g . o7

Next, we consider three cases depending on the gradient norm: HV fla®) H > c — the full gradient is
clipped and £ < ||Vf(1:k)|| < cand ||Vf(;z:k) H < £ — the full gradient is not clipped.
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D.1.1  First case: |V f(z¥)|| > ¢

. k: _ . k . _ . c _ c
In this case aV f(z*) = clip, (V f(2*)) with & = min {1, o7 } = 7y therefore we
have the following

—(V(z*),clip, (g(z*,€")) & -2 HVf )| - % [clip, (g(=*, €M)
+ 5 |etip, (g(a*,€") - Wf(gck)n2
—? IV5@*)* - % letip, (g(=*, &))"

+ 5 |etip, (g(a*,€")) - clip, (Vf(xk)) I
=~ S V@M = 5 letip, (s(a*.€5)|
+ % ||clip, (g(2",&")) — clip, (Vf(z )H

Using that clipping is a projection on onto a convex set, namely ball with radius ¢, and thus is Lipshitz
operator with Lipshitz constant 1, we can obtain:

(V). [elp, (g(a*.€")]) < ~F |V H—ﬂE etp. (g(*.€5)]]
+ 50 et € - vf ﬁHﬂ
8 g5, H—ﬂﬂwwm( N’
+ 5-E [||g(@*, ") — E [g(=*, €]’
+ % [[b(z")]|
I = 55 (i (7€)

no’M | n||VF@Eh)| ¢
+ 2cB + 2c '

We now consider the cases depending on the relation between ¢ and (:

(38)

‘ In the case ¢ > \/2¢ ‘ We have in (38):

0 (V(2*).E [clip, ((*.€)]) S~ |[vs (QH*"ENmM( I

no®M  n||V ()] ¢
+ 2¢B * 2c

= & etip, (8", ) ]
cn no? M
v (1) + 5
< _iE {HclipC (g (mk,ék))H } - % va(fk)
77HVf

- s E[lclip, (Vf(a*,€)|]

7||vf(x M+ S5

no? M
2cB

Plugging this into (37) and choosing 7 < we have:

@ 77||Vf
2c

4(L0+L1c)

LN etip, ot 640) ] - <2 sy +

E[Vf@"h)] - f(z*) <
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1°(Lo + L1 |V f(=

k
2 e [lltip, (g(2", €")|I’]

\V4 k
=—i’7” Sl )”E[chp (g(*,€9) ] 0 = nLae) = S|V (")
n2 770 M
L0 [etp, (s, €))7 +
- |vreh) - IE [ucnpc <g<zk,sk>>|| | (1= n(Eo + Lac))
no? M
2cB
O k)| 4 1M
1 IV + S5 (39)
Using the convexity assumption of the function, we have the following:
Fa) = 5 < (T, ) L [0 o 2] < |9 2 ~ 7]
R
Hence we have: .
IVfah)| > L& =1 3%_ . (40)
Then substituting (@0) into (39) we obtain:
no*M M
E[f@")] - f") < = Vi) + Lo < - Eah) - 1+ T

This inequality is equivalent to the trailing inequality:

E[fH)] - < (1= ) () - 1) + 22T

Then for £ = 0,1,2,..., N — 1 iterations that satisfy the conditions ||Vf(:£k)|| > ¢ > /2(, then
ClipSGD with biased gradient oracle has linear convergence

B =< (1= gg) (6= 1)+ S5

‘ In the case ¢ < /2( ‘ We have in (38):

G ¢ i ?
= 7 197600 = 5 [lltee (st €)1

no®M n ||V f(ah)] ¢
2cB 2c

=~ G916 = 55 e, (sta* €)'

nM 2
+QC<B+<>

—n{(Vf(a"),E [clip, (g(«*,€"))])

+

Plugging this into (37) and choosing ) < gr7—37— we have:
B [#+)] - 1) D -2 sty - DI g [, (gt )]
772(L0+L12HVf H E[Hclipc (g(*,€5)| } +% (B+CQ>
=~ vty - VIO i, (g ) 7] 1~ nre
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7722LOIE [etip, (s, £)] + (B +<2>

~ Vi) = SE [|elip, (g ,s’“>) ] (= (Lo + Lic))

cn nM (o2
L wsatyl+ B (G4 e @
Using the convexity assumption of the function, we have the following:

Fah) - 5 < (T1a), o 2) L[9rE) [ 2 < |9 [ - 2]

R
Hence we have: )

T _ *

Vit = L= 1)12 L (42)

Then substituting (@2)) into (1) we obtain:

2 2

BV k) < 1 M (97 2} < T iy ey MM (0
E[f* )] < - D viahll+ L5 (5 +¢) < () -+ L5 (S +¢).
This inequality is equivalent to the trailing inequality:
2
k1] _opx < (1 M€ N nM (o
E[f*)] -/ < (1= L) (1) - )+ 2= (F+¢).

Then for k = 0,1,2,..., N — 1 iterations that satisfy the conditions HVf(mk)H > cand ¢ < V2(,
then ClipSGD has linear convergence

EWWW#%@—%)UM)fHMR(+<>

D.1.2  Second case: £ < ||V f(z")|| < ¢

In this case V f(z*) = clip, (V f(2*)) with & = min {1
following

(V). clip, (g, 69)) & -2 95| - L |clip, ((x*,€9)
+ % etip, (g(z*, &) — aV £ ()|
= —2[IV£@")]|* - 5 |ltip. (g(=",€5) [
+ 7 ||etip, (g (xkvﬁk))‘-Cﬁp (V"))
<-% ||Vf )| = 3 lletip, (g(=*.€5)]°
§W@Jﬁxf)%wmAVf NI

Using that clipping is a projection on onto a convex set, namely ball with radius ¢, and thus is Lipshitz
operator with Lipshitz constant 1, we can obtain:

(VS (h).B [elp, (g(a*€)]) < =G V5] - 5B [t (g(a". €)'
+5E llg(a",€") — V£ () H2]
9] _% [V f(*)|| - QIE [Hchpt (g(=", €M) }

C J—
, W} = 1, therefore we have the

2
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+ 12 [|atet €) - E [ae* €]

+5 b’
"HvﬂﬁH—fEMwm( )]
L7 e
2 B
=~ G IVIEh|| - 5E [|letip. (g, €)'
n
T3 (B e ) '
Plugging this into (37)) and choosing 1 < m we have:
GD
E[f(a*)] - f(@*) < ~F IVF@h]| - 3B [Hchpc( &N
2(Lo+ Ly ||V 2
"(“‘j'f ”Emwm@uaﬁmﬂ+"(”+@)
= =2 VA" - 2E [elip, (g(*.€")[*] (1 = (Lo + Ly [V5")])
n{o
+2<B+C)
cn N s
v+ 3 (5 +¢)- @)

Using the convexity assumption of the function, we have the following:

F@b) — <V f(a), 2" —:c> |V £(a*)

<95 o ]
——

Hence we have:

|V f(F) > jlgf%iiifi. (44)

Then substituting @4)) into @3) we obtain:
2 2
E k+1y] _ <_7 nfo- 2\ M N 2
[f@™ ] = fat IV +5 (5 +¢*) < —grlE) = f+5 (5 +<¢
This inequality is equivalent to the trailing inequality:

B[] - < (1- ) (e - 1) + 1 (S +2)).

Then for £ = 0,1,2,..., N — 1 iterations that satisfy the conditions § < Hg(zk,fk)n < ¢, then
ClipSGD with biased gradient oracle has linear convergence

B[] -5 < (1- 2)" 160 - 1) + 2 (S 4 0?).

Let T; = {mg—l,mfl,m;l,.. mp 1} = {k€{0,1,2,...N = 1}| ||V f(z",&")|| = £}, where
= |T1|- Then for k € T; ClipSGD with biased gradient oracle shows linear convergence:

FN'ﬂ[ﬂ]<(1—§)FN (1—M)Fm?l+(ni\4+n)'<ﬁ+@>S---S
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where Fj, = E [f(xk)] — f*, and we used that Fj, < Fj_1.

D.1.3  Third case: ||V f(z")| < §

We introduce an indicative function:
Ny, =1 {||g(z*,&")|| > ¢} (45)

Then the following is true:

0_2
BN = E[N] =P [[e(eh,€9)] > <P [|la* €5 ~ B [g* €9] | > 5] < . 40

where in @ we used [g(a*, €] < [g(a*,€") ~E [glat,€")]] + E[g(e.€5)] <

||g(xk, & —E [g(zk, 5’“)] H + 5, where assume that ¢ < £: and in @ we used Markov’s inequality.

Letrp1 =E [ka“ — ac*”] and Fj,.1 = E [f(xk“) — f*], then given that

clip, (g(z",€")) = g(e*, €)1 =) + el €N

=g(z*,¢") + (M - 1) g(a®, 5 )Ry,
we get with ) < m:
iy =1 — 20 (E [clip, <g<x’askm 2" — %) +1’E | |ctip, (g(a*. )|’
=t (V7)o ) -2 (B [(ug(xk el 1) ste Skmk] #-)
+1°E [Hchpc( €NI*] + 20 (b(ah), 2" —a)
®
S i (VA ot =) ”"HE (e 1) e It =
+1E ||[elip, (g(a*,€")||"| +2n][b(a")| 2" —=*
<t =20+ 20 (g — 1) et €m0 -7
+1°E [|[elip, (g(a*,€")||"] + 20 |[b(")]| [2° - 2|
g rl2c - 277Fk + 277 E (Hg zF Ek - 1) g(xkv‘sk)Nk
+ 2°E [Hc]ipc (g(at L&) ) — (xk)‘ﬂ + 29? HVf(:Ek)H2 +2n¢ H:co — "
=t ot | (a1 et | 1
+ 2n°E [HclipC (g(z¥,&)) — clip, (Vf(z" )| ] + 2n? ||Vf(xk)||2 +2n¢R
g e — 2nF), + 21 ||E _(C - 1) gz, )R | R
ST NEEEBI i
+ 27E |||g(a",€5) = V") |*] + 207 [V 5 8)|)” + 20¢R
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+ 27E [||g(", €5) — E [g(a", )] ] + 207 |V £@*)|* + 20CR + 202 |b(a")|

<12 - 2mF + 2 HE [(Hg(’fék)l - 1) g(xk,ﬁk)Nk] ‘R
+7+2n V£(*)|[* +20CR + 213
@ r2 — mE, + 2 HE [(M - 1) g(mk,Ek)Nk: H R
270 2 (Lo + Ly |V (")) Fr + 20¢R + 20¢>

<12 P+ || | ———— — 1) g(a¥, £M)R
e (e BOEC
27’22

B

+ +4n* (Lo + Lyc) Fy, + 2nCR + 2n2¢>

2 2 2
:ri—Zan(1—2n(Lo+L1c))+ ”B + 2CR + 2022

27]20

B

<7l —nF, + + 2nCR + 2% 2

_ . -
+2n (|E ( - 1) gz, €N | || R. (47)
L\ llg(=*, €5 |
Let’s find the upper bound of the last summand:
c
ol ()]
AN
c

@2 RE |||g(z*, & ~<1—>N}
o8 e €91 (1= gy )

< 2RE [[[g(«", ") - Ri]
< 2R (E [|lg*.6") ~ E [g(a".£")]| - ¥ + VA [ER + [ba) | EN)

<R WE [Ig(a*, &) - Elg, )] ‘BN + 5B [m)

2
D (2242 27)

B 3 ¢*B
_ 18n02R

B (48)

Substituting into the initial formula and rearrange the summands, we obtain

2 2

2n‘o c

&
nFy, < ri—riq+ +2nCR + 2n*¢% + 2n HIE [(ng)” - 1) Vf(:ckf’“)Nk} R

B
(8] 29202  18n02R
<o+ nB n ZB 4 20CR + 2022

Let 75 = {mOTZ,mZE,mQTZ,.. mlz_ K} = {ke{0,1,2,..,N = 1}|||Vf(=")|| < £}, where
|72] = N — K. Then rearranging and summing over all k € 75 we obtain

1 2 2
< 2N —K) > (i —ris)

kET2

Fn-1[T3] <

keT2
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o2 9 902
+N—K%E%<B+C>+m<d?%ﬂ
_ 7‘(2) —7r2 o2 902 r% o2 902
n(N—%”(B*@) 2 (eB“) = U(N—K)n<B+C2> e (eB“) |

Hence we obtain:

R? o2 902
Fn-1[T3] < mn <B+C2> +2R(CB+C>.

Combining all the cases considered, we obtain the convergence rate of ClipSGD with biased gradient

oracle:

E[f(z™)] — f* < Fn-1[Ti] + Fy - 1[T3)]

ney K R? MR R o
(- B (e o) (Fee) e @)

D.2 Convergence Results for ZO-ClipSGD

In order to obtain convergence results for ZO-ClipSGD it is necessary to estimate the bias and
variance of the gradient approximation (@).

Bias of gradient approximation Using the variational representation of the Euclidean norm, and
definition of gradient approximation (@) we can write:

B a6 e - VI @)l =[5 |55 (e 4960 - fla = 2e.9) ¢ - V100

e

B2 (70 +96.6) + 0o +20) } V()

A

gl

IE[Vf(x+~yu,&)] —Vf(z)|]+ %

d
E 7f(acwe,g)e} Vi)

IN®

+

@

dA
sup E(IIV-fla+yu,8) = Vo f@ll+ —=

z€854(1)
@ dA
< (Lo + La [V £ (") ||) AE [Jlull] + -
dA
S(L0+L1M)’Y+T7 (50)

where u € Bd(l), @ = the equality is obtained from the fact, namely, distribution of e is symmetric,
@ = the inequality is obtain from bounded noise |§(z)| < A, ® = the equality is obtained from a
version of Stokes’ theorem [see Section 13.3.5, Exercise 14a, 67]].

Bounding second moment (variance) of gradient approximation By definition gradient approxi-
mation (@) and Wirtinger-Poincare inequality (TT) we have

E [lg(a, {&.¢}) -~ Elg(a. {&, )|
<E g {& e})I’]
- Lk (e 499 - fla = 2e.9) e[|

2

= 4%1[*3 [(f(w +7e,8) — flz—ve,&) +6(x +ve) — b(z — 7@))2}
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o (B[ 4169 - fla - 2e.0)7] +227)

o (T [197 e+ Vo —re)17] +207)

- ;;2 (?E IV (@ +7e,6) + V(@ = e,6) £ 2V f(w, O°] + 2A2>
@4&E{Vf@a@”ﬂ*”“LLﬁE“kw}+d2§2

< 4d6” +4d (Lo + L1 |V 1(a")])* °E [lel’”] + dif

d2A?
< 4d6* +4d (Lo + LiM)* 4 + ——, 51

where @ = the inequality is obtain from E {HVf(ac, £)||2} <52

D.2.1 Proof of Theorem[5.2]

In order to obtain the convergence rate of ZO-ClipSGD in the convex setting, we need to substitute
the obtained estimates and @ into the convergence rate of ClipSGD (#9) instead of ¢ and o2,
respectively. Given that CZ,R + 240 % at small ¢, then the convergence of ZO-ClipSGD in the
convex setup is as follows:

B[] -1 < (1= 1) (1) - 1)+

R? N dM R&> L AMR (Lo + LiM)? A2

R n(N — K) 2B 2B
Q) > ) ®
d®MRA? MR (Lo + LiM)*~? N d>M RA2
C2B’}/2 C2 62’}/2
— —
® ® @
dAR

—— —

®

From term @, we find the K:

_ ne\ X . R f(a%) = f*
@ (kE) (f°) - f*)<e = K2 log e (52)

From term @, we find the number of iterations N required for Algorithm [3|in convex setup to
achieve e-accuracy:

R? @R R. fa)-—f
®@: — < N> — 4 Zlogiri——;
WN-K)=° 7 S T T e
2 1
N_O(R+Rlog). (53)
ne  nc €

From terms @, we find the batch size B:

dMR&* _ o dMR&?

2B ec?
dM R&?
B:O( 2”>. (54)
ec
From terms @, ® and ® we find the smoothing parameter -y:
dMR (Lo + L1 M)* 2 2B 5
@ - (Ojl)véaé’yﬁ ec 2@ g ;
2B dMR (Lo + L1 M) (Lo + L1 M)
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MR (Lo 4 LiM)*~2 Vee

®: <e = < ;
c? - 1= MR (Lo + L1 M)
g
®: (Lo+LiM)Ry< <
(Lot M) Byse = 7S grp—7 3
1 Vee € €
<-—— _min{a, == 55
"= o+ Lud) { VIR R} R(Lo + LaM) 43

From the remaining terms ®, @ and @, we find the maximum allowable level of adversarial noise
A that still guarantees the convergence of the ZO-ClipSGD to desired accuracy ¢ in convex setup:

2 2 =
d JQ\/[Rg < = A< VeeyVB &9.6% €G ;
2By dvMR Vd(Lo+ LiM)R
2 2 2.2 3/2
@ - d]WQRQA cr = A< 7205@ e’?c ;
12c MR d(Lo+ LiM)vVMR3/?
dAR vE @) g2
®: —< A< —== ;
5 =% 7 SSVaR T Aot LM RE
€ . 4ec €
A< min< o, ———, ——
~ Vd(Lo+ LiM)R { VdvVMR \/ER}
€ 5
= min § o, . (56)
\/a(Lo—FLlM)R { ﬁR}

In this way, the ZO-ClipSGD achieves e-accuracy: E [f(z™V) — f*] < ¢ in convex setup after
R® R 1 dé’MR?* (1. 1 R
N(9<+10g>, T:N-B@i@0<(72<log+
ne  nc € ec’n c e €
number of iterations, total number of zero-order oracle calls and at

A@ i min{& 8}
~ Vd(Ly+LiM)R "VdR

the maximum level of noise with smoothing parameter 7777z G3)-

E Zero-Order Normalized Stochastic Gradient Descent Method

This section consists of two parts: 1) a generalization of the convergence result of NSGD (Algorithm 2))
to the biased gradient oracle g(z*, &%) = V f(z*, £€*) + b(z*), where b(z*) is biased bounded by
¢>0: ||b(:17k ) || < (; 2) deriving convergence estimates of ZO-NSGD directly.

E.1 Biased Normalized Stochastic Gradient Descent Method (Proof of the Lemma [5.3)

Let’s introduce the notation G'(z*, ¢¥) = %, then using (Lo, L1 )-smoothness (see Assump-

tion[T.2):

FEY) — fah)

Lo+ Ly ||V f(z")]| e zkHz

2

n*(Lo+ L1 ||V f(z
2

<Vf(:ck),xk+1 — xk> +

I

= - (V/(a"),G(a",€") +

Next, we consider 4 cases of the relation ||V f(2*)|| and ||g(z*, £*)|| with respect to the hyperpa-
rameter \.

36



E.1.1 First case: HVf(:ck)H > Aand Hg(;v’f,g’“)H > A

Let us evaluate first summand of with oo = ||V f ()| -

(VI (a*), G, €5) B =TV rah)|” - J- |t )
n
+ ol |GGk, ¢t - avie 57
__n _ 2
= - |vsEh)l| - 2L llGEk e

+

o [AGGEH €5 = xav i)
n n 2
—5 [V1@M)|| = 5 [IGGE" €9
+ 5y0— |[clipy (82", €)) = clip, (V")

Using that clipping is a projection on onto a convex set, namely ball with radius A, and thus is Lipshitz
operator with Lipshitz constant 1, we can obtain:

1 (VF(@),E [Ga", €9)]) <~ | V£ - 5B [ 6", )]

+ 3o [Hg e -] 69

_ N . [wreh)
In the case: 0 < ( < 75 Using this in (38), we have the following with 7, < TeTES MR

E [f(l‘k+1)] _ f(xk) @ —n <Vf($k),E [G(xk,ﬁk)D + 772<L0 + L12|‘Vf<.%‘k)H)E |:||G(xk7£k)||2:|
L 1 vsen) - LE[lo6t )] + aE[ls6* €9 - Vi)
n?(Lo + L1 ||V f(

- ivk)H)E “‘G(xk,gk)uﬂ

= 2|95 + 535 [[l8(*,€") - Vb))
- 7B [[6",€5)]°] (1 - TVL}&Zﬁxk)H)>
< 2 |[VI6h)| + e [llge*, ) - V)]
B 219s@h)) + 5355 et €) — E gl €] ] + 535 bl
s g 2
< -2 seh) + 296 + G
= st + )

The step size will be constant, depending on the hyperparameter A:

NG I 1 A A

= >
2(Lo+ Ly ||V f(zF Y T 2(Lo+ L))
(Lo + L1 [V f(=*)]) 2(LOW+L1) 2(LOW+L1)‘) (Lo + L1A)

Thus, 7 =1 < gy

Using the convexity assumption of the function, we have the following:
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f@®) = < (Vf(ah), " —2%) g IV f ()] [|l2* — o

<[[VFE = ==

R
Hence we have: Faky - 5
V@R = == (60)
Then substituting (60) into (39) we obtain:
no? M no?M

8]

E [f(z**)] - f@*) < — 3 [VF@h)| + Tap < 35 = )+ T

This inequality is equivalent to the trailing inequality:

no?M
2X2B

* n *
E [/ )] - 5 < (1- %) (P = 1) +
Then for k = 0,1,2,...,N — 1 iterations that satisfy the conditions ||g(z*,£")|| > v/2¢ and
|V f(z*)|| > v2¢ NSGD with biased gradient oracle shows linear convergence:

B[] - 1< (1= k) (60— 1)+ g

NG

. A . . . . .
In the case: 75 < (. Using this in (38), we have the following with 7, < IO TS M TeaTE

B[] - 7e%) D - (V) E Gk, 6] + T +L12”Vf 2L [”G(“’k’fk)’ﬂ
2 G Ivsehl - 5 [Io6 9] + giE [l e - vreh]
n2(Lo+L12||Vf(z’“)||)E U\G (2", ") H }
= 95| + e [l €9 - 9]
- JE[|c" €4)°] <1 (Lo TVL}(‘LZ;T )H)>
< D95 + gt [l €) — V)]
B 1w sty + 2;2 E [a(* € - [ (@ €911 + g5 I
< —3 IV + 2/\2 B 27Z\C22a
<D vsah) |+ T
= T |vsah)+ B (61)

The step size will be constant, depending on the hyperparameter A:

|V f ()| B 1 A A

>
k .
2(Lo + Ly [V f(z®)]]) 2([0H T [1) 2<[0u P EM) 2 (Lo + L1)\)

Thus, 1 =1 < 57y

Using the convexity assumption of the function, we have the following:
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5@~ 1 < (R, — o) s o o) < o) 2 o]

R
Hence we have: .
x _ *
IV f(=")] > R0t 3% I (62)
Then substituting (62) into (61)) we obtain:
2 2 2 2
k1] p(oky < 1 k no-M U<M<_i ky_ no“M  n¢"M
E [f(z")]=f(2*) < 5 |V f(z )||+2)\23+ e = QR(f( )=+ x| one
This inequality is equivalent to the trailing inequality:
2 2
BRI o (1 D (b ey 10PM 0GP M
BLH] =1 < (1= 35) UGN = 1) + G + 5

Then for k = 0,1,2,..,N — 1 iterations that satisfy the conditions ||g(z*,&*)|| > X and
||V f(zF) || > Xand ¢ > /2)\ NSGD with biased gradient oracle shows linear convergence:
o? MR (MR

A2B Az

B[] - 1 < (1 55)" (70— 1) +
E.12 Second case: ||V f(z")|| < Aand |g(z*,£)[| > A
Let us evaluate first summand of (57) with o« = A%
(V). Gt €9) & =T vsah)|” - 5L ot
+ 5 Gt gk —aVfEh)|”

—QHW 2" H—iHGx )
o5 MGt ol
_.n _n k
- 2||fo )l mneu,uu
+ % Hclip/\ (g(xk,ék)) — clip,, (Vf(m”“))”2

Using that clipping is a projection on onto a convex set, namely ball with radius A, and thus is Lipshitz
operator with Lipshitz constant 1, we can obtain:

—n (Vi) E G €9)]) < -3 IIVf @) - 55 E {IIG@’“,@)HQ}
+ 55 |8, €5 = VFEh|[]. (63)

2(Lo+L1 [V f(zF)I) -

B [f(xk+1)] _ f(xk) < <Vf(xk),IE [G(ﬂﬁk,ﬁk)b N n*(Lo + L12HVf(xk)H)E [HG(xkak)Hz}
Lvr@h)]| - ooE [[[66*,€9]°] + 55E [le@", €5 - viEh)|]

2 zk 2
n (L0+L12||Vf( )H)E {HG(xk’gk)H }

B 1| s@)] + 5 el €9 ~ E [g@*,€9]["] + 55 b6

Using this, we have the following with 7 <
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Lo+ Ly [|[VF(2*
- JE |Gt e (1—”( OTw!Lkﬂf )H)>

2 2
<—f||Vf W+ o5 + 55 (64)

The step size will be constant, depending on the hyperparameter A:

(NG I 1 A A

— >
2 (L L]V k A — 2(L L))
(Lo + L1 [V f(zF)]) Q(LoerLl) Q(LOW+L1)\) (Lo + L1 \)

Thus, n, =7 < 72(L0+L1/\)

Using the convexity assumption of the function, we have the following:

5@~ 1 < R, — o) I seh | | o) < o) 2 o]
—

R
Hence we have: . )
V£ = %~ (65)
Then substituting (63)) into (64) we obtain:
¢? " ¢?
B[] 10t < L[V ¢ 200+ I ety 2

This inequality is equivalent to the trailing inequality:

B[] - £ < (1 o5) (16 - 1) + o (5 +67)

Then for £ = 0,1,2,..., N — 1 iterations that satisfy the conditions HVf(:rk)H < X and
||g(xk, &) H > A NSGD with biased gradient oracle shows linear convergence:

B[] - 5 < (1-3) " G - 7+ X (G4 t).

E.1.3 Third case: ||V f(z¥)|| < X and ||g(z*,£%)|| < A

.
Using this in (37), we have the following with 7, < c ]| and o = ||Vf(13k)”_1:

= 2(Lo+ LIV F(=R))

B [1*)] - £ D - (91t E [t ¢4]) + LR I ED g e, e

82 |vs6 - e [Haw,swﬁ] ’ %E ot €) - avseh]

2(L Ly ||V f(xF

= =3 IVIEh ]+ 3B 6" €9~ av s ||}

o n(Lo + Ly |V f(zF)]])
= et e M( V@]

< - |VsEh)| + oL [lG6* €5 - avrah]
<5195+ 2E 6t &) + ov )]
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k:
n fL'
- -1v +2
sIvsel+ 22 | oy Hn ]
0 2\ |V £ (o
= -2 sh) + —” ”
— 2 V@R + 20 (66)

The step size will be constant, depending on the hyperparameter A:

[Vf(h)]] _ 1 A A

_ >
2(Lo + L1 [V f(a* ¢ el
(Lo + Ly [V f(=M)]) Q(LOW+L1) 2(L0W+L1A) ot )

_ A
Thus, nk =1 < 5750

Using the convexity assumption of the function, we have the following:

F@*) - 1 < (V) ak =27 2 |9 ot

<95 o ]
—_——

R

Hence we have: 3
f@@®) = f~

7 (67)

FCol=
Then substituting (67)) into (66) we obtain:

B [f(*)] = f@*) < T V@) + 200 < 5L (@) = £9) + 200,

This inequality is equivalent to the trailing inequality:

E[f ] = 1 < (1= 55) (7 = 1) + 201

Then for k = 0,1,2,..., N — 1 iterations that satisfy the conditions HVf(a:k)H < A NSGD with
biased gradient oracle shows linear convergence:

B[] 5 < (1= 25) " (76 — 1) + AR

E.14 Fourth case: ||V f(z")|| > X and ||g(z*, &%) < A

[vEh]]

_ y—1.
Lot LV o and o= A"

Using this in (57), we have the following with 7, <

E[f(e*)] - 1) D —n (Vi) E [Gat, %))

2 at :
U CTTR Y

2 IVIEh) - 55 [E[CE €]
+ L e [t ) - a¥ )]
n*(Lo + L HVf(xk)H)E [HG(l‘kvsk)HQ}

= o5 IVt H+ CE DG, €M) - Vb
n*(Lo + Ly HVf H)
2
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o (2, 7 Ag(zk, &F) ol
**ﬁnvf(ff || +/\HE {Mg(x € )}
||2 N n?(Lo + L1 |V f(2¥)|))

2

+ 7 |[b(a*)

A 2

= o5 I+ 55 HE [(M - 1) g(w’“,é’“)]

n?(Lo + L1 ||V f(=%)]])
2

_n A ’ PN
N ZCal El(ng@k a7 1) e ’“M

||2Jr n*(Lo + L1 |V f(2")|))
2

n k||
+3 [b(z™)||” +

n g [b(z*)

_n ky2 )‘72 PR
LIVFEHI+ 5B l|g<xk,ek>2 Jsle €0l ]

o n?(Lo + L12HVf(x’“)H)

2(Lo + Ly ||V f(2* A

72 (Lo + 12H Gl %+ﬂ]|b(a:k)“2

1° (Lo + L ||V f (2" H
2

n k
+ \ ||b(zc )

= — o [ VAN +

<195 + P

Lo+ Ly ||V
2wstat (1 Mt LT ”)++ﬂw I

IV f @)l 2
2
<—fHVf )|+ L (68)

The step size will be constant, depending on the hyperparameter A:

|V f(*) ]| B 1 A A

>
% .
2 (LO + Ly || Vf(a: )H) 2 ([0 T f%x’v)u [1) ) ([0 T f?zk)u l1>\) 2 (Lo + Ll)\)

Thus, m =1 < 57557

Using the convexity assumption of the function, we have the following:

Fah) - 5 < (T1a), o 1) L9rE)] [ o) < |9 | - 27

R
Hence we have:
k *
[VrE")| = %. (69)
Then substituting (69) into (68) we obtain:
¢? x S
B[] - £a) < -2 Vs + 5 + B < - (b - 1)+ T I

This inequality is equivalent to the trailing inequality:

B/ - < (1 ) () =)+ 5+ T
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Then for ¥ = 0,1,2,...,N — 1 iterations that satisfy the conditions HVf(wk)H > X and
||g(xk, &r) H < A NSGD with biased gradient oracle shows linear convergence:
2C%R

T

B[] -7t < (1= 15) " (") — 1) + 2R +

Combining all the cases considered, we obtain the convergence rate of NSGD with biased gradient
oracle:

B[] -5 (- 1) ) - 1)+

MR (o>
R

2
= (5 +¢ ) + AR. (70)

E.2 Convergence Results for ZO-NSGD (Proof of the Theorem 5.4)

In order to obtain the convergence rate of ZO-NSGD in the convex setting, we need to substitute
the obtained estimates (50) and (51)) into the convergence rate of NSGD (70) instead of ¢ and o2,
respectively. Then the convergence of ZO-NSGD in the convex setup is as follows:

~ 2
B[] - 5 (1= 1) () - )4 LB MR (Lo L LMy | LMRAC

R A2B A2B A2B~?
@ @ ® @
MR (Lo 4+ LiM)*~?  d*MRA?

 MR(Lo+ LM) RA° | R

)\2 )\2,72 ~—~
——— @
® ®
From term @, we find the hyperparameter \:
®: M<e = A< %. 71)

From term @, we find the number of iterations N required for Algorithm [4]in convex setup to
achieve e-accuracy:

370 _ fx®
o (1—1)N(f(w°)—f*)§e = NZflog(f()Ef)~

R )
~ (R
N=0 () . (72)
n
From terms @, we find the batch size B:
dMR&? dM R352
®@: ——< B> — -
p -° 7 - e
dM R352
B=0 <3J) : (73)
€
From terms @ and ® we find the smoothing parameter ~:
dMR (Lo + L1 M)* 42 2B 5
®: ot IMPY oo 4 4 : ; L,
\’B dMR (Lo + Ly M) (Lo + L1 M)
MR (Lo + LiM)*~? 3
® - (0-5-21)7§5:7§ Ve3 :
A VMR3/2 (L + L1 M)
1 63/2 63/2 %
< —————min< g, = .
7= Lo+ LiM) { \/MR3/2} (Lo + L1 M)~/ MR3/2

From the remaining terms @ and ®, we find the maximum allowable level of adversarial noise A
that still guarantees the convergence of the ZO-NSGD to desired accuracy ¢ in convex setup:

d>MRA? VEMYVB @).03.00 326
®: —5pa St T A== ;
A*Bry dvVMR Vd (Lo + L1 M) R3/2
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2 2 232 3
o. TMRA < o A<, XX OB € ,
122 MR d(Lo+ L1 M) R3

£3/2 e3/2
< ming o, ——— ;. 75
~ Vd(Lo+ LiM) R3/2 { \/&33/2} 7

In this way, the ZO-NSGD achieves e-accuracy: E [ fa™N)y—f *] < ¢ in convex setup after
B ~2M 4
N@O(R>, T:N-B@é@o(d" Vi )
N e3n
number of iterations, total number of zero-order oracle calls and at
A@ g3/? . {~ g3/2 }
< min¢ o, —=——
Vd (Lo + L M) R3/? VdR3/2
£3/2
(Lo+Ly M)V/MR3/2

the maximum level of noise with smoothing parameter

(74).

F Additional Clarification

In this section, we would like to clarify the convergence in the case Ly = 0 (Remark[T.3). In this case
the problem does not reach a minimum (hence R = arg inf f(x) = +00). Therefore, we exemplify

the special case of NSGD (when ||V f(z*,£F)|| > /20 and ||V f(2")|| > V/20), shows that it is
possible to achieve the desired accuracy ¢ in a finite number of iterations.

Let’s introduce the notation G (2%, &%) = %, then using (Lo, L1 )-smoothness (see Assump-
tion[1.2):
Lo+ L
f($k+1) _ f(fk) @ <Vf(xk),xk+1 _ $k> + o+ L1 |Q|Vf(12
n?(Lo+ Ly ||V f(
2

W jaers —aty

k
= —n(Vf(z"),G(" &%) + D |G(*, €M7, (76)

Let us evaluate first summand of (76) with a = ||V f(z*) || .

—n(V(a*), G, €5) B -SH|vrah)|” - L lleer e
+ 5 |Gt sk —avf(ah)|”
= 2 IVF )| - o= [|l66*, €5

+

o MG (b €8) = 2avf(ah)|”

= —7[Vah)| - 55 6", €5
+ 2;72& [clipy (V£ (¥, €)) — clip, (V£(2")|

Using that clipping is a projection on onto a convex set, namely ball with radius A, and thus is Lipshitz
operator with Lipshitz constant 1, we can obtain:

(V1) E [0 €0)]) < -1 [95a)] - LE[e6* e)]
+ 50=E [[IV (¥, €") - Vi(ab)|

n 2
2)2¢ ] ’ a7

k
Using this in (77), we have the following with 7, < %

(Lo + Ly HVf(xk)H)IE [HG(x’“,ﬁk)HQ}

B[]~ 164 S (V6 E (6" 69]) + :
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@ 7 7 2
< 2| Viah)|| - B [G6" €] + =B |V,
(Lo + L HVf(:z:’“)H)E “‘G(xk £k)H }
2 )
~2 IV s + =B [Vt €5 = V@)
U 2 (Lo + Ly ||V £ ("))
o §E “|G($ka€k)” ] (1 - - |vjlc(|L;k)|| H
<DV + 2o
< —5 [Vrah||+ V7Y
o L\ Call %)
The step size will be constant, depending on the hyperparameter A:
IviEHI 1 _ A > 2
2(Lo+ L1 |[Vf(@®)]) B T 2(Lo+ L))’
(Lo + L1 [V f(z*)]) Q(LOW+L1) Q(LOW+L1,\) (Lo + L1A)
Thus, 11 = 1 < 575370
We introduce the hyperparameter of the algorithm R, = Hmo — SH Then using the convexity
assumption of the function, we have the following:
F(@*) = f(s) < (V@) 2" —s)
(0]
< [VFEH|[|l=* - |
< IV [|l2° - s -
R,
Hence we have: .
V£t > w. (79)
S

Then substituting (79) into (78] we obtain:

E[f(@*)] - fa*) < =T VN < - - () = £(5)).

This inequality is equivalent to the trailing inequality:

B[] - 17 < (1= 15 ) (68 = 1) + () - )

Then for k = 0,1,2,..., N — 1 iterations that satisfy the conditions ||V f(z*,£")|| > v/20 and
||Vf(:1:k) || > /20 NSGD shows linear convergence:

FN) —fr < (1 o )N () — F) + () —
- 4R,

Thus, we have shown that it is indeed possible to converge to a linear rate of convergence on logistic
regression using the hyperparameter R;.
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