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Abstract

The gradient descent (GD) method – is a fundamental and likely the most popular optimiza-
tion algorithm in machine learning (ML), with a history traced back to a paper in 1847 Cauchy
(1847). It was studied under various assumptions, including so-called (L0, L1)-smoothness, which
received noticeable attention in the ML community recently. In this paper, we provide a refined
convergence analysis of gradient descent and its variants, assuming generalized smoothness. In
particular, we show that (L0, L1)-GD has the following behavior in the convex setup: as long
as
∥
∥∇f(xk)

∥
∥ ≥ L0

L1

the algorithm has linear convergence in function suboptimality, and when
∥
∥∇f(xk)

∥
∥ < L0

L1

is satisfied, (L0, L1)-GD has standard sublinear rate. Moreover, we also show
that this behavior is common for its variants with different types of oracle: Normalized Gradient
Descent as well as Clipped Gradient Descent (the case when the full gradient ∇f(x) is available);
Random Coordinate Descent (when the gradient component ∇if(x) is available); Random Co-
ordinate Descent with Order Oracle (when only sign[f(y)− f(x)] is available). In addition, we
also extend our analysis of (L0, L1)-GD to the strongly convex case.
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1 Introduction

We consider the standard unconstrained minimization

min
x∈Rd

f(x), (1)

where f : Rd → R is a convex differentiable function. This problem configuration is quite general
and encompasses a broad range of applications in ML scenarios. For such problems, the traditional
optimization algorithm is the gradient descent method (GD) Cauchy (1847), which has a sublin-
ear convergence rate in the convex setting under the Lipschitz smoothness assumption (see, e.g.,
Nesterov, 2013). In particular, GD is the core of optimization for machine learning, and various
modifications of this method have been studied in different assumptions suited to ML applications.
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In this paper, we consider one of such assumptions called (L0, L1)-smoothness (Zhang et al.,
2020b,a; Chen et al., 2023), which in the case of twice differentiable functions, states that ‖∇2f(x)‖ ≤
L0 + L1‖∇f(x)‖, i.e., the smoothness constant can grow as a linear function of the gradient norm.
Under this assumption, different variants of GD are analyzed, including GD with clipping (Clip-GD)
(Zhang et al., 2020b,a; Koloskova et al., 2023; Vankov et al., 2024b), (L0, L1)-GD (Gorbunov et al.,
2024; Vankov et al., 2024b), Normalized GD (NGD) (Zhao et al., 2021; Chen et al., 2023; Vankov et al.,
2024b), and other variants (Crawshaw et al., 2022; Wang et al., 2022; Faw et al., 2023; Wang et al.,
2023; Hübler et al., 2024; Li et al., 2024b). More precisely, in the deterministic convex case, the
state-of-the-art results for Clip-GD, (L0, L1)-GD, and NGD are obtained by Gorbunov et al. (2024);

Vankov et al. (2024b) showing the O
(
L0R2

N

)

rates for function suboptimality when N = Ω(L2
1R

2)1

leaving open questions about the refined methods behavior characterization for N = O(L2
1R

2).
However, beyond the first-order methods, the algorithms for (L0, L1)-smooth optimization are

weakly studied. In particular, random coordinate descent (RCD) Nesterov (2012); Shalev-Shwartz and Tewari
(2009); Richtárik and Takáč (2016), which is useful in the situations when the computation of the
full gradient is prohibitively expensive, is not analyzed in the context of (L0, L1)-smooth optimiza-
tion. Moreover, in some cases, e.g., in the reinforcement learning with human feedback (Tang et al.,
2024), even objective values are available, and for given points x, y ∈ R

d one can only evaluate
sign[f(y) − f(x)]. To the best of our knowledge, there are no theoretical convergence results for
such methods under (L0, L1)-smoothness, and, in particular, the convergence of random coordinate
descent with order oracle (OrderRCD) (Lobanov et al., 2024) is not studied in this setup.

In this paper, we address this gap in the literature and provide the first analysis of RCD and
OrderRCD for convex (L0, L1)-smooth optimization. Moreover, we improve the existing results
for (L0, L1)-GD, NGD, and Clip-GD: we prove that these methods enjoy linear convergence rates
without any additional assumptions for the initial optimization phase when

∥
∥∇f(xk)

∥
∥ ≥ L0

L1
.

Our contributions can be summarized as follows.

• We show under what conditions variants of the gradient descent achieve linear convergence
in the convex setup.

• We prove better complexity bounds for (L0, L1)-GD, NGD, and Clip-GD than previously
known ones, assuming convexity and (L0, L1)-smoothness of the objective function. We show
that these algorithms converge linearly at first, and slow down as they approach the solution,
converging sublinearly. We also show that for the phase of convergence of NGD, when the
iterates satisfy

∥
∥∇f(xk)

∥
∥ ≥ c, the method converges linearly. Table 1 demonstrates the con-

ditions under which Clip-GD converges linearly. In particular, the case of λk = 1 corresponds
to the convergence of GD, and the case of λk = c

‖∇f(xk)‖ corresponds to the convergence of

NGD.

• We provide the first convergence results for the RCD and OrderRCD algorithms under the
convexity and (L0, L1)-coordinate smoothness assumptions. We demonstrate that the lin-
ear convergence phenomenon of the full-gradient methods exists for both of the mentioned
methods.

1After the first version of our work appeared on arXiv, Vankov et al. (2024b) let us know that they also indepen-

dently derived O

(

L0R
2

N
+

(

1− 1
L1R

)N

F0

)

rate for (L0, L1)-GD, where F0 = f(x0) − f(x∗) during the discussion

with reviewers of their work to a ML conference. Then, the authors updated their paper on arXiv (Vankov et al.,
2024a). At the moment of writing our paper, we were unaware of the updated version of (Vankov et al., 2024a).
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Table 1: Comparison of the convergence rates for Clip-GD in the convex case. Clip-GD update scheme:
xk+1 = xk − ηk · clipc(∇f(xk)). Notation: clipc(∇f(xk)) = λk · ∇f(xk); λk = min{1, c/‖∇f(xk)‖}; c > 0
– clipping radius; ηk > 0 – step size; N = number of iterations; F0 = f(x0) − f∗; R =

∥
∥x0 − x∗

∥
∥; T =

min
{
k ∈ {0, 1, ..., N − 1} | ‖∇f(xk)‖ < L0/L1

}
; LCR = linear convergence rate.

Reference Clipping threshold λk
Smoothness case: Convergence rate

LCR?
L0 (?) cL1 f(xN)− f∗ .

Koloskova et al. (2023) arbitrary

1
larger O

(
L0R2

N

)

✗

less or equal O
(
cL1R2

N

)

✗

c

‖∇f(xk)‖
larger O

(
L2
0LR

4

c2N2

)

✗

less or equal O
(
L2
1LR

4

N2

)

✗

Gorbunov et al. (2024) &
c = L0

L1

1 equal O
(
L0R2

N

)

✗

Vankov et al. (2024b) c

‖∇f(xk)‖ equal ✗ ✗

Theorem 3.5 (Our work) arbitrary

1
larger O

(
L0R2

N

)

✗

less or equal O
(

min

{

L0R2

N−T ,
(

1− 1
L1R

)T
F0

})

✓

c

‖∇f(xk)‖
larger O

((

1− c
L0R

)N
F0

)

✓

less or equal O
((

1− 1
L1R

)N
F0

)

✓

• We extend our analysis of (L0, L1)-GD to the case when the function is µ-strongly convex.

1.1 Notations and main assumptions

Before discussing related work, we first introduce the notations and assumptions that are used in
this paper.

Notations. We use 〈x, y〉 :=
∑d

i=1 xiyi to denote standard inner product of x, y ∈ R
d. We denote

Euclidean norm in R
d as ‖x‖ :=

√
∑d

i=1 x
2
i =

√

〈x, y〉. We use ei ∈ R
d to denote the i-th unit vector.

For L = (L(1), . . . , L(d))⊤ ∈ R
d and α ∈ R, we define the norms ‖x‖[L,α] :=

√
∑d

i=1(L(i))αx2i and

‖x‖∗[Lp,α]
:=

√
∑d

i=1
1

(L
(i)
p )α

x2i . We denote by ∇f(x) the full gradient of function f at point x ∈ R
d,

and by ∇if(x) the i-th coordinate gradient of function f at point x ∈ R
d. We also introduce

SL
α :=

∑d
i (L(i))α. We use Õ(·) to hide the logarithmic coefficients. We denote f∗ := f(x∗)

and x∗ ∈ X∗ := arg minx∈Rd f(x) to be any solution of (1). We also use R := ‖x0 − x∗‖ and
F0 := f(x0)− f∗.

The most common assumption about smoothness in the literature (see, e.g., Nesterov, 2013) is
L-smoothness.

Assumption 1.1 (L-smoothness). Function f is L-smooth if the following inequality is satisfied
for any x, y ∈ R

d:
‖∇f(y)−∇f(x)‖ ≤ L ‖y − x‖ .

However, instead of standard L-smoothness, we focus on the so-called (L0, L1)-smoothness
(Zhang et al., 2020b,a).
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Assumption 1.2 ((L0, L1)-smoothness). Function f : Rd → R is (L0, L1)-smooth if the following
inequality is satisfied for any x, y ∈ R

d with ‖y − x‖ ≤ 1
L1

:

‖∇f(y)−∇f(x)‖ ≤ (L0 + L1 ‖∇f(x)‖) ‖y − x‖ . (2)

If L1 = 0, the above assumption recovers Assumption 1.1 with L = L0. Moreover, (L0, L1)-
smoothness is strictly more general than L-smoothness, see the examples in Zhang et al. (2020b);
Chen et al. (2023); Koloskova et al. (2023); Gorbunov et al. (2024).

Next, we also use a coordinate-wise version of Assumption 1.2 introduced by Crawshaw et al.
(2022).

Assumption 1.3 ((L0, L1)-coordinate-smoothness). A function f : Rd → R is (L0, L1)-coordinate-

smooth for L
(1)
0 , L

(2)
0 , ..., L

(d)
0 , L

(1)
1 , L

(2)
1 , ..., L

(d)
1 ≥ 0) if for any i ∈ [d], x ∈ R

d and h ∈ R, |h| ≤
1

maxi∈[d] L
(i)
1

the following inequality holds:

|∇if(x+ hei)−∇if(x)| ≤
(

L
(i)
0 + L

(i)
1 |∇if(x)|

)

|h|.

The above assumption generalizes the standard coordinate L-smoothness (Lin et al., 2014;
Allen-Zhu et al., 2016; Zhang and Xiao, 2017) similarly to how (L0, L1)-smoothness generalizes
L-smoothness.

We also assume that the function f is (µ-strongly) convex.

Assumption 1.4. Function f : Rd → R is µ ≥ 0 strongly convex if for any x, y ∈ R
d the following

inequality holds:

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖2 . (3)

Assumption 1.4 is classical and widely used in the literature (see, e.g., Boyd and Vandenberghe,
2004; Nesterov, 2018).

1.2 Paper structure

Further, our paper has the following structure. In Section 2, we discuss the related work. In
Section 3, we provide the results for full-gradient methods. The case where the oracle only has
access to the gradient coordinate or the comparison of the values of two functions is considered
in Section 4. In Section 5, we generalize our results for (L0, L1)-GD to the strongly convex case.
Discussions of this work and future work plans are given in Section 6. Section 7 concludes the
paper. All missing proofs of the theoretical results are provided in the Appendix.

2 Related Works

The literature on the analysis of GD-type methods is very rich. Below, we discuss only closely
related works.
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Full-gradient methods for the (L0, L1)-smooth convex optimization. Although most of
the existing works on (L0, L1)-smoothness focus on the non-convex case, there are several pa-
pers considering the (strongly) convex problems as well. Koloskova et al. (2023) gives the first
analysis Clip-GD (Pascanu et al., 2013) under (L0, L1)-smoothness and L-smoothness and proves

O
(

max
{

(L0+cL1)R2

N , R
4L(L0+cL1)2

c2N2

})

rate (see Table 1 for the details). This bound is derived under

the additional L-smoothness assumption, which is not always satisfied for (L0, L1)-smooth prob-
lems. Moreover, when λk = 1 and L0 ≤ cL1, the derived rate is proportional to c. In addition, the
analysis from (Koloskova et al., 2023) implies the sublinear convergence rate for NGD (see the case
λk = c

‖∇f(xk)‖ in Table 1). Takezawa et al. (2024) derive similar results for GD with Polyak Step-

sizes (GD-PS), i.e., they show O
(

max
{

L0R2

N ,
R4LL2

1
c2N2

})

convergence rate. Next, Li et al. (2024a)

derive convergence rates for GD and its accelerated version under (r, ℓ)-smoothness assumption,

which generalizes (L0, L1)-smoothness. In particular, for GD Li et al. (2024a) prove O( ℓR
2

N ) conver-
gence rate, where ℓ = O(L0 +L1G) and constant G depends in L0, L1, R, ‖∇f(x0)‖, and f(x0)−f∗,
meaning that it can be exponentially large in terms of L1 and R. Finally, Gorbunov et al. (2024);
Vankov et al. (2024b) independently improve the convergence rates of (L0, L1)-GD/Clip-GD by

considering the special case of clipping radius c = L0
L1

. More precisely, they prove O
(
L0R2

N

)

conver-

gence rate if N ≥ L2
1R

2 and extend this result to GD-PS (Vankov et al. (2024b) also show a similar
result for NGD). However, the results from Gorbunov et al. (2024); Vankov et al. (2024b) do not
provide convergence rates in terms of f(xN )− f∗ for the stage when ‖∇f(xk)‖ > L0/L1, which can
be noticeable when L0 is small and L1 is large. In our work, we propose the analysis that addresses
this limitation (see Table 1).

Coordinate descent type methods. Convergence of coordinate methods is also relatively well-
studied. For example, under the standard L-smoothness assumption ((∇2f(x))i,i ≤ L), the coor-

dinate descent (CD) method has the following convergence rate O
(
dLR2

N

)

(see, e.g., Bubeck et al.,

2015). Using the fact that 1
d

∑d
i=1 L

(i) ≤ L and assuming L-coordinate-smoothness ((∇2f(x))i,i ≤
L(i)), the previous result can be improved to O

(∑d
i=1 L

(i)R2

N

)

rate. Next, assuming that the active

coordinate ik can be obtained (independently) from the distribution pα(i) = (L(i))α/Sα, then RCD

converges at O
(

SαR2
[L,1−α]

N

)

rate Nesterov (2012), where

R[L,1−α] := maxx∈Rd

{
maxx∗∈X∗ ‖x− x∗‖[L,1−α] : f(x) ≤ f(x0)

}
. Moreover, Lobanov et al. (2024)

show that it is possible to create an OrderRCD algorithm based on RCD, whose oracle has access
only to function comparisons (this oracle can be motivated by, e.g., RLHF (Ouyang et al., 2022;
Bai et al., 2022)). More precisely, Lobanov et al. (2024) prove that the iteration complexity of Or-
derRCD is the same as for RCD, and the oracle complexity is inferior only in log(1/ǫ) factor, where
ǫ is the accuracy of the solution of the linear search problem. In our paper, we extend these results
to the more general case of (L0, L1)-smoothness.

3 Full-Gradient Methods

In this section, we present our result for full-gradient algorithms (see GD in Subsection 3.1, NGD
in Subsection 3.2, and Clip-GD in Subsection 3.3).
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3.1 Gradient descent method

The first algorithm we consider has the following algorithm:

Algorithm 1 Gradient Descent Method (GD)

Input: x0 ∈ R
d, iterations number N , step size ηk > 0

for k = 0 to N − 1 do
xk+1 ← xk − ηk∇f(xk)

end for
Return: xN

We prove the following result for Algorithm 1 with stepsize ηk = (L0 + L1

∥
∥∇f(xk)

∥
∥)−1 (to

emphasize the specificity of the step size we call it (L0, L1)-GD for brevity).

Theorem 3.1. Let function f satisfy Assumption 1.2 ((L0, L1)-smoothness) and Assumption 1.4
(convexity, µ = 0), then GD (Algorithm 1) with step size ηk = (L0 + L1

∥
∥∇f(xk)

∥
∥)−1 guarantees

• linear convergence, if ‖∇f(xk)‖ ≥ L0
L1

for k ∈ [N − 1]

f(xN )− f∗ ≤
(

1− 1

4L1R

)N

F0;

• sublinear convergence, if ‖∇f(xN−1)‖ < L0
L1

:

f(xN )− f∗ < 4L0R
2

N
.

In the general case, the convergence rate is

f(xN )− f∗ ≤ min

{

4L0R
2

N − T ,
(

1− 1

4L1R

)T

F0

}

,

where T ≥ 0 is the smallest index such as ‖∇f(xT )‖ < L0
L1

.

Given the monotonicity of the gradient norm (see Appendix B), Theorem 3.1 characterizes in
details the convergence behavior of GD for convex (L0, L1)-smooth problems. More precisely, as
long as the gradient norm is larger than L0/L1, GD converges with linear rate, but when the method
approaches the solution (‖∇f(xk)‖ < L0/L1) the convergence slows down to the standard sublinear

rate. That is, O(L0R2

N ) rate is common to the previous works (Gorbunov et al., 2024; Vankov et al.,
2024b) (see Table 1). However, in contrast to (Gorbunov et al., 2024; Vankov et al., 2024b), our
analysis shows O(1 − 1/L1R)NF0 rate when ‖∇f(xk)‖ ≥ L0/L1 (see the case of λk = c/‖∇f(xk)‖ in
Table 1). Moreover, our result significantly improves the one from (Koloskova et al., 2023) (see
smoothness case “less or equal” with λk = c/‖∇f(xk)‖ in Table 1) from sublinear to linear and
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gets rid of potentially large parameter c ≥ L0/L1. The proof of the Theorem 3.1 is provided in
Appendix C.1.

The significance of the improved estimate can be observed under the assumption of strong
growth condition2.

Remark 3.2. Theorem 3.1 implies that under Assumption 1.2 with L0 = 0, Algorithm 1
converges to the desired accuracy ε (f(xN )− f∗ ≤ ε) after N = O

(
L1R log F0

ε

)
iterations.

The result of Remark 3.2 significantly outperforms all known results in this regime. In particular,
Koloskova et al. (2023) show O(L1cR2/ε) complexity bound for Clip-GD, and Gorbunov et al. (2024);
Vankov et al. (2024b) do not provide explicit rates in this case.

3.2 Normalized GD method

From the previous section, we see that GD with step size with step size ηk = (L0 +L1

∥
∥∇f(xk)

∥
∥)−1

enjoys linear convergence in the convex setting, when ‖∇f(xk)‖ ≥ L0/L1. However, in this regime,
we have L1

∥
∥∇f(xk)

∥
∥ ≥ L0, meaning that (2L1

∥
∥∇f(xk)

∥
∥)−1 ≤ ηk ≤ (L1

∥
∥∇f(xk)

∥
∥)−1, i.e., the

method is very close to NGD (Algorithm 2). Therefore, it is natural to expect similar behavior
from NGD as for GD.

Algorithm 2 Normalized Gradient Descent Method (NGD)

Input: x0 ∈ R
d, iterations number N , step size ηk > 0

for k = 0 to N − 1 do
if ‖∇f(xk)‖ = 0 then

Return: xk

end if
xk+1 ← xk − ηk ∇f(xk)

‖∇f(xk)‖
end for
Return: xN

The following result formalizes this observation.

Theorem 3.3. Let function f satisfy Assumption 1.2 ((L0, L1)-smoothness) and Assumption 1.4
(convexity, µ = 0), then Algorithm 2 with step size ηk = η ≤ c/(L0+L1c), where constant c > 0 is
such that ‖∇f(xk)‖ ≥ c for all k = 0, 1, . . . , N − 1, has linear convergence:

f(xN )− f∗ ≤
(

1− η

2R

)N
F0.

Theorem 3.3 shows that in the case of c ≥ L0/L1, NGD has O
(

(1− 1
L1R

)NF0

)

convergence rate

similarly to GD, which is natural to expect due to ‖∇f(xk)‖ ≥ c and the discussion given in the
beginning of this subsection. However, if we select large enough N , one has to select c small enough

2We refer to Assumption 1.2 with L0 = 0 as strong growth condition for smoothness assumption by analogy with
Vaswani et al. (2019) for variance.
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such that ‖∇f(xk)‖ ≥ c holds for all k = 0, 1, . . . , N − 1. If c < L0/L1, then the rate reduces to
O
(
(1− c/(L0R))NF0

)
and the method is guaranteed to converge only to the error ε ∼ cR. Therefore,

to guarantee the convergence to ε-accuracy, one has to take c ∼ ε/R in the worst case. In this case,
our result implies O(L0R2 log(F0/ε)/ε) complexity for NGD. However, hyperparameter c depends only
on the gradient norm, so in problems where the high accuracy on gradient norm is not required,
Algorithm 2 is efficient and shows linear convergence. The proof of Theorem 3.3 see Appendix C.2.

Remark 3.4. Theorem 3.3 implies that under Assumption 1.2 with L0 = 0, Algorithm 2
converges to the desired accuracy ε (f(xN )− f∗ ≤ ε) after N = O

(
L1R log F0

ε

)
iterations.

As previously noted, when
∥
∥∇f(xk)

∥
∥ ≥ L0

L1
GD and NGD with c ≥ L0

L1
are almost the same.

Therefore, the result of Remark 3.4 is expected given Remark 3.2. Moreover, our results imply that

NGD has O(max{L0R2 log(F0/ε)/ε, L1R log(F0/ε)}) complexity. Compared to O(max{L0R
2
/ε, L2

1R
2})

complexity bound derived for NGD with ηk = R̂/
√
N+1, R := R̂ + R2/R̂ by Vankov et al. (2024b),

our bound has an additional logarithmic factor in the first term but has much better second term
when L1R is large and log(F0/ε) is much smaller than L1R.

3.3 Clipped GD method

In this section, we consider Clip-GD (Algorithm 3), which applies the clipping operator to the
gradient:

clipc(∇f(x)) = min

{

1,
c

‖∇f(x)‖

}

∇f(x), (4)

where c > 0 is the clipping radius. Clip-GD can also be seen as a combination of GD (when
‖∇f(xk)‖ ≤ c) and NGD (when ‖∇f(xk)‖ > c).

Algorithm 3 Clipped Gradient Descent Method (Clip-GD)

Input: initial point x0 ∈ R
d, iterations number N , step size ηk > 0 and clipping radius c > 0

for k = 0 to N − 1 do
xk+1 ← xk − ηk · clipc(∇f(xk)) according to (4)

end for
Return: xN

Then, following similar reasoning as in the previous sections, we obtain the next convergence
result for Clip-GD method.

Theorem 3.5. Let function f satisfy Assumption 1.2 ((L0, L1)-smoothness) and Assumption 1.4
(convexity, µ = 0), then Algorithm 3 with step size ηk = (L0 + L1 min{‖∇f(xk)‖, c})−1 guarantees
the following error:

f(xN )− f∗ = O
(

min

{
L0R

2

N − T ,
(

1− ρ

R

)T
F0

})

,

where ρ := c/max{L0,L1c} and T ≥ 0 is the smallest index such as ‖∇f(xT )‖ < min{c, L0/L1}
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Since NGD and GD are monotonically decreasing in terms of the gradient norm, it follows
that Algorithm 3 is also monotonically decreasing in terms of the gradient norm (see Appendix B
for details). Given this fact, Theorem 3.5 shows that Algorithm 3 has two convergence regimes
depending on the ratio of c and L0/L1. If c ≥ L0/L1, then Clip-GD starts its convergence with a

linear rate O
(

(1− (1/L1R))N F0

)

, and as soon as it approaches the solution, i.e., when
∥
∥∇f(xk)

∥
∥ <

L0/L1, it slows down to a sublinear O (L0R2/N) rate. If c < L0/L1, then Clip-GD has inferior linear

convergence rate O
(

(1− (c/L0R))N F0

)

at the beginning, and approaching the solution, i.e., when
∥
∥∇f(xk)

∥
∥ < c, it slows down to the same sublinear rate. The cases in Appendix C.3 are discussed

in more detail. Table 1 summarizes the derived results and compares them with the closely related
works analyzing Clip-GD. It is worth noting that Theorem 3.5 shows when Algorithm 3 has linear
convergence and gets rid of standard smoothness constant L (in contrast to (Koloskova et al., 2023)).
Moreover, Theorem 3.5 is valid for an arbitrary clipping threshold c (in contrast to (Gorbunov et al.,
2024; Vankov et al., 2024b)).

Remark 3.6 (Strong growth condition). Theorem 3.5 implies that under Assumption 1.2
with L0 = 0, Algorithm 3 converges to the desired accuracy ε (f(xN )− f∗ ≤ ε) after N =
O
(
L1R log F0

ε

)
.

4 Coordinate Descent Type Methods

In this section, we present our main results for the algorithms that does not use access to the full
gradient (see RCD in Subsection 4.1, and OrderRCD see Subsection 4.2).

4.1 Random coordinate descent

RCD is formalized as Algorithm 4. At each iteration, the method computes the gradient coordinate
∇ikf(xk), where active coordinate ik is selected uniformly at random from [d] independently from
previous steps.

Algorithm 4 Random Coordinate Descent Method (RCD)

Input: initial point x0 ∈ R
d, iterations number N , step size ηk > 0

for k = 0 to N − 1 do
1. sample ik uniformly at random from [d]
2. xk+1 ← xk − ηk∇ikf(xk)eik

end for
Return: xN

Our main results for RCD are given below.

Theorem 4.1. Let function f satisfy Assumption 1.3 ((L0, L1)-coordinate-smoothness) and As-
sumption 1.4 (convexity, µ = 0), then RCD (Algorithm 4) with step size ηk ≤ (L0 + L1|∇ikf(xk)|)−1,

where L0 = maxi∈[d] L
(i)
0 and L1 = maxi∈[d] L

(i)
1 , guarantees the following error:
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E
[
f(xN )

]
− f∗ = O

(

max

{(

1− ρ

dR

)N
F0,

dL0R
2

N

})

,

where ρ := 1/(4
√
2L1).

Theorem 4.1 provides a generalization of the results of Nesterov (2012) to the case of (L0, L1)-
coordinate-smoothness (see Assumption 1.3). In particular, following Section 3, we separated L0

and L1 in the convergence results and also show that there is no need to assume standard L-
smoothness since the case L1 = 0 covers it. Moreover, in the case of L0 being much smaller than
L1, the results of Theorem 4.1 are strictly better than previously known ones. Furthermore, in the
case of L0 = 0, RCD converges linearly to any accuracy.

Remark 4.2 (Strong growth condition). Theorem 4.1 implies that under Assumption 1.3
with L0 = 0, Algorithm 4 converges to the desired accuracy ε (E[f(xN )]− f∗ ≤ ε) after
N = O

(
dL1R log F0

ε

)
iterations.

For a detailed proof of Theorem 4.1, see Appendix D.1.

4.2 Random coordinate descent with Order Oracle

In this section, we consider the OrderRCD (Algorithm 5). In contrast to all previously considered
methods in this paper, OrderRCD does not have access to a first-order oracle. Instead, the algorithm
uses so-called Order Oracle: for any x, y ∈ R

d, one can compute

ψ(x, y) = sign [f(y)− f(x)] (5)

Algorithm 5 RCD with Order Oracle (OrderRCD)

Input: initial point x0 ∈ R
d, iterations number N , random generator Rα(L0, L1)

for k = 0 to N − 1 do
1. sample ik uniformly at random from [d]
2. compute ζk = argminζ{f(xk + ζeik)} via (GRM)

3. xk+1 ← xk + ζkeik
end for
Return: xN

Algorithm 5 is similar to Algorithm 4, but it does not have access to the gradient coordinate
∇ikf(xk). Following Lobanov et al. (2024), we address this challenge using the standard steepest
descent trick, namely, we solve at each iteration the auxiliary linear search problem using the golden
ratio method (GRM, see Algorithm 6 in Appendix D.2) with ǫ accuracy allowing to match RCD
with step size ηk.

Below, we present the convergence result for Algorithm 5.
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Theorem 4.3. Let function f satisfy Assumption 1.3 ((L0, L1)-coordinate-smoothness) and As-
sumption 1.4 (convexity, µ = 0), then Algorithm 5 (OrderRCD) with oracle (5) guarantees the
following error:

E
[
f(xN )

]
− f∗ = O

(

max

{(

1− ρ

dR

)N
F0,

dL0R
2

N

})

,

where ρ := 1/(4
√
2L1), L0 = maxi∈[d] L

(i)
0 , and L1 = maxi∈[d] L

(i)
1 .

That is, Theorem 4.3 gives exactly the same rate as Theorem 4.1 with one exception. However,
it is important to note that Algorithm 5 requires log(1/ǫ) oracle calls per iteration to solve the
linear search problem at each iteration using GRM, where Order Oracle (5) is directly used. In the
special case of L1 = 0, Theorem 4.3 recovers known results, e.g., Gorbunov et al. (2019); Saha et al.
(2021). However, when L0 is much smaller than L1, Theorem 4.3 shows better results, i.e., linear
convergence.

Remark 4.4 (Strong growth condition). Theorem 4.3 implies that under Assumption 1.3
with L0 = 0, Algorithm 5 converges to the desired accuracy ε (E[f(xN )]− f∗ ≤ ε) after
N = O

(
dL1R log F0

ε

)
iterations and T = O

(
N log 1

ǫ

)
oracle calls.

For a detailed proof of Theorem 4.1, see Appendix D.2.

5 Extension to Strongly Convex Setup

In this section, we answer the question:

“Are there convergence improvements of algorithms under the (L0, L1)-smoothness assumption
compared to standard smoothness in a strongly convex setup?”

In particular, we consider GD (Algorithm 1) and derive the following convergence result.

Theorem 5.1. Let function f satisfy Assumption 1.2 ((L0, L1)-smoothness) and Assumption 1.4
(strongly convexity, µ > 0), then gradient descent method (Algorithm 1) with step size ηk = (L0 +
L1

∥
∥∇f(xk)

∥
∥)−1 guarantees:

FN ≤ (1− ρ3)N−T2 (1− ρ2)T2−T1 (1− ρ1)T1+1 F0.

where Fk = f(xk) − f∗ for k ∈ [N ], ρ3 = µ
2L0

, ρ2 = max
{ √

µ

2
√
2L1

, 1
4L1R

}

, ρ1 = 1
4L1R

, N3 =

N − T2, T2 = max{k ∈ [N − 1] |
∥
∥∇f(xk)

∥
∥ ≥ L0

L1
} (if there are no such k, we let T2 = −1), and

T1 = max{k ∈ [N − 1] |
∥
∥∇f(xk)

∥
∥ ≥ L0

L1
and Fk > 1} (if there are no such k, we let T1 = −1). In

particular,

• if T1 = −1 and T2 = N − 1, then
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FN .

(

1−max

{ √
µ

2
√

2L1

,
1

4L1R

})N

F0;

• if T1 = T2 = −1, then

FN .

(

1− µ

2L0

)N

F0.

The above theorem improves the result from (Gorbunov et al., 2024) that show ‖xN − x∗‖2 =
O((1 − ρ3)N−T2R) rate for GD, and, in contrast to the result from (Koloskova et al., 2023), The-
orem 5.1 does not require L-smoothness. Moreover, the derived bound contains factor (1 −
ρ2)

T2−T1(1 − ρ1)
T1+1, which might be better than (1 − ρ1)

T2 when R >
√

2/µ. Moreover, if
µ/2L0 <

√
µ/(2

√
2L1), then the derived result is strictly better than the known ones for GD under the

standard smoothness. The proof of the Theorem 5.1 is provided in Appendix E.

6 Discussion and Future Work

In this paper (see Sections 3 and 4) we have shown that linear convergence in a convex setup
is possible in the case of (L0, L1)-smooth problems with small enough L0. However, looking at
the convergence of Algorithms 1-5, in particular Theorem 3.1-4.3, we see that the dominant part is
sublinear O (1/N) and might be further improved. Nevertheless, as Remarks 3.2-4.4 demonstrate, in
the case of the strong growth condition (L0 = 0), we can observe significant improvements compared
to previous works by (see e.g., Koloskova et al., 2023; Gorbunov et al., 2024; Vankov et al., 2024b).
A prime example of a function that satisfies the strong growth condition is logistic function (see
Example 1.6, Gorbunov et al., 2024), which is classical in the field of machine learning.

As future work, we see the following directions: generalizing Algorithms 2-5 to the strongly
convex case; investigating whether the proposed technique can be used in the analysis of stochastic
methods; investigating the convergence advantages of assuming generalized smoothness (Assump-
tion 1.2) in accelerated optimization algorithms and many other directions. We believe this work
opens up a number of research directions, including answering the question of whether it is possible
to create adaptive methods, as well as methods in different settings (such as federated learning,
overparameterization, etc.) that will exhibit similar advantages.

7 Conclusion

This paper demonstrates that generalized smoothness allows us to achieve linear convergence rates
in convex setups. We explained the convergence behavior of gradient descent theoretically and
showed that the advantages of generalized smoothness extend to gradient descent method variants,
in particular, we significantly improved convergence estimates for GD, NGD, Clip-GD, and demon-
strated novel convergence results for algorithms that do not have access to the full gradient as well
as to the function values themselves (RCD and OrderRCD). We have demonstrated that this work
opens up a number of directions for future research (see Section 6).

13



Acknowledgments

The authors would like to thank Anastasia Koloskova and Nazarii Tupitsa for useful discussions.

References
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A Auxiliary Results

In this section, we provide auxiliary technical results that are used in our analysis.

Basic inequalities. For all a, b ∈ R
d (d ≥ 1), the following inequalities hold:

2 〈a, b〉 − ‖b‖2 = ‖a‖2 − ‖a− b‖2, (6)

〈a, b〉 ≤ ‖a‖ · ‖b‖. (7)

Generalized-Lipschitz-smoothness. In the analysis of full-gradient methods, we assume that
the (L0, L1)-smoothness condition (Assumption 1.2) is satisfied. This inequality can be represented
in the equivalent form for any x, y ∈ R

d (Zhang et al., 2020a):

f(y)− f(x) ≤ 〈∇f(x), y − x〉+
L0 + L1 ‖∇f(x)‖

2
‖y − x‖2 , (8)

where L0, L1 ≥ 0 for any x ∈ R
d and ‖y − x‖ ≤ 1

L1
.

Generalized-coordinate-Lipschitz-smoothness. In the analysis of coordinate-wise methods,
we assume that the smoothness condition (Assumption 1.3) is satisfied. This inequality can be
represented in the equivalent form (Crawshaw et al., 2022, Lemma 1):

f(x+ hei) ≤ f(x) + h∇if(x) +

(

L
(i)
0 + L

(i)
1 |∇if(x)|

)

h2

2
, (9)

where L
(1)
0 , L

(2)
0 , ..., L

(d)
0 , L

(1)
1 , L

(2)
1 , ..., L

(d)
1 ≥ 0 for any i ∈ [d], x ∈ R

d and |h| ≤ 1

L
(i)
1

.

B Monotonicity of Gradient Norms

In this section, we give a proof of monotonicity of convergence of algorithms by gradient norm. In
particular, see Lemma B.2 for the proof for Algorithm 1, see Lemma B.3 for Algorithm 2, and see
Lemma B.4 for Algorithm 3.

First of all, we start with the auxiliary result.

Lemma B.1. Let function f satisfy Assumption 1.2 ((L0, L1)-smoothness) and Assumption 1.4
(convexity, µ = 0), then for x, y ∈ R

d such that ‖y − x‖ ≤ 1
L1

we have:

‖∇f(y)−∇f(x)‖2
2 (L0 + L1 ‖∇f(x)‖) ≤ f(x)− f(y)− 〈∇f(y), x− y〉 . (10)

Proof. The proof of this statement is based on the results from Nesterov (2018); Gorbunov et al.
(2024).

Let us define the following function ϕa(b) for a given a ∈ R
d:

ϕa(b) = f(b)− 〈∇f(a), b〉 .
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Then this function is differentiable and ∇ϕa(b) = ∇f(b)−∇f(a). Moreover, for any b, c ∈ R
d such

that ‖b− c‖ ≤ 1
L1

we have:

‖∇ϕa(c)−∇ϕa(b)‖ = ‖∇f(b)−∇f(c)‖
①

≤ (L0 + L1 ‖∇f(c)‖) ‖b− c‖ , (11)

where in ① we applied Assumption 1.2. Next, for given a and for any b, c ∈ R
d such that ‖b−c‖ ≤ 1

L1

we define function ψabc(t) : R→ R as

ψabc(t) = ϕa(c+ t(b− c)).

Then, by definition of ψabc, we have ϕa(c) = ψabc(0), ϕa(b) = ψabc(1) and ψ′
abc = 〈∇ϕa(c+ t(b− c)), b− c〉.

Therefore, using the Newton-Leibniz formula, we have:

ϕa(b)− ϕa(c) = ψabc(1) − ψabc(0) =

∫ 1

0
ψ′
abcdt =

∫ 1

0
〈∇ϕa(c+ t(b− c)), b − c〉 dt

= 〈∇ϕa(c), b − c〉+

∫ 1

0
〈∇ϕa(c+ t(b− c))−∇ϕa(c), b − c〉 dt

(7)

≤ 〈∇ϕa(c), b − c〉+

∫ 1

0
‖∇ϕa(c+ t(b− c))−∇ϕa(c)‖ ‖b− c‖ dt

(11)

≤ 〈∇ϕa(c), b− c〉+

∫ 1

0
(L0 + L1 ‖∇f(c)‖) ‖b− c‖2 · t · dt

= 〈∇ϕa(c), b − c〉+
(L0 + L1 ‖∇f(c)‖)

2
‖b− c‖2 . (12)

Let b = c− 1
L0+L1‖∇f(c)‖∇ϕa(c) and assume that ‖a− c‖ ≤ 1

L1
, then we have

‖b− c‖ =
‖∇ϕa(c)‖

L0 + L1 ‖∇f(c)‖ =
‖∇f(c)−∇f(a)‖
L0 + L1 ‖∇f(c)‖

(2)

≤ ‖c− a‖ ≤ 1

L1
,

meaning that for this choice of c and b we can apply (12) and get:

ϕa(b)− ϕa(c) ≤ − ‖∇ϕa(c)‖2
L0 + L1 ‖∇f(c)‖ +

‖∇ϕa(c)‖2
2 (L0 + L1 ‖∇f(c)‖) = − ‖∇ϕa(c)‖2

2 (L0 + L1 ‖∇f(c)‖) .

Using the fact that a is an optimum for ϕa(c) (since ∇ϕa(a) = 0) and by definition of ϕa(c) we
obtain the following inequality:

f(a)− 〈∇f(a), a〉 ≤ f(c)− 〈∇f(a), c〉 − ‖∇f(c)−∇f(a)‖2
2 (L0 + L1 ‖∇f(c)‖) .

Using the fact that this inequality is satisfied for any a, c ∈ R
d such that ‖a − c‖ ≤ 1

L1
, we take

a = y and c = x and we get the original statement of the Lemma:

‖∇f(y)−∇f(x)‖2
2 (L0 + L1 ‖∇f(x)‖) ≤ f(x)− f(y)− 〈∇f(y), x− y〉 .
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We are now ready to present the proofs of the gradient norm monotonicity along the trajectories
of the considered first-order methods.

Lemma B.2. Let function f satisfy Assumption 1.2 ((L0, L1)-smoothness) and Assumption 1.4
(convexity, µ = 0), then for all k ≥ 0 Algorithm 1 with ηk = (L0 + L1‖∇f(xk)‖)−1 satisfies

∥
∥
∥∇f(xk+1)

∥
∥
∥ ≤

∥
∥
∥∇f(xk)

∥
∥
∥ .

Proof. We note that for GD with ηk = (L0 + L1‖∇f(xk)‖)−1 iterates xk and xk+1 satisfy

‖xk − xk+1‖ =
‖∇f(xk)‖

L0 + L1‖∇f(xk)‖ ≤
1

L1
,

meaning that one can apply Lemma B.1 for these points. Introducing for convenience the new
notation ωk = L0 + L1 ‖∇f(x)‖ and summing (10) with x = xk, y = xk+1 and x = xk+1, y = xk,
we get the following inequality:

(
1

2ωk
+

1

2ωk+1

)∥
∥
∥∇f(xk+1)−∇f(xk)

∥
∥
∥

2
≤
〈

∇f(xk+1)−∇f(xk), xk+1 − xk
〉

= −ηk
〈

∇f(xk+1)−∇f(xk),∇f(xk)
〉

.

Multiplying both sides by 2ωk, we obtain
(

1 +
ωk

ωk+1

)(∥
∥
∥∇f(xk+1)

∥
∥
∥

2
− 2

〈

∇f(xk+1),∇f(xk)
〉

+
∥
∥
∥∇f(xk)

∥
∥
∥

2
)

≤ −2ωkηk

〈

∇f(xk+1)−∇f(xk),∇f(xk)
〉

,

which is equivalent to
(

1 +
ωk

ωk+1

)∥
∥
∥∇f(xk+1)

∥
∥
∥

2
≤
(

1 +
ωk

ωk+1

)∥
∥
∥∇f(xk)

∥
∥
∥

2

+ 2

(

1 +
ωk

ωk+1
− ωkηk

)〈

∇f(xk+1)−∇f(xk),∇f(xk)
〉

=

(

1 +
ωk

ωk+1

)∥
∥
∥∇f(xk)

∥
∥
∥

2

− 2

ηk

(

1 +
ωk

ωk+1
− ωkηk

)〈

∇f(xk+1)−∇f(xk), xk+1 − xk
〉

①
=

(

1 +
ωk

ωk+1

)∥
∥
∥∇f(xk)

∥
∥
∥

2
− 2ωk

ωk+1ηk

〈

∇f(xk+1)−∇f(xk), xk+1 − xk
〉

②

≤
(

1 +
ωk

ωk+1

)∥
∥
∥∇f(xk)

∥
∥
∥

2
,

where in ① we used ηk = 1
ωk

; and in ② we used ηk, ωk, ωk+1 ≥ 0 and convexity of function f . Hence,
we obtain the original statement of the Lemma:

∥
∥
∥∇f(xk+1)

∥
∥
∥ ≤

∥
∥
∥∇f(xk)

∥
∥
∥ .
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Next, we provide a similar result for Algorithm 2.

Lemma B.3. Let function f satisfy Assumption 1.2 ((L0, L1)-smoothness) and Assumption 1.4
(convexity, µ = 0), then for all k ≥ 0 Algorithm 2 with ηk = η ≤ c

L0+cL1
, where ‖∇f(xk)‖ ≥ c,

satisfies ∥
∥
∥∇f(xk+1)

∥
∥
∥ ≤

∥
∥
∥∇f(xk)

∥
∥
∥ .

Proof. We note that for NGD with ηk = η ≤ c
L0+cL1

iterates xk and xk+1 satisfy

‖xk − xk+1‖ = η ≤ 1

L1
,

meaning that one can apply Lemma B.1 for these points. Introducing for convenience the new
notation ωk = L0 + L1 ‖∇f(x)‖ and summing (10) with x = xk, y = xk+1 and x = xk+1, y = xk,
we get the following inequality:

(
1

2ωk
+

1

2ωk+1

)∥
∥
∥∇f(xk+1)−∇f(xk)

∥
∥
∥

2
≤
〈

∇f(xk+1)−∇f(xk), xk+1 − xk
〉

= − ηk
‖∇f(xk)‖

〈

∇f(xk+1)−∇f(xk),∇f(xk)
〉

.

Multiplying both sides by 2ωk, we obtain

(

1 +
ωk

ωk+1

)(∥
∥
∥∇f(xk+1)

∥
∥
∥

2
− 2

〈

∇f(xk+1),∇f(xk)
〉

+
∥
∥
∥∇f(xk)

∥
∥
∥

2
)

≤ − 2ωkηk
‖∇f(xk)‖

〈

∇f(xk+1)−∇f(xk),∇f(xk)
〉

,

which is equivalent to

(

1 +
ωk

ωk+1

)∥
∥
∥∇f(xk+1)

∥
∥
∥

2
≤
(

1 +
ωk

ωk+1

)∥
∥
∥∇f(xk)

∥
∥
∥

2

+ 2

(

1 +
ωk

ωk+1
− ωkηk
‖∇f(xk)‖

)〈

∇f(xk+1)−∇f(xk),∇f(xk)
〉

=

(

1 +
ωk

ωk+1

)∥
∥
∥∇f(xk)

∥
∥
∥

2

− 2‖∇f(xk)‖
ηk

(

1 +
ωk

ωk+1
− ωkηk
‖∇f(xk)‖

)〈

∇f(xk+1)−∇f(xk), xk+1 − xk
〉

①

≤
(

1 +
ωk

ωk+1

)∥
∥
∥∇f(xk)

∥
∥
∥

2

− 2‖∇f(xk)‖
ηk

(

1 +
ωk

ωk+1
− ωkc

‖∇f(xk)‖ (L0 + L1c)

)〈

∇f(xk+1)−∇f(xk), xk+1 − xk
〉

②

≤
(

1 +
ωk

ωk+1

)∥
∥
∥∇f(xk)

∥
∥
∥

2
− 2ωk

∥
∥∇f(xk)

∥
∥

ωk+1ηk

〈

∇f(xk+1)−∇f(xk), xk+1 − xk
〉

③

≤
(

1 +
ωk

ωk+1

)∥
∥
∥∇f(xk)

∥
∥
∥

2
,
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where in ① we used ηk ≤ c
L0+L1c

, in ② we used ‖∇f(xk)‖ ≥ c implying c
L0+L1c

≤ ‖∇f(xk)‖
ωk

, and in

③ we used
∥
∥∇f(xk)

∥
∥ , ηk, ωk, ωk+1 ≥ 0 and convexity of function f . Hence, we obtain the original

statement of the Lemma: ∥
∥
∥∇f(xk+1)

∥
∥
∥ ≤

∥
∥
∥∇f(xk)

∥
∥
∥ .

Finally, we present a similar result for Algorithm 3 that can be viewed as a combination of the
previous two.

Lemma B.4. Let function f satisfy Assumption 1.2 ((L0, L1)-smoothness) and Assumption 1.4
(convexity, µ = 0), then for all k ≥ 0 Algorithm 3 with step size ηk = (L0+L1 max{‖∇f(xk)‖, c})−1

satisfies ∥
∥
∥∇f(xk+1)

∥
∥
∥ ≤

∥
∥
∥∇f(xk)

∥
∥
∥ .

Proof. We note that for Clip-GD with ηk = (L0 + L1 max{‖∇f(xk)‖, c})−1 iterates xk and xk+1

satisfy

‖xk − xk+1‖ =
max{‖∇f(xk)‖, c}

L0 + L1 max{‖∇f(xk)‖, c} ≤
1

L1
,

meaning that one can apply Lemma B.1 for these points. Introducing for convenience the new
notation ωk = L0 + L1 ‖∇f(x)‖ and summing (10) with x = xk, y = xk+1 and x = xk+1, y = xk,
we get the following inequality:
(

1

2ωk
+

1

2ωk+1

)∥
∥
∥∇f(xk+1)−∇f(xk)

∥
∥
∥

2
≤
〈

∇f(xk+1)−∇f(xk), xk+1 − xk
〉

= −ηk ·min

{

1,
c

‖∇f(xk)‖

}

︸ ︷︷ ︸

λk

〈

∇f(xk+1)−∇f(xk),∇f(xk)
〉

.

Multiplying both sides by 2ωk, we obtain
(

1 +
ωk

ωk+1

)(∥
∥
∥∇f(xk+1)

∥
∥
∥

2
− 2

〈

∇f(xk+1),∇f(xk)
〉

+
∥
∥
∥∇f(xk)

∥
∥
∥

2
)

≤ −2ωkηkλk

〈

∇f(xk+1)−∇f(xk),∇f(xk)
〉

. (13)

Consider two cases: λk = 1 or λk = c
‖∇f(xk)‖ . If λk = 1, then c ≥

∥
∥∇f(xk)

∥
∥. Then (13) is

equivalent to the following:

(

1 +
ωk

ωk+1

)∥
∥
∥∇f(xk+1)

∥
∥
∥

2
≤
(

1 +
ωk

ωk+1

)∥
∥
∥∇f(xk)

∥
∥
∥

2

+ 2

(

1 +
ωk

ωk+1
− ωkηk

)〈

∇f(xk+1)−∇f(xk),∇f(xk)
〉

=

(

1 +
ωk

ωk+1

)∥
∥
∥∇f(xk)

∥
∥
∥

2
− 2

ηk

(

1 +
ωk

ωk+1
− ωkηk

)〈

∇f(xk+1)−∇f(xk), xk+1 − xk
〉

①

≤
(

1 +
ωk

ωk+1

)∥
∥
∥∇f(xk)

∥
∥
∥

2
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− 2

ηk

(

1 +
ωk

ωk+1
− ωk

L0 + L1c

)〈

∇f(xk+1)−∇f(xk), xk+1 − xk
〉

②

≤
(

1 +
ωk

ωk+1

)∥
∥
∥∇f(xk)

∥
∥
∥

2
− 2ωk

ωk+1ηk

〈

∇f(xk+1)−∇f(xk), xk+1 − xk
〉

③

≤
(

1 +
ωk

ωk+1

)∥
∥
∥∇f(xk)

∥
∥
∥

2
,

where in ① we used ηk ≤ 1
L0+L1c

, in ② we used 1
L0+L1c

≤ 1
ωk

, and in ③ we used ηk, ωk, ωk+1 ≥ 0
and convexity of function f .

Next, we consider the case when λk = c

‖∇f(xk)‖ , implying c ≤
∥
∥∇f(xk)

∥
∥. Then, (13) is

equivalent to the following:

(

1 +
ωk

ωk+1

)∥
∥
∥∇f(xk+1)

∥
∥
∥

2
≤
(

1 +
ωk

ωk+1

)∥
∥
∥∇f(xk)

∥
∥
∥

2

+ 2

(

1 +
ωk

ωk+1
− ωkηkc

‖∇f(xk)‖

)〈

∇f(xk+1)−∇f(xk),∇f(xk)
〉

=

(

1 +
ωk

ωk+1

)∥
∥
∥∇f(xk)

∥
∥
∥

2

− 2‖∇f(xk)‖
ηkc

(

1 +
ωk

ωk+1
− ωkηkc

‖∇f(xk)‖

)〈

∇f(xk+1)−∇f(xk), xk+1 − xk
〉

①

≤
(

1 +
ωk

ωk+1

)∥
∥
∥∇f(xk)

∥
∥
∥

2

− 2‖∇f(xk)‖
ηkc

(

1 +
ωk

ωk+1
− ωk

(L0 + L1c)

)〈

∇f(xk+1)−∇f(xk), xk+1 − xk
〉

②

≤
(

1 +
ωk

ωk+1

)∥
∥
∥∇f(xk)

∥
∥
∥

2
− 2ωk

∥
∥∇f(xk)

∥
∥

ωk+1ηkc

〈

∇f(xk+1)−∇f(xk), xk+1 − xk
〉

③

≤
(

1 +
ωk

ωk+1

)∥
∥
∥∇f(xk)

∥
∥
∥

2
,

where in ① we used ηk ≤ 1
L0+L1c

and c ≤
∥
∥∇f(xk)

∥
∥, in ② we used c

L0+L1c
≤ 1

ωk
, and in ③ we used

∥
∥∇f(xk)

∥
∥ , ηk, ωk, ωk+1 ≥ 0 and convexity of function f .

That is, in both cases, we obtain the original statement of the Lemma:

∥
∥
∥∇f(xk+1)

∥
∥
∥ ≤

∥
∥
∥∇f(xk)

∥
∥
∥ .

C Missing Proofs for Full-Gradient Algorithms

In this section, we give missing proofs from the main part of the paper. In particular, see Subsec-
tion C.1 for the proof of convergence results for Algorithm 1, see Subsection C.2 for Algorithm 2,
and see Subsection C.3 for Algorithm 3.
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C.1 Proof of Theorem 3.1

Using Assumption 1.2, we derive

f(xk+1)− f(xk) = f(xk − ηk∇f(xk))− f(xk)

(8)

≤ −ηk
〈

∇f(xk),∇f(xk)
〉

+ η2k
L0 + L1

∥
∥∇f(xk)

∥
∥

2

∥
∥
∥∇f(xk)

∥
∥
∥

2

①

≤ −ηk
∥
∥
∥∇f(xk)

∥
∥
∥

2
+
ηk
2

∥
∥
∥∇f(xk)

∥
∥
∥

2

= −ηk
2

∥
∥
∥∇f(xk)

∥
∥
∥

2
, (14)

where in ① we used ηk ≤ 1
L0+L1‖∇f(xk)‖ . Next, let us consider two cases.

The case of
∥
∥∇f(xk)

∥
∥ ≥ L0

L1
. Taking ηk = 1

L0+L1‖∇f(xk)‖ and using the convexity assumption

of the function (see Assumption 1.4, µ = 0), we have the following:

f(xk)− f∗ ≤
〈

∇f(xk), xk − x∗
〉 (7)

≤
∥
∥
∥∇f(xk)

∥
∥
∥

∥
∥
∥xk − x∗

∥
∥
∥

①

≤
∥
∥
∥∇f(xk)

∥
∥
∥

∥
∥x0 − x∗

∥
∥

︸ ︷︷ ︸

R

=
ηk
ηk

∥
∥
∥∇f(xk)

∥
∥
∥R

= ηk(L0 + L1

∥
∥
∥∇f(xk)

∥
∥
∥)
∥
∥
∥∇f(xk)

∥
∥
∥R ≤ 2ηkL1

∥
∥
∥∇f(xk)

∥
∥
∥

2
R,

where ① follows from ‖xk − x∗‖ ≤ ‖x0 − x∗‖ (Gorbunov et al., 2024, proof of Theorem 3.3). The
above inequality implies

ηk ≥
f(xk)− f∗

2L1R ‖∇f(xk)‖2
. (15)

Plugging (15) into (14), we obtain

f(xk+1)− f(xk) ≤ −ηk
∥
∥
∥∇f(xk)

∥
∥
∥

2
≤ 1

4L1R
(f(xk)− f∗),

which is equivalent to

f(xk+1)− f∗ ≤
(

1− 1

4L1R

)(

f(xk)− f∗
)

. (16)

Moreover, Lemma B.2 implies that for all t = 0, . . . , k a similar inequality holds. We denote

T := min
{

k ∈ {0, 1, 2, ..., N − 1} |
∥
∥∇f(xk)

∥
∥ < L0

L1
and

∥
∥∇f(xk−1)

∥
∥ ≥ L0

L1

}

as the first index k

such that
∥
∥∇f(xk)

∥
∥ < L0

L1
(note that T = 0 is possible). Then, for the first T iterations, we have

linear convergence:

f(xT )− f∗ ≤
(

1− 1

4L1R

)T
(
f(x0)− f∗

)
, (17)

which follows from unrolling (16).

The case of
∥
∥∇f(xk)

∥
∥ < L0

L1
. Taking ηk = 1

L0+L1‖∇f(xk)‖ and using the convexity assumption

of the function (see Assumption 1.4, µ = 0), we have the following:

f(xk)− f∗ ≤
〈

∇f(xk), xk − x∗
〉 (7)

≤
∥
∥
∥∇f(xk)

∥
∥
∥

∥
∥
∥xk − x∗

∥
∥
∥ ≤

∥
∥
∥∇f(xk)

∥
∥
∥

∥
∥x0 − x∗

∥
∥

︸ ︷︷ ︸

R

(18)
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=
ηk
ηk

∥
∥
∥∇f(xk)

∥
∥
∥R = ηk(L0 + L1

∥
∥
∥∇f(xk)

∥
∥
∥)
∥
∥
∥∇f(xk)

∥
∥
∥R < 2ηkL0

∥
∥
∥∇f(xk)

∥
∥
∥R.

The above inequality implies

ηk >
f(xk)− f∗

2L0R ‖∇f(xk)‖ . (19)

Then, plugging (19) into (14) and using the notation Fk = f(xk)− f∗, we obtain:

Fk+1 < Fk −
∥
∥∇f(xk)

∥
∥

4L0R
Fk

(18)

≤ Fk −
1

4L0R2
F 2
k ,

which is equivalent to
1

4L0R2
F 2
k < Fk − Fk+1.

Next, we divide both sides by Fk+1Fk

1

4L0R2
· Fk

Fk+1
<

1

Fk+1
− 1

Fk

and use that Fk+1 ≤ Fk due to (14):

1

4L0R2
<

1

Fk+1
− 1

Fk
.

Summing up the above inequality for k = T, T + 1, ..., N , we get

N − T
4L0R2

=

N−1∑

k=T

1

4L0R2
<

N−1∑

k=T

(
1

Fk+1
− 1

Fk

)

=
1

FN
− 1

FT
<

1

FN
,

which is equivalent to

f(xN )− f∗ < 4L0R
2

N − T . (20)

Finally, combining inequalities (17) and (20) and taking into account that FN ≤ FT , we obtain
the convergence rate of Algorithm 1 in the convex case:

f(xN )− f∗ = O
(

min

{

L0R
2

N − T ,
(

1− 1

L1R

)T

F0

})

,

where T := min
{

k ∈ {0, 1, 2, ..., N − 1} |
∥
∥∇f(xk)

∥
∥ < L0

L1
and

∥
∥∇f(xk−1)

∥
∥ ≥ L0

L1

}

.

C.2 Proof of Theorem 3.3

Using Assumption 1.2, we derive

f(xk+1)− f(xk) = f

(

xk − ηk
∇f(xk)

‖∇f(xk)‖

)

− f(xk)

(8)

≤ − ηk
‖∇f(xk)‖

〈

∇f(xk),∇f(xk)
〉

+ η2k
L0 + L1

∥
∥∇f(xk)

∥
∥

2 ‖∇f(xk)‖2
∥
∥
∥∇f(xk)

∥
∥
∥

2
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①

≤ −ηk
∥
∥
∥∇f(xk)

∥
∥
∥+

ηk
2

∥
∥
∥∇f(xk)

∥
∥
∥

= −ηk
2

∥
∥
∥∇f(xk)

∥
∥
∥ , (21)

where in ① we used ηk = η ≤ c
L0+L1c

≤ ‖∇f(xk)‖
L0+L1‖∇f(xk)‖ since

∥
∥∇f(xk)

∥
∥ ≥ c for all k = 0, 1, . . . , N−1

and function ϕ(u) = u
L0+L1u

is increasing function in u ≥ 0.
Next, we us the convexity assumption of the function (see Assumption 1.4, µ = 0):

f(xk)− f∗ ≤
〈

∇f(xk), xk − x∗
〉 (7)

≤
∥
∥
∥∇f(xk)

∥
∥
∥

∥
∥
∥xk − x∗

∥
∥
∥

①

≤
∥
∥
∥∇f(xk)

∥
∥
∥

∥
∥x0 − x∗

∥
∥

︸ ︷︷ ︸

R

, (22)

where ① follows from ‖xk − x∗‖ ≤ ‖x0 − x∗‖:

‖xk − x∗‖2 = ‖xk−1 − x∗‖2 − 2ηk
‖∇f(xk)‖〈∇f(xk), xk − x∗〉+ η2k

(3)

≤ ‖xk−1 − x∗‖2 − 2η(f(xk)− f∗)
‖∇f(xk)‖ + η2

= ‖xk−1 − x∗‖2 − η
(

2(f(xk)− f∗)
‖∇f(xk)‖ − η

)

≤ ‖xk−1 − x∗‖2,

where in the last step, we use

η‖∇f(xk)‖
2

≤ c‖∇f(xk)‖
2(L0 + L1c)

≤
∥
∥∇f(xk)

∥
∥2

2(L0 + L1 ‖∇f(xk)‖)
(10)

≤ f(xk)− f∗.

Next, inequality (22) gives
∥
∥
∥∇f(xk)

∥
∥
∥ ≥ f(xk)− f∗

R
. (23)

Then, plugging (23) into (21), we obtain:

f(xk+1)− f(xk) ≤ −η
2

∥
∥
∥∇f(xk)

∥
∥
∥ ≤ − η

2R
(f(xk)− f∗),

which is equivalent to

f(xk+1)− f∗ ≤
(

1− η

2R

)(

f(xk)− f∗
)

.

Unrolling the above recurrence, we derive the linear convergence for NGD with step size ηk = η ≤
c

L0+L1c
:

f(xN )− f∗ ≤
(

1− η

2R

)N (
f(x0)− f∗

)
.

C.3 Proof of Theorem 3.5

Since λk = min

{

1, c

‖∇f(xk)‖

}

, we there are only two possible cases for λk: either λk = 1 or

λk = c

‖∇f(xk)‖ .
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i) Consider the case of λk = c

‖∇f(xk)‖ , i.e., c ≤ ‖∇f(xk)‖. Using Assumption 1.2, we derive

f(xk+1)− f(xk) = f(xk − ηkλk∇f(xk))− f(xk)

= f

(

xk − ηk
c

‖∇f(xk)‖∇f(xk)

)

− f(xk)

(8)

≤ −ηk
c

‖∇f(xk)‖
〈

∇f(xk),∇f(xk)
〉

+ η2k
c2

‖∇f(xk)‖2
L0 + L1

∥
∥∇f(xk)

∥
∥

2

∥
∥
∥∇f(xk)

∥
∥
∥

2

= −ηkc
∥
∥
∥∇f(xk)

∥
∥
∥+ η2kc

2L0 + L1

∥
∥∇f(xk)

∥
∥

2
①

≤ −ηkc
∥
∥
∥∇f(xk)

∥
∥
∥+

ηkc

2

∥
∥
∥∇f(xk)

∥
∥
∥

= −ηkc
2

∥
∥
∥∇f(xk)

∥
∥
∥ , (24)

where in ① we used ηk ≤ ‖∇f(xk)‖
c(L0+L1‖∇f(xk)‖) , which follows from c ≤

∥
∥∇f(xk)

∥
∥:

∥
∥∇f(xk)

∥
∥

c(L0 + L1 ‖∇f(xk)‖) =
1

L0
c

‖∇f(xk)‖ + L1c
≥ 1

L0 + L1c
= η = ηk.

Next, using the convexity assumption of the function (see Assumption 1.4, µ = 0), we get

f(xk)− f∗ ≤
〈

∇f(xk), xk − x∗
〉 (7)

≤
∥
∥
∥∇f(xk)

∥
∥
∥

∥
∥
∥xk − x∗

∥
∥
∥

①

≤
∥
∥
∥∇f(xk)

∥
∥
∥

∥
∥x0 − x∗

∥
∥

︸ ︷︷ ︸

R

, (25)

where ① follows from ‖xk − x∗‖ ≤ ‖x0 − x∗‖:

‖xk − x∗‖2 = ‖xk−1 − x∗‖2 − 2cηk
‖∇f(xk)‖〈∇f(xk), xk − x∗〉+ c2η2k

(3)

≤ ‖xk−1 − x∗‖2 − 2cη(f(xk)− f∗)
‖∇f(xk)‖ + c2η2

= ‖xk−1 − x∗‖2 − cη
(

2(f(xk)− f∗)
‖∇f(xk)‖ − cη

)

≤ ‖xk−1 − x∗‖2,

where in the last step, we use

cη‖∇f(xk)‖
2

≤ c‖∇f(xk)‖
2(L0 + L1c)

≤
∥
∥∇f(xk)

∥
∥2

2(L0 + L1 ‖∇f(xk)‖)
(10)

≤ f(xk)− f∗.

Inequality (25) gives
∥
∥
∥∇f(xk)

∥
∥
∥ ≥ f(xk)− f∗

R
. (26)
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Then, plugging (26) into (24), we obtain

f(xk+1)− f(xk)
(24)

≤ −ηc
2

∥
∥
∥∇f(xk)

∥
∥
∥ ≤ ηc

2R
(f(xk)− f∗),

which is equivalent to

f(xk+1)− f∗ ≤
(

1− ηc

2R

)(

f(xk)− f∗
)

.

Next, we consider two possible scenarios for the convergence of the algorithm depending on
the relation between

∥
∥∇f(xk)

∥
∥ , c and L0

L1
(note that

∥
∥∇f(xk)

∥
∥ ≥ c in this case), given the

monotonicity of the gradient norm (Lemma B.4).

(T ) If for k = 0, 1, 2, ...,T1 − 1, the iterates of Clip-GD satisfy
∥
∥∇f(xk)

∥
∥ ≥ c ≥ L0

L1
, then

η ≥ 1
2L1c

and we have linear convergence for the first T1 iterations:

f(xT1)− f∗ ≤
(

1− 1

4L1R

)T1 (
f(x0)− f∗

)
. (27)

(K) If for k = 0, 1, 2, ...,K1 − 1, the iterates of Clip-GD satisfy
∥
∥∇f(xk)

∥
∥ ≥ L0

L1
≥ c or

L0
L1
≥
∥
∥∇f(xk)

∥
∥ ≥ c, then η ≥ 1

2L0
and we have linear convergence of the first K1

iterations:

f(xK1)− f∗ ≤
(

1− c

4L0R

)K1 (
f(x0)− f∗

)
. (28)

ii) Consider the case of λk = 1, i.e., c ≥ ‖∇f(xk)‖. Using Assumption 1.2, we derive

f(xk+1)− f(xk) = f(xk − ηkλk∇f(xk))− f(xk)

= f(xk − ηk∇f(xk))− f(xk)

(8)

≤ −ηk
〈

∇f(xk),∇f(xk)
〉

+ η2k
L0 + L1

∥
∥∇f(xk)

∥
∥

2

∥
∥
∥∇f(xk)

∥
∥
∥

2

= −ηk
∥
∥
∥∇f(xk)

∥
∥
∥

2
+ η2k

L0 + L1

∥
∥∇f(xk)

∥
∥

2

∥
∥
∥∇f(xk)

∥
∥
∥

2

①
= − 1

2(L0 + L1 ‖∇f(xk)‖)
∥
∥
∥∇f(xk)

∥
∥
∥

2
, (29)

where in ① we used ηk = 1
L0+L1‖∇f(xk)‖ . Using the convexity assumption of the function (see

Assumption 1.4, µ = 0), we get

f(xk)− f∗ ≤
〈

∇f(xk), xk − x∗
〉 (7)

≤
∥
∥
∥∇f(xk)

∥
∥
∥

∥
∥
∥xk − x∗

∥
∥
∥

①

≤
∥
∥
∥∇f(xk)

∥
∥
∥

∥
∥x0 − x∗

∥
∥

︸ ︷︷ ︸

R

, (30)

where ① follows from ‖xk − x∗‖ ≤ ‖x0 − x∗‖:

‖xk − x∗‖2 = ‖xk−1 − x∗‖2 − 2ηk〈∇f(xk), xk − x∗〉+ η2k‖∇f(xk)‖2
(3)

≤ ‖xk−1 − x∗‖2 − 2ηk(f(xk)− f∗) + η2k‖∇f(xk)‖2
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= ‖xk−1 − x∗‖2 − ηk
(

2(f(xk)− f∗)− ηk‖∇f(xk)‖2
)

≤ ‖xk−1 − x∗‖2,

where in the last step, we use

ηk‖∇f(xk)‖
2

≤
∥
∥∇f(xk)

∥
∥2

2(L0 + L1 ‖∇f(xk)‖)
(10)

≤ f(xk)− f∗.

Inequality (30), implies
∥
∥
∥∇f(xk)

∥
∥
∥ ≥ f(xk)− f∗

R
. (31)

Next, we consider two cases:
∥
∥∇f(xk)

∥
∥ ≥ L0

L1
and

∥
∥∇f(xk)

∥
∥ < L0

L1
.

The case of
∥
∥∇f(xk)

∥
∥ ≥ L0

L1
. In this case, inequality (29) gives

f(xk+1)− f(xk) ≤ − 1

4L1

∥
∥
∥∇f(xk)

∥
∥
∥ . (32)

Then, plugging (31) into (32), we obtain:

f(xk+1)− f(xk) ≤ − 1

4L1R
(f(xk)− f∗),

which is equivalent to

f(xk+1)− f∗ ≤
(

1− 1

4L1R

)(

f(xk)− f∗
)

.

Since in this case we have the following relation c ≥
∥
∥∇f(xk)

∥
∥ ≥ L0

L1
, then for k = T1,T1 +

1, ...,T2 − 1 we have linear convergence:

f(xT2)− f∗ ≤
(

1− 1

4L1R

)T2−T1 (
f(xT1)− f∗

) (27)

≤
(

1− 1

4L1R

)T2 (
f(x0)− f∗

)
. (33)

The case of
∥
∥∇f(xk)

∥
∥ < L0

L1
. In this case, inequality (29) gives

f(xk+1)− f(xk) ≤ − 1

2(L0 + L1 ‖∇f(xk)‖)
∥
∥
∥∇f(xk)

∥
∥
∥

2

< − 1

4L0

∥
∥
∥∇f(xk)

∥
∥
∥

2
. (34)

Then, plugging (31) into (34) and using the notation Fk := f(xk)− f∗, we obtain:

Fk+1 < Fk −
∥
∥∇f(xk)

∥
∥

4L0R
Fk ≤ Fk −

1

4L0R2
F 2
k ,

which is equivalent to
1

4L0R2
F 2
k < Fk − Fk+1.
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Next, we divide both sides by Fk+1Fk

1

4L0R2
· Fk

Fk+1
<

1

Fk+1
− 1

Fk
.

and use Fk+1 ≤ Fk due to (34):

1

4L0R2
<

1

Fk+1
− 1

Fk
. (35)

Then, two situations are possible: either L0
L1

> c or L0
L1
≤ c. We consider each of them

separately.

(K) Considering the scenario L0
L1

> c >
∥
∥∇f(xk)

∥
∥ and summing up inequality (35) for

k = K1,K1 + 1, ...,K2 − 1, we get

K2 −K1

4L0R2
=

K2−1∑

k=K1

1

4L0R2
<

K2−1∑

k=K1

(
1

Fk+1
− 1

Fk

)

=
1

FK2

− 1

FK1

<
1

FK2

,

which is equivalent to

f(xK2)− f∗ < 4L0R
2

K2 −K1
. (36)

(T ) Considering the scenario c ≥ L0
L1

>
∥
∥∇f(xk)

∥
∥ and summing up inequality (35) for

k = T2,T2 + 1, ...,T3 − 1, we get

T3 − T2
4L0R2

=

T3−1∑

k=T2

1

4L0R2
<

T3−1∑

k=T2

(
1

Fk+1
− 1

Fk

)

=
1

FT3
− 1

FT2
<

1

FT3
,

which is equivalent to

f(xT3)− f∗ < 4L0R
2

T3 − T2
. (37)

Finally, combining (27), (28), (33), (36), (37), and taking into account that Fk+1 ≤ Fk, we
obtain the convergence rate for Algorithm 3.

• If c ≥ L0
L1

, then for T3 = N being the total number of iterations of Algorithm 3 the

iterates satisfy (see (27), (33) and (37)):

f(xN )− f∗ = O
(

min

{

L0R
2

N − T2
,

(

1− 1

L1R

)T2
F0

})

,

where T2 := min
{

k ∈ {0, 1, 2, ..., N − 1} |
∥
∥∇f(xk)

∥
∥ < L0

L1
and

∥
∥∇f(xk−1)

∥
∥ ≥ L0

L1

}

.

29



• If c < L0
L1

, then K2 = N being the total number of iterations of Algorithm 3 the

iterates satisfy (see (28) and (36)):

f(xN )− f∗ = O
(

min

{

L0R
2

N −K1
,

(

1− c

L0R

)K1

F0

})

,

where K1 =:= min
{
k ∈ {0, 1, 2, ..., N − 1} |

∥
∥∇f(xk)

∥
∥ < c and

∥
∥∇f(xk−1)

∥
∥ ≥ c

}
.

It is not difficult to see that these two scenarios can be combined into the following equivalent
form:

f(xN )− f∗ = O
(

min

{

L0R
2

N − T ,
(

1− c

max{L0, L1c}R

)T

F0

})

,

where T := min
{

k ∈ {0, 1, 2, ..., N − 1} |
∥
∥∇f(xk)

∥
∥ < min

{
L0
L1
, c
}

and
∥
∥∇f(xk−1)

∥
∥ ≥ min

{
L0
L1
, c
}}

.

D Missing Proofs for Coordinate Descent Type Methods

In this section, we provide missing proofs from Section 4. In particular, see Subsection D.1 for the
proof of the convergence results for Algorithm 4, and see Subsection D.2 for Algorithm 5.

D.1 Proof of Theorem 4.1

Using Assumption 1.3, we derive

f(xk+1)− f(xk) = f(xk − ηk∇ikf(xk)eik)− f(xk)

(9)

≤ −ηk
(

∇ikf(xk)
)2

+ η2k
L0 + L1|∇f(xk)|

2

(

∇ikf(xk)
)2

①

≤ −ηk
(

∇ikf(xk)
)2

+
ηk
2

(

∇ikf(xk)
)2

= −ηk
2

(

∇ikf(xk)
)2
, (38)

where in ① we used ηk ≤ 1
L0+L1|∇ik

f(xk)| . Next, we take the expectation w.r.t. ik and use ηk =

1
L0+L1|∇ik

f(xk)| :

Eik [f(xk+1)]− f(xk) ≤ − 1

2d

d∑

i=1

|∇if(xk)|2
L0 + L1|∇if(xk)|

≤ − 1

4d

d∑

i=1

min

{ |∇if(xk)|2
L0

,
|∇if(xk)|

L1

}

(39)

= − 1

4d




∑

i∈Ik

|∇if(xk)|
L1

+
∑

i∈[d]\Ik

|∇if(xk)|2
L0



 , (40)
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where Ik :=
{

i ∈ [d] | |∇if(xk)| ≥ L0
L1

}

. Next, we introduce the set of indices K as

K :=






k ∈ [N − 1] |

∑

i∈Ik
|∇if(xk)|2 >

∑

i∈[d]\Ik

|∇if(xk)|2






and consider two possible situations.
The case of k ∈ K. In this case, we continue our derivation as follows:

Eik [f(xk+1)]− f(xk) ≤ − 1

4dL1

∑

i∈Ik
|∇if(xk)|. (41)

Using the convexity assumption and notation Fk := f(xk)− f∗, we derive

Fk ≤
〈

∇f(xk), xk − x∗
〉 (7)

≤
∥
∥
∥∇f(xk)

∥
∥
∥

∥
∥
∥xk − x∗

∥
∥
∥

︸ ︷︷ ︸

R

= R

√
∑

i∈Ik
|∇if(xk)|2 +

∑

i∈[d]\Ik

|∇if(xk)|2 ≤ R
√

2
∑

i∈Ik
|∇if(xk)|2 ≤

√
2R
∑

i∈Ik
|∇if(xk)|

that implies
∑

i∈Ik
|∇if(xk)| ≥ Fk√

2R
. (42)

Plugging (42) in (41), we obtain

Eik [Fk+1] ≤
(

1− 1

4
√

2dL1R

)

Fk. (43)

The case of k 6∈ K. In this case, we continue (40) as follows:

Eik [f(xk+1)]− f(xk) ≤ − 1

4dL0

∑

i∈[d]\Ik

|∇if(xk)|2. (44)

Using the convexity assumption and notation Fk := f(xk)− f∗, we derive

Fk ≤
〈

∇f(xk), xk − x∗
〉 (7)

≤
∥
∥
∥∇f(xk)

∥
∥
∥

∥
∥
∥xk − x∗

∥
∥
∥

︸ ︷︷ ︸

R

= R

√
∑

i∈Ik
|∇if(xk)|2 +

∑

i∈[d]\Ik

|∇if(xk)|2 ≤ R
√

2
∑

i∈[d]\Ik

|∇if(xk)|2

that implies
∑

i∈Ik
|∇if(xk)|2 ≥ F 2

k

2R2
. (45)
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Plugging (45) in (44), we obtain

Eik [Fk+1] ≤ Fk −
1

8dL0R2
F 2
k . (46)

To get the final bound, let us specify the indices belonging to K: let K := {k1, k2, . . . , kr} and
T := [N − 1] \ K := {t1, t2, . . . , tN−r}, where 0 ≤ k1 ≤ k2 ≤ . . . ≤ kr ≤ N − 1 and 0 ≤ t1 ≤ t2 ≤
. . . ≤ tN−r ≤ N −1. Note that K∩T = ∅, K∪T = [N −1], and |K| = r is random variable. There
exist two possible situations: either r > N/2 or r ≤ N/2. If r > N/2, then we use (43) together with
Fk+1 ≤ Fk following from (38):

Ei∈K[FN ]
(38)

≤ Ei∈K[Fkr+1]
(43)

≤
(

1− 1

4
√

2dL1R

)

Ei∈K\{kr}[Fkr ]

(38)

≤
(

1− 1

4
√

2dL1R

)

Ei∈K\{kr}[Fkr−1+1]
(43)

≤
(

1− 1

4
√

2dL1R

)2

Ei∈K\{kr ,kr−1}[Fkr−1 ]

≤ . . . ≤
(

1− 1

4
√

2dL1R

)r

F0

r>N/2

≤
(

1− 1

4
√

2dL1R

)N/2

F01{r>N/2}, (47)

where Ei∈K denotes the expectation w.r.t. all indices in set K and 1{r>N/2} is an indicator of the
event {r > N/2}.

Next, we consider the situation when r ≤ N/2. In this case, we first notice that (46) gives

Ei∈T [FtN−r+1]
(46)

≤ Ei∈T \{tN−r}[FtN−r
]− 1

8dL0R2
Ei∈T \{tN−r}[F 2

tN−r
]

①

≤ Ei∈T \{tN−r}[FtN−r
]− 1

8dL0R2
Ei∈T \{tN−r}[FtN−r

]2

where in ① we used Ei∈T \{tN−r}[FtN−r
]2 ≤ Ei∈T \{tN−r}[F

2
tN−r

]. Dividing both sides by
Ei∈T [FtN−r+1]Ei∈T \{tN−r}[FtN−r

] and rearranging the terms, we get

1

8dL0R2

Ei∈T \{tN−r}[FtN−r
]

Ei∈T [FtN−r+1]
≤ 1

Ei∈T [FtN−r+1]
− 1

Ei∈T \{tN−r}[FtN−r
]
. (48)

In view of (38), we have Ei∈T [FtN−r+1] ≤ Ei∈T [FtN−r
] = Ei∈T \{tN−r}[FtN−r

] and− 1
Ei∈T \{tN−r}

[FtN−r
] ≤

− 1
Ei∈T \{tN−r}

[FtN−r−1+1]
= − 1

Ei∈T [FtN−r−1+1]
. Using these inequalities in (48), we obtain

1

8dL0R2
≤ 1

Ei∈T [FtN−r+1]
− 1

Ei∈T [FtN−r−1+1]
.

Following the same arguments, we can also show

1

8dL0R2
≤ 1

Ei∈T [FtN−r−1+1]
− 1

Ei∈T [FtN−r−2+1]
,

. . .

1

8dL0R2
≤ 1

Ei∈T [Ft1+1]
− 1

Ei∈T [Ft1 ]
≤ 1

Ei∈T [Ft1+1]
− 1

F0
.
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Summing up all of them, we arrive at

N − r
8dL0R2

≤ 1

Ei∈T [FtN−r+1]
− 1

F0
≤ 1

Ei∈T [FtN−r+1]
,

implying

Ei∈T [FN ] ≤ Ei∈T [FtN−r+1] ≤ 8dL0R
2

N − r
r≤N/2

≤ 16dL0R
2

N
1{r≤N/2}. (49)

Combining (47) and (49) and taking the full expectation, we get

E[FN ] ≤
(

1− 1

4
√

2dL1R

)N/2

F0 E[1{r>N/2}] +
16dL0R

2

N
E[1{r≤N/2}]

≤ max

{(

1− 1

4
√

2dL1R

)N/2

F0,
16dL0R

2

N

}

,

which concludes the proof.

D.2 Proof of Theorem 4.3

Algorithm 5, presented in Section 4, uses the Golden Ratio Method (GRM) once per iteration. This
method utilizes the oracle concept (5) (see Algorithm 6).

Algorithm 6 Golden Ratio Method (GRM)

1: Input: interval [a, b], accuracy ǫ̂

2: Initialization: define constant ρ = 1
Φ =

√
5−1
2

3: y ← a+ (1− ρ)(b− a)
4: z ← a+ ρ(b− a)
5: while b− a > ǫ̂ do
6: if φ(y, z) = −1 then
7: b← z
8: z ← y
9: y ← a+ (1− ρ)(b− a)

10: else
11: a← y
12: y ← z
13: z ← a+ ρ(b− a)
14: end if
15: end while
16: Return: a+b

2

We utilize the Golden Ratio Method to find a solution to the following one-dimensional problem
(see line 2 in Algorithm 5):

ζk = arg min
ζ∈R

f(xk + ζeik).
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Using the well-known fact about the golden ratio method that GRM is required to do N =
O
(
log 1

ǫ

)
(where ǫ is the accuracy of the solution to the linear search problem in terms of the

function value; due to (9), it is sufficient to take ǫ̂ = 2ǫ/L0), we derive the following corollaries from
the solution of this problem: for simplicity, we consider the scenario when the golden ratio method
solves the inner problem exactly (ǫ ≃ 0). Then, we have the following:

f(xk + ζkeik) ≤ f(xk + ζeik), ∀ζ ∈ R. (50)

Using the above inequality with ζ = ηk∇ikf(xk), ηk := 1
L0+L1|∇ik

f(xk)| , and applying Assump-

tion 1.3, we get

f(xk+1)− f(xk) = f(xk + ζkeik)− f(xk)

(50)

≤ f(xk − ηk∇ikf(xk)eik)− f(xk)

(38)

≤ −ηk
2

(

∇ikf(xk)
)2
. (51)

The rest of the proof is identical to the proof given in Appendix D.1 and leads to the same bound:

E[f(xN )]− f∗ ≤ max

{(

1− 1

4
√

2dL1R

)N/2

F0,
16dL0R

2

N

}

.

The above upper bound implies that to achieve E[f(xN )]− f∗ ≤ ε, OrderRCD needs to perform

N = O
(

max

{
dL0R

2

ε
, dL1R log

F0

ε

})

iterations and

T = O
(

max

{
dL0R

2

ε
, dL1R log

F0

ε

}

· log
1

ǫ

)

Order Oracle calls,

where ǫ is the accuracy of the solution of the auxiliary optimization problem (see line 2 in Algo-
rithm 5), and it has to be sufficiently small.

E Missing Proof for GD in the Strongly Convex Setup

From the analysis of the convex case, we have

f(xk+1)− f(xk)
(14)

≤ − 1

2(L0 + L1 ‖∇f(xk)‖)
∥
∥
∥∇f(xk)

∥
∥
∥

2
. (52)

Next, let us consider two cases:
∥
∥∇f(xk)

∥
∥ ≥ L0

L1
and

∥
∥∇f(xk)

∥
∥ < L0

L1
.

The case of
∥
∥∇f(xk)

∥
∥ ≥ L0

L1
. In this case, we have L0 + L1

∥
∥∇f(xk)

∥
∥ ≤ 2L1

∥
∥∇f(xk)

∥
∥. Using

this inequality in (52), we obtain

f(xk+1)− f(xk) ≤ −‖∇f(xk)‖
4L1

. (53)

To continue the derivation, we also consider two possible situations depending on Fk := f(xk)− f∗.
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i) If Fk ≥ 1, then we proceed as in the convex case and get

Fk+1

(16)

≤
(

1− 1

4L1R

)

Fk. (54)

In view of (52) and Lemma B.2, we have Fk+1 ≤ Fk and ‖∇f(xk+1)‖ ≤ ‖∇f(xk)‖. Therefore,
if Fk ≥ 1 and

∥
∥∇f(xk)

∥
∥ ≥ L0

L1
, then Ft ≥ 1 and

∥
∥∇f(xt)

∥
∥ ≥ L0

L1
for all t = 0, 1, . . . , k. Let T1

be the largest k ∈ [N − 1] such that Fk ≥ 1 and
∥
∥∇f(xk)

∥
∥ ≥ L0

L1
(if there is no such k for

given initialization, then T1 := −1). Then, we have

FT1+1

(54)

≤
(

1− 1

4L1R

)T1+1

F0. (55)

Using the above inequality, we can upper bound T1 as

T1 ≤ 4L1R log(F0).

ii) If Fk < 1, we use Polyak- Lojasiewicz (Polyak, 1963;  Lojasiewicz, 1963) inequality

∥
∥
∥∇f(xk)

∥
∥
∥

2
≥ 2µFk (56)

Fk<1
> 2µ(Fk)2, (57)

which follows from strong convexity Nesterov (2018). Then, we can continue the derivation
as follows:

Fk+1

(53)

≤ Fk −
1

4L1

∥
∥
∥∇f(xk)

∥
∥
∥

(57)

≤
(

1−
√
µ

2
√

2L1

)

Fk. (58)

Moreover, since (54) holds whenever
∥
∥∇f(xk)

∥
∥ ≥ L0

L1
, we can tighten the above inequality as

Fk+1 ≤
(

1−max

{ √
µ

2
√

2L1

,
1

4L1R

})

Fk. (59)

In view of Lemma B.2, we have ‖∇f(xk+1)‖ ≤ ‖∇f(xk)‖. Therefore, if
∥
∥∇f(xk)

∥
∥ ≥ L0

L1
,

then
∥
∥∇f(xt)

∥
∥ ≥ L0

L1
for all t = 0, 1, . . . , k. Let T2 be the largest k ∈ [N − 1] such that

∥
∥∇f(xk)

∥
∥ ≥ L0

L1
(if there is no such k for given initialization, then T2 := −1). Then, we have

FT2+1 ≤
(

1−max

{ √
µ

2
√

2L1

,
1

4L1R

})T2−T1
FT1+1

(55)

≤
(

1−max

{ √
µ

2
√

2L1

,
1

4L1R

})T2−T1 (

1− 1

4L1R

)T1+1

F0. (60)
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The case of
∥
∥∇f(xk)

∥
∥ < L0

L1
. In this case, we have L0 + L1‖∇f(xk)‖ ≤ 2L0. Using this in-

equality in (52), we obtain

Fk+1

(52)

≤ Fk −
∥
∥∇f(xk)

∥
∥
2

4L0

(56)

≤
(

1− µ

2L0

)

Fk. (61)

Since Algorithm 1 converges monotonically in terms of the gradient norm (see Appendix B), the
above inequality holds for k = T2 + 1,T2 + 2 . . . , N − 1 iterations and gives

FN ≤
(

1− µ

2L0

)N−T2
FT2+1

(60)

≤
(

1− µ

2L0

)N−T2 (

1−max

{ √
µ

2
√

2L1

,
1

4L1R

})T2−T1 (

1− 1

4L1R

)T1+1

F0.

This concludes the proof.

F Motivation Strong Growth Conditions on the Example of Lo-

gistic Regression

We know from Section 6 that the strong growth condition for smoothness (see Assumption 1.2 when
L0 = 0) is satisfied by the logistic regression problem, which is often used in the machine learning
community. However, this problem does not reach a minimum (hence R = arg inf f(x) = +∞).
Therefore, in this section we show that, for example, gradient descent (Algorithm 1) will achieve
the desired accuracy ε in a finite number of iterations with linear rate.

We introduce the hyperparameter of the algorithm s : f(s) − f∗ ≤ ε. Then we show linear
convergence to the desired accuracy by the example of gradient descent.

Using the strong growth condition for smoothness (see Assumption 1.2 with L0 = 0) we have:

f(xk+1)− f(xk) = f(xk − ηk∇f(xk))− f(xk)

(8)

≤ −ηk
〈

∇f(xk),∇f(xk)
〉

+ η2k
L1

∥
∥∇f(xk)

∥
∥

2

∥
∥
∥∇f(xk)

∥
∥
∥

2

①

≤ −ηk
∥
∥
∥∇f(xk)

∥
∥
∥

2
+
ηk
2

∥
∥
∥∇f(xk)

∥
∥
∥

2

= −ηk
2

∥
∥
∥∇f(xk)

∥
∥
∥

2

= − 1

2L1 ‖∇f(xk)‖
∥
∥
∥∇f(xk)

∥
∥
∥

2

= − 1

2L1

∥
∥
∥∇f(xk)

∥
∥
∥ , (62)

where in ① we used ηk ≤ 1
L1‖∇f(xk)‖ .
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Then using the convexity assumption of the function (see Assumption 1.4, µ = 0), we have the
following:

f(xk)− f(s) ≤
〈

∇f(xk), xk − s
〉

(7)

≤
∥
∥
∥∇f(xk)

∥
∥
∥

∥
∥
∥xk − s

∥
∥
∥

≤
∥
∥
∥∇f(xk)

∥
∥
∥

∥
∥x0 − s

∥
∥

︸ ︷︷ ︸

Rs

.

Hence we have:
∥
∥
∥∇f(xk)

∥
∥
∥ ≥ f(xk)− f(s)

Rs
. (63)

Then substituting (63) into (62) we obtain:

f(xk+1)− f(xk) ≤ − 1

2L1

∥
∥
∥∇f(xk)

∥
∥
∥ ≤ − 1

2L1Rs
(f(xk)− f(s)).

This inequality is equivalent to the trailing inequality:

f(xk+1)− f∗ ≤
(

1− 1

2L1Rs

)

(f(xk)− f∗) +
1

2L1Rs
(f(s)− f∗). (64)

Applying recursion to (64) we obtain:

f(xN )− f∗ ≤
(

1− 1

2L1Rs

)N

(f(x0)− f∗) + (f(s)− f∗)
︸ ︷︷ ︸

ε

.

Therefore, we have shown that Algorithm 1 will achieve the desired accuracy ε in a finite
number of iterations: N = O

(
L1Rs log 1

ε

)
. Rs is a finite number and increases as the desired

accuracy improves. The same can be shown for other algorithms.
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