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Decentralized and Parallel Primal and Dual Accelerated

Methods for Stochastic Convex Programming Problems

Darina Dvinskikh, and Alexander Gasnikov ∗

Abstract

We introduce primal and dual stochastic gradient oracle methods for decentralized
convex optimization problems. Both for primal and dual oracles, the proposed methods
are optimal in terms of the number of communication steps. However, for all classes
of the objective, the optimality in terms of the number of oracle calls per node takes
place only up to a logarithmic factor and the notion of smoothness. By using mini-
batching technique, we show that the proposed methods with stochastic oracle can be
additionally parallelized at each node. The considered algorithms can be applied to
many data science problems and inverse problems.

1 Introduction

We consider the stochastic convex optimization problem

min
x∈Q⊆Rn

f(x) := E[f(x, ξ)]. (1)

Such kind of problems arise in many applications of data science [Shalev-Shwartz and Ben–
David, 2014, Shapiro et al., 2009] and mathematical statistics [Spokoiny et al., 2012]. To
solve this problem with the average precision ε in the function value (i.e., to find such xN

that Ef(xN)−min
x∈Q

f(x) ≤ ε), one can use stochastic gradient (mirror) descent [Juditsky and

Nemirovski, 2012] with

min

{
O

(
M2R2

ε2

)
, O

(
M2

µε

)}
(2)
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number of calculations of unbiased stochastic subgradients ∇f(x, ξ). Here µ is the constant
of strong convexity of f , R = ‖x0 − x∗‖2 is the Euclidean distance between starting point
x0 and the solution x∗ of (1) that corresponds to the minimum of this norm. We also used
E[‖∇f(x, ξ)‖22] ≤M2. Generally, we can parallelize (2) on no more than Õ(1) processors by
using batch-parallelization [Dvurechensky et al., 2018]. If we additionally assume that f has
L-Lipschitz (continuous) gradient and E[‖∇f(x, ξ)−∇f(x)‖22] ≤ σ2, then (2) is replaced by

min

{
O

(√
LR2

ε

)
+O

(
σ2R2

ε2

)
, O

(√
L

µ
ln

(
µR2

ε

))
+O

(
σ2

µε

)}
(3)

number of calculations of unbiased stochastic subgradients ∇f(x, ξ) by using batch paral-
lelization [Devolder, 2013,Dvurechensky and Gasnikov, 2016,Gasnikov and Nesterov, 2018,
Ghadimi and Lan, 2013]. In this case we can parallelize subgradients calculations on no more
than

O

(
σ2R2/ε2√
LR2/ε

)
or O

(
σ2/(µε)√

L/µ ln (µR2/ε)

)

processors (depending on where the minimum in (3) is reached). Notice that this is much
better than in previous case. Since this result cannot be improved [Woodworth et al., 2018],
it is the best possible way (in general) to solve (1) by using parallel architecture in online
context [Shalev-Shwartz et al., 2009].

For many reasons, in some situations in practice, it can be impossible to organize model-
based request1 for calculating stochastic gradient ∇f(xk, ξk) in online regime. Typically,
in machine learning applications [Hastie et al., 2001, Shalev-Shwartz and Ben-David, 2014],
instead of online access to

{
∇f(xk, ξk)

}m
k=1

we have offline access. This means that the set of

functions
{
f(x, ξk)

}m
k=1

are stored in the memory and to use them in algorithms, we need to
request corresponding function and then calculate its gradient. This may significantly change
the complexity of the problem. Indeed, it is known from [Guigues et al., 2017,Shalev-Shwartz
et al., 2009,Shapiro et al., 2009] that with high probability the exact solution of problem

min
x∈Q⊆Rn

f̃(x) :=
1

m

m∑

k=1

f(x, ξk) (4)

is an ε-solution (in the function value) of problem (1) if

m = min

{
Õ

(
nM2R2

ε2

)
, Õ

(
M2

µε

)}
.

1For desired x and independently generated ξ, a request returns ∇f(x, ξ). This allows not to keep the set
of functions {f(x, ξk)}k for different k in the memory.
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If µ = 0 or it is small enough one may use a regularization technique (see e.g., [Gasnikov,
2017,Shalev-Shwartz et al., 2009]). This allows to reduce the first part of the estimate from
Õ (nM2R2/ε2) to Õ (M2R2/ε2) . Moreover, we cannot typically find the exact solution of
(4) but in the µ-strongly convex (or regularized) case it suffices to solve (4) with accuracy
O(µε2/M2) (see [Shalev-Shwartz et al., 2009]).

To solve (4) in offline context we have to store {f(x, ξk)}mk=1 in the memory. Sincem can be
large, centralized distributed architecture is often more preferable in this context [Bertsekas
and Tsitsiklis, 1989]. In the general case, centralized architecture is based on communication
network and it can be obtained by building a spanning tree of a given network [Scaman et al.,
2017]. For m-node centralized distributed architecture, the number of gradient oracle calls
per each node is defined by (3) with σ2 = 0, L and µ corresponding to f̃ . The number of
communication steps will be d times more, where d is the distance between the origin (root)
and farthest node. If we have only q ≪ m nodes, then we divide the data {f(x, ξk)}mk=1 into
q blocks with l = m/q terms in each block. If l is too large by itself one can reformulate (4)
as follows [McMahan et al., 2016]

min
x∈Q⊆Rn

f̃(x) :=
1

q

q∑

k=1

E[fk(x, η
k)], (5)

where fk(x, η
k) = f(x, ξkl+η

k

) and ηk = i with probability 1/l, i = 1, ..., l. Representation (5)
allows to use bound (3) in the stochastic case in a parallel manner at each node. The number
of oracle calls per node also corresponds (in general) to (3) and the number of communication
steps is also d times more than (3) with σ2 = 0.

Unfortunately, centralized architecture has a synchronization drawback and a high re-
quirement for the master node [Scaman et al., 2017]. To address these disadvantages to
some extent, a decentralized distributed architecture should be used [Bertsekas and Tsit-
siklis, 1989,Kibardin, 1979]. This architecture relies on two basic principles [Nedic, 2020]:
every node communicates only with its neighbors, and all communications are performed
simultaneously. The main difference here is a simple strategy of communications: each node
communicates only with all available direct neighbors. This architecture is more robust. In
particular, it can be applied to time-varying (wireless) communication networks [Rogozin
et al., 2018].

As problems (4) and (5) have a definite structure of the sum type, they can be solved much
faster on one machine. For instance, using some incremental algorithms [Allen-Zhu, 2017,Lan
and Zhou, 2017,Lin et al., 2015,Woodworth and Srebro, 2016], one can solve (4)

√
m times

cheaper in terms of the number of oracle calls, but not in terms of the number of iterations
( =communication steps). Unfortunately, this result prohibits parallelization. Note, that
for this problem in asynchronized mode ( at each step only two randomly chosen nodes can
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communicate ), one can obtain such (∼ √
m) an acceleration for the star-type communication

network [Lan and Zhou, 2018]. Moreover, a ‘dual’ analogue of this acceleration has recently
been proposed for (4) [Hendrikx et al., 2018] and (5) [Hendrikx et al., 2019a,Hendrikx et al.,
2019b] with arbitrary communication networks.

Before stating the contribution we introduce the notions of condition number χ for Lapla-
cian communication matrix of some network and the height of spanning tree denoted by d.
Note, that

√
χ ≥ d and typically

√
χ ≤ nd (see [Nedić et al., 2018]). The last bound corre-

sponds to a star topology [Gasnikov, 2017] (the most simple centralized type architecture).
In many interesting cases

√
χ = Õ(d) (see [Nedić et al., 2018,Scaman et al., 2017]).

1.1 Contribution

• We justify the transition from the optimal centralized distributed complexity bounds
for problems (4) and (5) in the smooth case to decentralized ones2 by replacing d with√
χ, the average L with the worse one and variance of f with the variance of fk, that

can be m times more.3 Here and everywhere below we keep µ at the average level
(without loss of generality, we can assume that each fk has the same µ) by using a trick
from [Scaman et al., 2017]. The announced results are also not improvable in terms
of communication steps (rounds) [Arjevani and Shamir, 2015,Scaman et al., 2017].

By using different smoothing techniques [Allen-Zhu and Hazan, 2016,Nesterov, 2005,
Scaman et al., 2018], we may lead the non-smooth case to the smooth one with L ∼ 1/ε.
This allows to reduce the complexity estimate (2) by using (3). However, in general, this
reduction makes the cost of oracle calls more expensive. Thus, we can only improve the
communication steps (rounds) bound that corresponds to (3) (up to a

√
χ factor) with

L ∼ 1/ε and σ2 = 0.4 Can we preserve the bound (2) for standard conception of oracle
calls (primal oracle that gives ∇fk) per node in decentralized approach by improving
the number of communication steps? The answer is positive up to the replacement of
the average M to the worst one [Lan et al., 2017, Scaman et al., 2018]. In our paper,
we simplify the approaches proposed in these articles to prove this result.

2In the deterministic case this was partially done in [Li et al., 2018].
3For instance, this takes place in the case when we have independent noise at each fk. Note also that in

this case in decentralized distributed optimization one can improve the variance dependence and eliminate
factorm (see [Olshevsky et al., 2019a,Olshevsky et al., 2019b]). But, this is possible due to the worse estimate
for the number of communication steps.

4Note that such tricks sometimes allow to obtain the optimal (in terms of dependence on ε) communication
round estimates [Arjevani and Shamir, 2015,Scaman et al., 2018].
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As a motivation for the second main result, we consider the problem of type

min
x∈Q

f(x) :=
1

m

m∑

k=1

fk(x). (6)

where fk(x) has Fenchel–Legendre representation fk(x) = max
y

{〈x, y〉 − ϕk(y)} with con-

vex ϕk(y). Such type of optimization problems arise, for instance, in different applications
of inverse problems, especially for linear problems in Hilbert space where we have to use
discretization and sum-type functions naturally arise [Byrne, 2014, Gao and Blumensath,
2017,Gasnikov et al., 2017,Vogel, 2002, Ye et al., 2019]. The case of dual-friendly fk also
arises in the problem of Wasserstein barycenter calculation [Dvinskikh et al., 2019,Dvurechen-
skii et al., 2018,Uribe et al., 2018]. Suppose that ∇ϕk(y) is available but fk(x),∇fk(x) are
unavailable. Moreover, sometimes ϕk(y) = E[ϕk(y, ξ)] and it is worth to use ∇ϕk(y, ξ) in-
stead of ∇ϕk(y) [Dvinskikh et al., 2019,Dvurechenskii et al., 2018]. Considering this example
as one of the motivation for using dual oracle instead of primal one, we provide the second
main result.

• We develop optimal decentralized distributed algorithms with dual (stochastic) oracle
for strongly convex objective in (6). The approach is based on dual reformulation of
(6) [Scaman et al., 2017]. An optimal algorithm for non-strongly convex dual function
with stochastic oracle was recently proposed in [Dvinskikh et al., 2019]. To propose an
optimal method with stochastic dual oracle for strongly convex primal objective, we
use recent work [Foster et al., 2019]. We notice a rather unexpected result: we cannot
improve (up to a logarithmic factor) the bound for the number of dual stochastic
gradient calculations in comparison with non-strongly convex dual objective.

We also notice that initially we were motivated by the study of the dual oracle not only
as an application from [Dvinskikh et al., 2019,Dvurechenskii et al., 2018,Uribe et al.,
2018]. We also tried to find a simple explanation for the optimal communication step
bounds [Arjevani and Shamir, 2015, Scaman et al., 2018] in non-smooth case. One of
the ways to do it is Nesterov’s dual smoothing technique [Nesterov, 2005] that builds a
bridge to the notion of dual oracle. This plan was partially (in the deterministic case)
implemented in [Scaman et al., 2017,Uribe et al., 2020,Uribe et al., 2020]. Here we
generalize the results of these works for the stochastic dual oracle.

1.2 Paper organization

The paper is organized as follows. In Section 2, we propose optimal stochastic (parallelized)
accelerated gradient methods for stochastic convex optimization problems. In Sections 3 and
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4, we apply the results of Section 2 to stochastic convex optimization problems with affine type
of constraints (of type Ax = 0). We describe the modern stochastic (parallelized) accelerated
gradient methods which are optimal both in terms of (stochastic) oracle calls and matrix-
vector multiplications Ax. In Sections 3, we are focusing on primal methods, in Section 4,
we present dual ones. Section 5, describes the distributed primal and dual formulation of
the finite-sum minimization problem, and presents distributed algorithms. In Section 6, we
incorporate the proposed distributed decentralized method to get the optimal bounds for
the finite-sum minimization problem using primal or dual oracle. Finally, we discuss future
work and possible extensions. We notice that all proposed methods are optimal in terms of
communication steps and in many cases in terms of (parallel stochastic) primal/dual oracle
calls.

2 Stochastic convex optimization

First-order methods for the optimization problem of minimizing a convex function f on a
simple convex set Q, e.g.,

min
x∈Q⊆Rn

f(x), (7)

play a fundamental role in modern problems arising in machine learning and statistics. The
complexity of these methods is measured by the number of iterations or (and) the number
of oracle calls. For a deterministic oracle, this concept can be identified. By the first-order
oracle, we mean a black-box model that for a given input x ∈ Q, returns the vector ∇f(x).

We say that a function f is M-Lipschitz continuous if 5

∀x ∈ Q ‖∇f(x)‖2 ≤M.

We say that function f is L-smooth or has L-Lipschitz continuous gradient if

∀x, y ∈ Q ‖∇f(y)−∇f(x)‖2 ≤ L‖y − x‖2.

We also say that function f is µ-strongly convex if

∀x, y ∈ Q f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µ

2
‖y − x‖22.

Accelerated gradient methods (e.g., Algorithm 1 (STM) [Gasnikov and Nesterov, 2018,
Nesterov, 2018b, Lan, 2019]) allow to obtain the optimal number of iterations and number

5Here and below in such type of assumptions (especially in the case when Q is unbounded) instead of
∀x ∈ Q we may write ∀x ∈ Q : ‖x− x∗‖2 ≤ 2R [Gasnikov, 2017] (analogously for y).

6



Algorithm 1 Similar Triangles Method STM(L,µ,x0), Q = R
n

Input: x̃0 = z0 = x0, number of iterations N , α0 = A0 = 0, L, µ
1: for k = 0, . . . , N do

2: Set αk+1 =
1+Akµ

2L
+
√

1+Akµ
4L2 + Ak(1+Akµ)

L
, Ak+1 = Ak + αk+1

3: x̃k+1 = (Akx
k + αk+1z

k)/Ak+1

4: zk+1 = zk − αk+1

1+Ak+1µ

(
∇f(x̃k+1)+µ

(
zk − x̃k+1

))

5: xk+1 = (Akx
k + αk+1z

k+1)/Ak+1

6: end for

Output: xN

of gradient oracle calls for problem (7) as described in Table 1, where R = ‖x0 − x∗‖2 is the
Euclidean distance from the starting point x0 to the solution x∗ of (7) that corresponds to
the minimum of this norm, and ε is the desired precision in function value.

Remark 1 For a composite optimization problem with composite term h(x), step 4 of Al-
gorithm 1 is replaced by the more general operator [Gasnikov and Nesterov, 2018,Nesterov,
2018b]

zk+1 = argmin
z∈Q

{
k+1∑

l=0

αl

(
〈∇f(x̃l), z − x̃l〉+ h(z) +

µ

2
‖z − x̃l‖22

)

+
1

2
‖z − x̃0‖22

}
.

If h(x) has Lh-Lipschitz gradient in the ℓ2-norm then due to Theorem 9 [Stonyakin et al.,
2019b] and Theorem 19 [Stonyakin et al., 2019a] it suffices to solve auxiliary problem with
accuracy (in terms of function value)

O

(
(αk+1ε)

2(Ak+1µ+ 1)

(Ak+1LhR)2

)
≥ O

(
ε3

LL2
hR

4

)
,

where ε is desired accuracy (in function value) for initial problem (7).
If µ = 0 we can also generalize this step for the non-Euclidean case and using restarts
[Gasnikov and Nesterov, 2018] generalize such a method on µ > 0. Note, that by using
restarts with STM(L,0,x0) one can eliminate the gap from ln(LR2/ε) to ln(µR2/ε) between
lower bounds and the bounds for STM(L,µ,x0) without restarts [Gasnikov and Nesterov,
2018]. The same remains true for the stochastic oracle.
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Table 1: The optimal number of first-order oracle calls (number of iterations N)

µ-strongly convex
and L-smooth

L-smooth µ-strongly convex

#iterations
√

L
µ ln

(
µR2

ε

) √
LR2

ε
M2

µε
M2R2

ε2

#oracle calls
of ∇f(x)

√
L
µ ln

(
µR2

ε

) √
LR2

ε
M2

µε
M2R2

ε2

Generally, iteration complexity is determined by the complexity of calculating the gradi-
ent, which can be computationally expensive. Thus, stochastic approximations of the true
gradient can be used instead. In this case, or when the true gradient is unavailable (if e.g.,
function f is given in the form of expectation f(x) := E[f(x, ξ)]) we denote the inexact (or
noise-corrupted) first-order oracle as ∇f(x, ξ), given by a blackbox model with stochasticity
(noise) ξ corrupting the true gradient. Assume that

‖E[∇f(x, ξ)]−∇f(x)‖2 ≤ δ = O(ε/R) (8)

and
E
[
exp

(
‖∇f(x, ξ)− E[∇f(x, ξ)]‖22σ−2

)]
≤ exp(1),

then with probability at least 1− β, we have f(xN )− f(x∗) ≤ ε after

N = min

{
O

(√
LR2

ε

)
, O

(√
L

µ
ln

(
LR2

ε

))}

iterations of STM using the approximated gradient (instead of the real one ∇f(x̃k+1))

∇rk+1f(x̃k+1, {ξk+1
i }rk+1

i=1 ) =
1

rk+1

rk+1∑

i=1

∇f(x̃k+1, ξk+1
i ), (9)

where ξk+1
1 , . . . , ξk+1

rk+1
are i.i.d from the same distribution as ξ and the batch size is

rk+1 = O

(
σ2αk+1 ln(N/β)

(1 + Ak+1µ)ε

)
. (10)
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Moreover, the total number of oracle calls6 is (this bound is optimal up to logarithmic factors)

N∑

k=0

rk = O(N) + min

{
O

(
σ2R2

ε2
ln

(√
LR2/ε

β

))
,

O

(
σ2

µε
ln

(
LR2

ε

)
ln

(√
L/µ

β

))}
.

We refer to such a variant of STM as BSTM(L,µ,σ2,x0) (batched STM(L,µ,x0)).
Thus, using minibatches for constructing an approximation of the true gradient allows

us to keep the optimal number of iterations for stochastic methods, as presented in Table 1,
where we skip high probability logarithmic multipliers. The number of stochastic oracle calls
for this case is shown in Table 2.

Remark 2 We notice that in assumption (8), R = ‖x0 − x∗‖2. Generally, in such type of
assumptions, R is the diameter of Q (see [Cohen et al., 2018,d’Aspremont, 2008]) (it is not
a compact set when Q = R

n). To obtain such a generalization we have to use the advanced
recurrent technique to bound ‖zk − x∗‖2 from [Dvinskikh et al., 2019,Gorbunov et al., 2018]
and [Gasnikov, 2017, Chapter 2]. Further we provide the sketches how to get this result (for
simplicity σ = 0, µ = 0).
1. For an inexact gradient ∇̃f(x) satisfying for all x, y

f(x) + 〈∇̃f(x), y − x〉 − δ1‖y − x‖2 ≤ f(y)

≤ f(x) + 〈∇̃f(x), y − x〉 + L

2
‖y − x‖22 + δ2, (11)

STM outputs7 xN such that [Devolder et al., 2014,Dvinskikh et al., 2020]

f(xN)− f(x∗) = O

(
LR2

N2
+ δ1R̃ +Nδ2

)
,

where max
{
‖x̃k − x∗‖2, ‖zk − x∗‖2, ‖xk − x∗‖2

}
≤ R̃.

2. Since

〈∇̃f(x)−∇f(x), y − x〉 ≤ 1

2L
‖∇̃f(x)−∇f(x)‖22 +

L

2
‖y − x‖22,

6Oracle calls can be easily and fully parallelized (on rk processors) at each iteration. Note, that for
∇rkf(x, {ξi}rki=1

) we can reduce the variance σ2 := O(σ2/rk).
7Note, that according to [Poljak, 1981] even for the last point of gradient descent on a simple quadratic

optimization problem we cannot guarantee convergence without proper stopping rule. With proper stopping
rule in (8) it is required (see [Polyak, 1987, Theorem 7, item 6.1.3]) δ ∼ ε2 that is worse than what we
have δ ∼ ε. But we can guarantee standard convergence of noisy gradient descent under (8) in (Cesaro)
average [Gasnikov, 2017] (not for the last point). The results below generalize [Gasnikov, 2017] on a proper
accelerated method (STM).
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one can consider δ2 := δ2/(2L) and L := 2L in (11).
3. In the deterministic case, R̃ = R with the proper stopping rule of the algorithm (see
[Gasnikov, 2017, formulas (2.17), (2.18) in Chapter 2] and [Gasnikov and Nesterov, 2018]).
In the stochastic case (with high probability) R̃ = O(R) (see [Dvinskikh et al., 2019,Gorbunov
et al., 2018]) for STM with the proper batch-size (10).

In particular, for the case of non-smooth objective, the stochastic oracle does not yield
gains compared to its deterministic counterpart.

Table 2: The optimal number of stochastic (unbiased) first-order oracle calls

µ-strongly convex
and L-smooth

L-smooth µ-strongly convex

#iterations
√

L
µ ln

(
µR2

ε

) √
LR2

ε
M2

µε
M2R2

ε2

#oracle calls
of ∇f(x, ξ)

max
{
σ2

µε ,√
L
µ ln

(
µR2

ε

)} max

{
σ2R2

ε2
,
√

LR2

ε

}
M2

µε
M2R2

ε2

In Table 2, in the appropriate cells, we assumed that the following inequalities hold:
E‖∇f(x, ξ)−∇f(x)‖22 ≤ σ2 and E‖∇f(x, ξ)‖22 ≤M2.

Both in Table 1 and in Table 2, the last two columns can be obtained from the cor-
responding first columns by choosing L = M2/(2δ), where δ = ε/N (see [Gasnikov and
Nesterov, 2018]). This is the idea of universal accelerated methods [Nesterov, 2015], but
with predefined L. Here and in all further tables we skip numerical constants.

3 Primal methods for stochastic convex optimization

with affine constraints

To build the complete theory of distributed primal and dual method we need to generalize
the result of Tables 1 and 2 for the convex optimization problem8

min
Ax=0,
x∈Q

f(x), (12)

8In decentralized optimization A is taken to be
√
W (square root of the Laplacian matrix of the commu-

nication network).
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where A�0 and KerA 6= ∅. The purpose of this section is to develop such algorithms for
(12) that are optimal in terms of the number of ∇f(x) calculations and the number of ATAx
calculations. In this section we use Euclidean proximal setup [Ben-Tal and Nemirovski, 2001].
This is the only section where we significantly rely on Euclidean prox-structure.

Denote by Ry = ‖y∗‖2 the ℓ2-norm of the smallest solution y∗ of dual (up to a sign)
problem (16). Solution y∗ is not unique since KerA 6= ∅. From [Lan et al., 2017] we have
such a bound

R2
y ≤

‖∇f(x∗)‖22
λ+min(A

TA)
. (13)

Using the penalty method we rewrite (12) as follows

F (x) = f(x) +
R2
y

ε
‖Ax‖22 → min

x∈Q
. (14)

Next we use [Gasnikov, 2017, Remark 4.2] and get if the following holds

F (xN )−min
x∈Q

F (x) ≤ ε,

then

f(xN)− min
x∈Q,Ax=0

f(x) ≤ ε, ‖AxN ||2 ≤
(1 +

√
5)ε

2Ry
.

We start with the smooth case and assume that Q = R
n. If f has L-Lipschitz continuous

gradient then we can solve (14) by STM (or BSTM in the stochastic case) considering the second
term to be composite [Gasnikov and Nesterov, 2018,Nesterov, 2013]. In this case, we obtain
the optimal number of ∇f(x) (or ∇f(x, ξ)) calculations, see Tables 1, 2. But the total
number of ATAx calculations is

Õ

(√
λmax(ATA)/λ

+
min(A

TA)

)

times more since ImA = ImAT = (KerA)⊥ and Q = R
n and as a consequence of these

facts the auxiliary problem can be divided into two subproblems: minimization of quadratic
form with matrix of the form (R2

y/ε)A
TA + cI (c is some positive constant and I is identity

matrix) on (KerA)⊥ and minimization of quadratic form with matrix of the form cI on KerA.
Linear terms do not play any role in complexity. The complexity of the auxiliary problem is
determined by the worst (reduced on corresponding subspace) conditional number of these
two subproblems. Obviously, the first one is worse. The reduced the conditional number is

λmax

(
(R2

y/ε)A
TA+ cI

)

λ+min

(
(R2

y/ε)A
TA+ cI

) ≤ λmax(A
TA)

λ+min(A
TA)

.
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This factor arises because of the complexity of the auxiliary problem. We refer to these
approaches as PSTM and PBSTM (Penalty STM and BSTM). Here and below we skip arguments
of the algorithms if they are obvious from the context.

In non-smooth case (f is M-Lipschitz), we use the Sliding algorithm [Lan, 2016], [Lan,
2019] . If µ = 0 according to [Lan, 2016] this algorithm requires (see Tables 1, 2 for compar-
ison)

O

(√
λmax(ATA)R2

yR
2
x

ε2

)

calculations of ATAx and

O
(
M2R2

x

ε2

)

calculations of ∇f(x), where Rx = ‖x0 − x∗‖2.
If we have unbiased ∇f(x, ξ) with σ2-sub-Gaussian variance [Jin et al., 2019] instead of

∇f(x), i.e.,
E
[
exp

(
‖∇f(x, ξ)−∇f(x)‖22σ−2

)]
≤ exp(1),

with σ2 = O(M2) (for compact notation9), then the bound for calculations of ATA does not
change and the bound for calculations of ∇f(x, ξ) is the same as it was for the number of
calculations of ∇f(x) in deterministic case (up to a logarithmic high-probability deviations
factor).

By using a restart technique [Uribe et al., 2020] we can generalize this method for µ-
strongly convex f :

O




√
λmax(ATA)R2

y

µε
ln

(
µR2

x

ε

)



calculations of ATAx and

O

(
M2

µε

)

calculations of ∇f(x) (∇f(x, ξ)).
We call this approach by R-Sliding (Restart Sliding).

9In general M2 is replaced by M2 + σ2 in the stochastic case.
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4 Dual methods for stochastic convex optimization with

affine constraints

Now we assume that we can build a dual problem for

min
Ax=0,
x∈Q

f(x), (15)

where KerA 6= ∅.

Remark 3 We notice that turning to a dual problem does not oblige us using dual oracle.
Instead, we can use a primal oracle and the Moreau theorem [Rockafellar, 2015] with Fenchel-
Legendre representation. This maximization problem can be solved using the first-order oracle
for the function f . But such an approach does not allow to obtain the optimal bounds on the
number of primal first-order oracle calls. Note that typically in decentralized optimization A
in (15) is taken as the square root of the Laplacian matrix W of the communication network
[Scaman et al., 2017]. But in the asynchronized case the square root

√
W replaced by incidence

matrix M [Hendrikx et al., 2018] (W = MTM). Then in asynchronized case instead of
accelerated methods for (16) one should use an accelerated (block) coordinate descent method
[Dvurechensky et al., 2017,Gasnikov, 2017,Hendrikx et al., 2018,Shalev-Shwartz and Zhang,
2014].

Algorithm 2 PDSTM

Input: ỹ0 = z0 = y0 = 0, number of iterations N , α0 = A0 = 0
1: for k = 0, . . . , N do

2: Set αk+1 =
1

2Lψ
+
√

1
4L2

ψ

+ Ak
Lψ

, Ak+1 = Ak + αk+1

3: ỹk+1 = (Aky
k + αk+1z

k)/Ak+1

4: zk+1 = zk − αk+1∇ψ(ỹk+1) = zk − αk+1Ax(A
T ỹk+1)

5: yk+1 = (Aky
k + αk+1z

k+1)/Ak+1

6: end for

Output: yN , xN = 1
AN

∑N
k=0 αkx(A

T ỹk)

The dual problem (up to a sign) is following

ψ(y) = ϕ(ATy) = max
x∈Q

{〈y, Ax〉 − f(x)} = 〈y, Ax(ATy)〉 − f(x(ATy))

= 〈ATy, x(ATy)〉 − f(x(AT y)) → min
y
. (16)
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If f is µ-strongly convex in the ℓ2-norm, then ψ has Lψ = λmax(ATA)
µ

–Lipschitz continuous

gradient in the ℓ2-norm
10 [Kakade et al., 2009,Rockafellar, 2015]. In this case we can apply

STM(Lψ,0,0) to (16). Note that due to Demyanov–Danskin’s theorem ∇ψ(y) = Ax(ATy)
[Rockafellar, 2015]. Similarly to [Anikin et al., 2017,Chernov et al., 2016] one can prove that

f(xN )− f(x∗) = f(xN)− f(x(ATy∗)) ≤ f(xN ) + ψ(yN)

= O

(
LψR

2
y

N2

)
, ‖AxN‖2 = O

(
LψRy

N2

)
, (17)

where Ry = ‖y∗‖2 is the radius of solution of (16) which is the smallest in the ℓ2-norm, see
(13). We call this approach by PDSTM (Primal-Dual STM).

If we have only a stochastic (randomized) unbiased model ∇ϕ(λ, ξ)|λ=AT y = x(ATy, ξ)
with σ2

ϕ-sub-Gaussian variance, i.e.

E
[
exp

(
‖∇ϕ(λ, ξ)−∇ϕ(λ)‖22σ−2

ϕ

)]

= E
[
exp

(
‖x(AT y, ξ)− x(ATy)‖22σ−2

ϕ

)]
≤ exp(1),

then for BSTM(Lψ,0,σ
2
ψ,0) where σ2

ψ = λmax(A
TA)σ2

ϕ with probability ≥ 1 − β (17) holds
true [Dvinskikh et al., 2019]. We refer to this algorithm as SPDSTM (Stochastic PDSTM).

In the case when ψ from (16) is additionally µψ-strongly convex in the ℓ2-norm in11

y0 + (KerAT )⊥ (if f has L-Lipschitz gradient in the ℓ2-norm and Q = R
n then µψ =

λ+min(A
TA)/L [Kakade et al., 2009,Rockafellar, 2015], where λ+min(A

TA) is the minimal pos-
itive eigenvalue of ATA) we need to use another approach. Because of primal-duality [Nes-
terov, 2009,Nemirovski et al., 2010] we have to put µψ = 0 in STM and in methods based
on STM (STM(Lψ,µψ,y

0) is not primal-dual method when µψ > 0). The restart tech-
nique (see, e.g. [Gasnikov, 2017]) also does not work here because in (17) we have to use
Ry = ‖y0‖2 + ‖y0− y∗‖2 in general. That is why we take here y0 = 0. So the main trick here
is the following relation [Allen-Zhu, 2018,Anikin et al., 2017,Nesterov, 2012]

f(x(ATy))− f(x∗) ≤ 〈∇ψ(y), y〉 = 〈Ax(AT y), y〉. (18)

From (18), to satisfy

f(xN)− f(x∗) = f(x(ATyN))− f(x(ATy∗)) ≤ 2ε, ‖AxN‖2 ≤ ε/Ry,

10Here and below we can also consider other norms (see [Uribe et al., 2020] for details).
11Since ImA = (KerAT )⊥ we will have that all the points ỹk, zk, yk, generated by STM and methods based

on STM, belong to y0 + (KerAT )⊥. That is, from the point of view of estimates this means, that we can
consider ψ to be µψ-strongly convex everywhere.
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it is sufficient to find such yN (‖yN‖2 ≤ 2Ry) that

‖∇ψ(yN)‖2 ≤ ε/Ry. (19)

Recently, there appear accelerated methods with the proper rate of convergence in terms
of the norm of the gradient OGM-G [Gasnikov, 2017,Kim and Fessler, 2018]:

‖∇ψ(yN)‖2 = O

(
Lψ‖y0 − y∗‖2

N2

)
= O

(
Lψ‖∇ψ(y0)‖2

µN2

)
.

After N̄ = O
(√

Lψ
µψ

)
iterations of OGM-G we have

‖∇ψ(yN̄)‖2 ≤
1

2
‖∇ψ(y0)‖2.

So after l = log2

(
‖∇ψ(y0)‖2Ryε

)
restarts (y0 := yN̄) we have (19). We denote such an

approach by ROGM-G (Restart OGM-G). This approach requires

O

(√
Lψ
µψ

ln

(
‖∇ψ(y0)‖2

Ry

ε

))

of ∇ψ(y) (that is Ax(ATy)) calculations. The key inequality to prove this fact is

‖y0 − y∗‖22 ≤
1

µ2
ψ

‖∇ψ(y0)‖22.

This holds due to

µ

2
‖y0 − y∗‖22 ≤ ψ(y0)− ψ(y∗) ≤ 1

2µψ
‖∇ψ(y0)‖22.

The same result with the replacement
√
Lψ
µψ

ln

(
‖∇ψ(y0)‖2

Ry

ε

)
→
√
Lψ
µψ

ln

(
2L2

ψ

R4
y

ε2

)

can be obtained by using STM(Lψ,µψ,0) with bound
√

Lψ
µψ

ln
(
LψR

2
y

ε′

)
(see [Nesterov, 2010])

and desired accuracy ε′ = ε2

2LψR2
y
. This follows from

1

2Lψ
‖∇ψ(yN)‖22 ≤ ψ(yN)− ψ(y∗)≤ ε′.
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Now we consider RRMA+AC-SA2 [Foster et al., 2019] (see also [Allen-Zhu, 2018] in the non-
accelerate, but composite case). This algorithm converges as follows (for simplicity we skip
polylogarithmic factors and high probability terminology)

‖∇ψ(yN)‖22 = Õ

(
L2
ψ‖y0 − y∗‖22

N4
+
σ2
ψ

N

)
= Õ

(
L2
ψ‖∇ψ(y0)‖22
µ2
ψN

4
+
σ2
ψ

N

)
.

We assume that at each iteration, ∇ψ(y, ξ) with sub-Gaussian variance σ2
ψ is available [Jin

et al., 2019] (see also above). If we use restarts with the size of each restart N̄ = Õ
(√

Lψ
µψ

)

(see above) and use batched gradient (9) with batch size (at k-th restart; ȳk is the output
point from the previous restart)

rk+1 = Õ

(
σ2
ψ

N̄‖∇ψ(ȳk+1)‖22

)
.

then ‖∇ψ(ȳl)‖2 ≤ ε/Ry after l = O (log2 (‖∇ψ(y0)‖2Ry/ε)) restarts. Therefore, the total
number of oracle calls is

Õ

(
σ2
ψR

2
y

ε2

)
.

Note that the same bound takes place in the non-strongly convex case (µψ = 0). From
[Allen-Zhu, 2018,Jin et al., 2019] it is known that this bound cannot be improved. However,
we may expect that this bound can be reduced to Õ(σ2

ψ/(µψε)) ( see Table 2 for stochastic
primal oracle). For the stochastic dual oracle, such a reduction is probably impossible. We
call this approach by R-RRMA+AC-SA2 (Restart RRMA+AC-SA2).

5 Decentralized distributed optimization

Now we show how to present (6) in a decentralized distributed manner

min
x∈Q⊆Rn

f(x) :=
1

m

m∑

k=1

fk(x). (P1)

This particular representation of the objective in (P1) allows involving distributed meth-
ods which are particularly necessary for large-scale problems handling the large quantities of
data and which are based on the idea of agents’ cooperative solution of the global problem
[Bertsekas and Tsitsiklis, 1989]. For a given multi-agent network system, we privately assign
each function fk to the agent k and suppose that agents can exchange the information with
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their neighbors (e.g., send and receive vectors). We define this system through the Laplacian
matrix W̄ ∈ R

m×m of some graph (communication network) G = (V,E) with the set V of m
vertices and the set of edges E = {(i, j) : i, j ∈ V } as follows

W̄ij =





−1, if (i, j) ∈ E,

deg(i), if i = j,

0, otherwise,

where deg(i) is the degree of vertex i (i.e., the number of neighboring nodes).
From the definition of the matrix W̄ it can be easily seen that W̄ establishes the commu-

nication of agents and allows only the communication between neighboring nodes. Moreover,
due to connectivity of graph G the vector 1m = (1, ..., 1)T ∈ R

m is the unique (up to a scaling
factor) eigenvector of W̄ associated with the eigenvalue λ = 0, which allows us to compactly
rewrite the consensus agreement x1 = ... = xm ∈ R

n asWx = 0, moreover, as
√
Wx = 0 (see

[Scaman et al., 2017]), where W= W̄ ⊗ In is the Kronecker product of the Laplacian matrix
W̄ ∈ R

m and the identity (unit) matrix In and x = [xT1 , ..., x
T
m]

T ∈ R
mn.

To present problem (P1) in a distributed fashion we rewrite it with introducing the artifi-
cial consensus equality constraints and then change these constraints to one affine constraint
with the communication matrix W as follows

min
x1=···=xm,

x1,...,xm∈Q⊆R
n

F (x) :=
1

m

m∑

k=1

fk(xk)

or in another form

min√
Wx=0,

x1,...,xm∈Q⊆R
n

F (x) :=
1

m

m∑

k=1

fk(xk), (P2)

where all fk are M-Lipschitz, L-smooth and µ-strongly convex (it is possible that, L = ∞ or
(and) µ = 0).

We also consider the stochastic version of problem (P2), where fk(xk) = E[fk(xk, ξk)]. We
consider the unbiased stochastic primal oracle that returns ∇fk(xk, ξk) (where ξ = {ξk}mk=1

are independent) under the following σ2-sub-Gaussian variance condition (for all k = 1, ..., m)

E

[
exp

(‖∇fk(xk, ξk)−∇fk(xk)‖22
σ2

)]
≤ exp(1).

Problem (P2) can be considered to be a particular case of problem (12) with the following
replacements

• A =
√
W
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• LF = L/m
• µF = µ/m
• ‖∇F (x)‖22 ≤M2

F =M2/m
• σ2

F = O (σ2/m)
• R2

x
= ‖x0 − x∗‖22 = m‖x0 − x∗‖22 = mR2

• R2
y
= ‖y∗‖22 ≤ ‖∇F (x∗)‖22/λ+min(W ) ≤M2/(mλ+min(W ))

The main observation in the primal approach (see Section 3) is as follows [Scaman et al.,
2017]:

ATAx = Wx (calculated in a decentralized distributed manner)

If each function fk is a dual-friendly (dual function is available calculated by the Fenchel–
Legendre transform [Uribe et al., 2020]) then we can construct the dual problem to problem
(P2) with dual Lagrangian variables y = [yT1 ∈ R

n, · · · , yTm ∈ R
n]T ∈ R

mn

min
y∈Rmn

Ψ(y) :=
1

m
Φ(m

√
Wy) :=

1

m

m∑

k=1

ϕk(m[
√
Wy]k), (D2)

where ϕk(λk) = max
xk∈Q⊆Rn

{〈λk, xk〉 − fk(xk)} and the vector [
√
Wx]k represents the k-th n-

dimensional block of
√
Wx.

We also consider the stochastic version of problem (D2), where ϕk(λk) = E[ϕk(λk, ξk)].
We consider the unbiased stochastic dual oracle returns ∇ϕk(λk, ξk) (where ξ = {ξk}mk=1 are
independent) under the following σ2

ϕ-sub-Gaussian variance condition (for all k = 1, ..., m)

E
[
exp

(
‖∇ϕk(λk, ξk)−∇ϕk(λk)]‖22σ−2

ϕ

)]
≤ exp(1).

Problem (D2) can be considered as a particular case of problem (16) with

• A =
√
W

• σ2
Ψ = O

(
λmax(W )mσ2

ϕ

)

The main observation in the dual approach (see Section 4) is as follows [Scaman et al.,
2017]: since x(AT y) = x(

√
Wy) we should change the variables as follows

1: ỹ :=
√
W ỹ

2: z :=
√
Wz

3: y :=
√
Wy

It is obvious that input, output and steps 3–5 of Algorithm 2 are changed such that
they can be performed in a decentralized distributed manner. For that we just multiply the
corresponding steps by

√
W .
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6 Main Results

In this section, we present the rates of convergence for problems (P1) and (D2) (and their
stochastic counterparts) in terms of the number of iterations (communication steps) and
the number of (parallelized) oracle calls. For the primal problem, we present the results
to achieve ε-precision in objective residuals, and for the dual problem we seek to achieve
ε-precision in duality gap or primal objective residuals (in smooth strongly convex case).
Feasibility constrains are smaller than ε/Ry.

For brevity, we introduce the condition number of the Laplacian matrix W as follows

χ =
λmax(W )

λ+min(W )
, (20)

where λ+min(W ) is the minimal positive eigenvalue of W , and λmax(W ) is the maximal eigen-
value of W . Now we are ready to present our main results incorporated in multiple tables:
Tables 3– 6. These results are obtained by direct substitution of constants from Section 5 to
the problems from Sections 3 and 4.

Table 3: The optimal bounds for primal deterministic oracle

fk is µ-strongly
convex

and L-smooth
fk is L-smooth

fk is µ-strongly
convex

#communication
rounds

Õ
(√

L
µχ
)

Õ

(√
LR2

ε χ

)
O
(√

M2

µε χ
)

O

(√
M2R2

ε2 χ

)

#oracle calls of
∇fk(xk)

per node k
Õ
(√

L
µ

)
O

(√
LR2

ε

)
O
(
M2

µε

)
O
(
M2R2

ε2

)

Algorithm
PSTM,
Q = R

n
PSTM,
Q = R

n R-Sliding Sliding

Note that the bounds on communication steps (rounds) are optimal (up to a logarithmic
factor) due to [Arjevani and Shamir, 2015,Scaman et al., 2017,Scaman et al., 2018]. Bounds
for the oracle calls per node are probably optimal in the class of methods with optimal number
of communication steps (up to a logarithmic factor) in the deterministic case [Allen-Zhu,
2018,Foster et al., 2019,Woodworth et al., 2018] and optimal for the non-smooth stochastic
primal oracle and stochastic dual oracle for parallel architecture.12 For stochastic oracle the

12In parallel architecture the bounds on stochastic oracle calls per node of type max{B,D} can be parallel
up to B/D processors.
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Table 4: The optimal bounds for primal stochastic (unbiased) oracle

fk is µ-strongly
convex

and L-smooth
fk is L-smooth

fk is µ-strongly
convex

#communication
rounds

Õ
(√

L
µχ
)

Õ

(√
LR2

ε χ

)
O
(√

M2

µε χ
)

O

(√
M2R2

ε2
χ

)

#oracle calls
of ∇fk(xk, ξk)
per node k

Õ
(
max

{
σ2

µε ,
√

L
µ

})
O

(
max

{
σ2R2

ε2
,
√

LR2

ε

})
O
(
M2+σ2

µε

)
O
(
(M2+σ2)R2

ε2

)

Algorithm
PBSTM,
Q = R

n
PBSTM,
Q = R

n
Stochastic
R-Sliding

Stochastic
Sliding

Table 5: The optimal bounds for dual deterministic oracle

fk is µ-strongly convex
and L-smooth

fk is µ-strongly convex

#communication
rounds

Õ
(√

L
µχ
)

O
(√

M2

µε χ
)

#oracle calls of
∇ϕk(λk) per node k

Õ
(√

L
µχ
)

O
(√

M2

µε χ
)

Algorithm ROGM-G or STM, Q = R
n

OGM-G or PDSTM

Table 6: The optimal bounds for dual stochastic (unbiased) oracle

fk is µ-strongly convex
and L-smooth

fk is µ-strongly convex

#communication
rounds

Õ
(√

L
µχ
)

O
(√

M2

µε χ
)

#oracle calls of
∇ϕk(λk, ξk) per node k

Õ
(
max

{
M2σ2ϕ
ε2 χ,

√
L
µχ
})

O
(
max

{
M2σ2ϕ
ε2 χ,

√
M2

µε χ
})

Algorithm R-RRMA+AC-SA
2, Q = R

n
SPDSTM

bounds hold in terms of high probability deviations (we skip the corresponding logarithmic
factor).

We emphasize that the difference between centralized (or parallel) estimates and obtained
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decentralized ones is not only in the replacement of d by Õ(
√
χ) in the smooth cases for the

primal oracle and the meaning of L. In the stochastic smooth strongly convex case (one
can also consider the convex case) we know that the total number of primal oracle calls
[Kulunchakov and Mairal, 2019a,Kulunchakov and Mairal, 2019b,Kulunchakov and Mairal,
2019c,Lan and Zhou, 2018] is

Õ

(
m+

√
m
L

µ
+
σ2

µε

)
.

This bound is optimal but it uses an incremental oracle and does not imply full paralleliza-
tion. The best known way to parallelize it is described in [Lan and Zhou, 2018]. For full
parallelization one should use a standard accelerated scheme without variance reduction and
incremental oracle [Woodworth et al., 2018]. In this case, another bound for the total number
of oracle calls occurs, that is

Õ

(
m

√
L

µ
+
σ2

µε

)
.

But this bound assumes the natural way of parallelization or centralized distribution of
calculations. In the last case for a graph of diameter d with m nodes we have the following
number of oracle calls per node

Õ

(√
L

µ
+

σ2

mµε

)
= Õ

(
max

{
σ2

mµε
,

√
L

µ

})

and the following number of communication steps

Õ

(
d

√
L

µ

)
.

For decentralized architecture (see Table 4) the number of oracle calls per node and the
number of communication steps are

Õ

(
max

{
σ2

µε
,

√
L

µ

})
and Õ

(√
L

µ
χ

)
. (21)

respectively. Unfortunately, the factor m is no longer presented in σ2 in the decentralized
case. It is interesting to note, that it is possible to propose such a decentralized distributed
algorithm that requires

O

(
σ2

mµε

)
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oracle calls per node (stochastic gradients calculations) [Olshevsky et al., 2019a,Olshevsky
et al., 2019b]. However, this algorithm is not optimal in terms of communication steps.
Moreover, to the best of our knowledge, it is an open question whether is (21) optimal
bound in terms of oracle calls (per node) in the class of methods with the optimal number
of communication steps.

Note also that the blue bound in Table 6 seems to be rather unexpected at first sight
for us. But we hypothesize that this bound is optimal not only in terms of the number of
communication steps but also in terms of the number of oracle calls (per node) in the class
of methods with the optimal number of communication steps.

The detailed proofs of the statements collected in this paper takes more than 90 pages.
These can be found in the arXiv preprint [Gorbunov et al., 2019]:

https://arxiv.org/pdf/1911.07363.pdf.

7 Discussion

Below we outline various areas for further work.

• We can expect that the results can be improved by replacing the first-order methods
with primal and dual deterministic oracle by tensor methods (p = 2, 3) from [Nesterov,
2018a]. However, for the moment we do not know any such results. For the dual
approach we also do not know how to use the trick A =

√
W (see [Scaman et al.,

2017]). Here we should take A = W , which (with additional increased complexity of
auxiliary problem) makes the bounds on communication steps worse. The basic fact in
the dual approach is the following. To solve auxiliary problems we have to calculate the
values of the form ∇p

yϕ(Wy) on different vectors [Carmon and Duchi, 2016,Nesterov,
2018a,Nesterov, 2018b]. This can be done multiplying W by vectors (communications)
and multiplying corresponding (block) diagonal tensor ( ∇p

λϕ(λ)|λ=Wy) by vectors (can
be distributed among nodes)

• The primal approach in the smooth case can be generalized for the (stochastic inexact)
gradient-free oracle. The number of communication steps remains the same. The
number of oracle calls becomes ∼ n times larger [Gorbunov et al., 2018,Dvurechensky
et al., 2017]. In the non-smooth case gradient-free (stochastic) decentralized distributed
algorithm was developed in [Beznosikov et al., 2019]

• In [Hendrikx et al., 2019a], [Hendrikx et al., 2019b] asynchronized distributed optimiza-
tion was considered via dual accelerated (block) coordinate descent algorithms. The
primal approach proposed above allows asynchronized generalizations in the smooth

22

https://arxiv.org/pdf/1911.07363.pdf


case. For that we should use the (block) coordinate version of STM [Dvurechensky
et al., 2017] and additional randomization of sum type when [Wx]i is calculated. This
will increase the number of communication steps ∼ √

n÷ n times

• Most of the results of this paper can be generalized to composite problems [Nesterov,
2013]. Perhaps, it is possible to make the next step and try to generalize these results
to more general types of models [Stonyakin et al., 2019b,Stonyakin et al., 2019a]

• For smooth convex centralized distributed optimization problems there exists a univer-
sal way to accelerate non-accelerated (stochastic, asynchronized etc.) algorithm Cata-
lyst [Lin et al., 2015]. The basic idea is using a non-accelerated centralized distributed
algorithm for the inner problem arising at each step of the Catalyst procedure

• Perhaps, it is possible to generalize the primal approach described above on time-
varying graphs [Rogozin and Gasnikov, 2019]. Moreover, these generalizations can be
done also for the smooth stochastic case

• It seems the result of [Rogozin et al., 2018] can be improved by using mixed communica-
tion: many decentralized steps alternate with centralized ones. In this case, one can use
non-accelerated distributed decentralized algorithms, which are robust on time-varying
graphs [Rogozin et al., 2018], and then accelerate them by using the Catalyst technique
[Lin et al., 2015] and centralization. Since the graph is changing we should recalcu-
late spanning tree whenever we apply a centralized step. We expect that this mixed
communication will be useful also for tensor schemes in decentralized optimization

• The main scheme in the primal approach is based on the result formulated directly
after (14). This result does not depend on convexity of the objective. So it would be
interesting to apply this scheme for non-convex distributed optimization problems [Sun
and Hong, 2018]

Since the first version of this paper was submitted on arXiv, there appeared alternative
explanations (for smooth problems) of the results for the primal deterministic oracle [Fallah
et al., 2019, Kovalev et al., 2020, Li and Lin, 2020, Xu et al., 2019,Hendrikx et al., 2020a]
and the primal stochastic oracle (strongly convex case) [Fallah et al., 2019]. Moreover, in
[Rogozin et al., 2020, Ye et al., 2020] (see also [Rogozin and Gasnikov, 2019] for the non-
accelerated case and [Scaman et al., 2018] for lower bounds) for the primal deterministic
oracle (strongly convex case) it was shown that L := maxk Lk used in this paper can be
improved to L := Lf , where Lf is the Lipschitz gradient constant of (6) (which can be
much smaller [Tang et al., 2019]). The same holds true for µ. More interestingly, we expect
that combinations of [Rogozin and Gasnikov, 2019, Rogozin et al., 2020, Ye et al., 2020]
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allows to develop accelerated decentralized distributed primal algorithms on time-varying
graphs (accelerated in L and ε, but not in χ). Moreover, based on [Rogozin and Gasnikov,
2019,Rogozin et al., 2020,Ye et al., 2020] we may expect that the answer to the open problem
posed in the Section 6 is negative. The bound can be decreased by a factor m for a stochastic
primal oracle. The reasons for that are almost the same that we have for the maxk Lk → Lf
improvement.

Based on the recent works [Koloskova et al., 2020,Woodworth et al., 2020b,Woodworth
et al., 2020a] we describe below a hypothesis about the optimal bounds in a more general
situation. We consider the general sum-type problem (for simplicity we consider the case
Q = R

n, but it can be naturally generalized)

min
x∈Rn

f(x) :=
1

m

m∑

k=1

fk(x) =
1

m

m∑

k=1

E[fk(x, ξ)]. (22)

We assume that all fk(x, ξ) in (22) satisfy

‖∇fk(y, ξ)−∇fk(x, ξ)‖2 ≤ L‖y − x‖2.

Also we introduce13

ζ̄2 =
1

m

m∑

k=1

‖∇fk(x∗)‖22

and

σ̄2 =
1

m

m∑

k=1

E
[
‖∇fk(x∗, ξ)−∇fk(x∗)‖22

]
.

Assume now that at each iteration t we may call one time an oracle (that returns an indepen-
dent realization of∇fk(xt, ξt,k)) at each node and make no more than one communication step
with (in general, random) communication matrix W̄k. Moreover, we assume that [Koloskova
et al., 2020]14

EW̄l,...,W̄l+τ

[∥∥∥∥(I + W̄l+τ ) · ... · (I + W̄l)x−
1

m
1m1

T
mx

∥∥∥∥
2

2

]
≤

13Note that nowadays it’s quite popular to obtain estimates on rate of convergence that depend on the
constants defined at the solution point x∗ [Stonyakin et al., 2020].

14In [Koloskova et al., 2020] it was also assumed that symmetric matrix W̄ determined by doubly stochastic
matrix P : W̄ = P − I, where I – unit matrix. So do we. But below, when we generalize the results of
[Koloskova et al., 2020] on a large class of algorithms that assumes more than one communication on one
iteration, we may consider W̄ to be the same as in section 5 and χ is determined in (20) style.
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≤ (1− χ−1)

∥∥∥∥x−
1

m
1m1

T
mx

∥∥∥∥
2

2

.

For the class of algorithms described above the required number of iterations N to achieve
an accuracy E[f(xN )]− f(x∗) ≤ ε for the best known (for the moment) algorithms is

Õ

((
LR2

ε

)α
+
σ̄2R2

mε2
+

√
LR2

(
ζ̄χτ + σ̄ · (χτ)β

)

ε3/2
(1− χ−1)I[τ=1] +

(
χLR2

ε

)α
τ

)
,

where β ∈ [0, 1], α = 1 or 1/2, here I is a function such that I[true] = 1, I[false] = 0, and
when fk is µ-strongly convex

Õ

((
L

µ

)α
+

σ̄2

mµε
+

√
L
(
ζ̄χτ + σ̄ · (χτ)β

)

µ
√
ε

(1− χ−1)I[τ=1] +

(
χL

µ

)α
τ

)
.

This bound with β = 1, α = 1 (non-accelerated case) was obtained in [Koloskova et al., 2020]
for simple (local) decentralized SGD. Roughly speaking, β = 0 corresponds to the lower
bound for this algorithm [Koloskova et al., 2020, Yuan and Ma, 2020,Woodworth et al.,
2020b,Woodworth et al., 2020a]. In [Karimireddy et al., 2019] by using a variance reduction
trick in federated learning architecture (W̄pτ̃+q ≡ 0 for q = 1, ..., τ̃ − 1 and W̄pτ̃ is a full
communication matrix, hence χ = 1, τ = τ̃), the SCAFFOLD algorithm was proposed with
α = 1 and (under some additional assumptions) without middle (blue) terms. Also in the
federated learning architecture in case f1 = ... = fm it seems that middle (blue) terms
and the factor τ in the last terms of the described bounds can be eliminated under some
natural additional assumptions [Woodworth et al., 2020b]. Here we assume at least one
communication. If there is exactly one communication it will take place at the very end.
This result means that in a federated learning setup under f1 = ... = fm the frequency
of communications τ does not play any significant role, which was previously mentioned
in [Godichon-Baggioni and Saadane, 2020]. In centralized architecture it seems that it is
possible to obtain additional acceleration of the algorithms mentioned above (α = 1/2, but
the transition χ → √

χ in the last terms requires additional assumptions) by using proper
accelerated envelopes like Catalyst [Mathieu et al., 2020,Dvinskikh et al., 2020,Ivanova et al.,

2019,Kulunchakov and Mairal, 2019c] with the precision ε′ = Õ
(
ε
√
max{ε/(LR2), µ/L}

)

(in the function) of the solution of auxiliary problem at each outer iteration. It is highly likely
that this is true for more general architectures, see examples in [Hendrikx et al., 2020a, Li
and Lin, 2020].

If we remove the condition that at each iteration we can only call stochastic oracle one
time and make no more than one communication, then the blue term can be eliminated with
α = 1/2. More precisely, the first two terms correspond to the total number of oracle calls
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per node and the last term – to the number of communications steps. Up to a factor m in
the denominator we have developed these results in the paper, but with τ = 1 and fixed W .15

We also note that it is an open problem whether it is possible in the general (accelerated)
situation ( which differs from the [Koloskova et al., 2020]) to determine ζ̄2 and σ̄2 only at
point x∗? It seems, that for the current moment of time we have a positive answer only with
respect to ζ̄2.

The following generalizations are related with the case

fk(x) =
1

l

l∑

j=1

fkj(x).

In this case with additional assumptions about proximal and dual friendly fk it is possible to
reduce worth case constant L to the ¡¡average¿¿ one [Hendrikx et al., 2020b]. In [Hendrikx
et al., 2020b] this looks like a variance reduction acceleration, but the nature of the effect (also
explained in [Hendrikx et al., 2020b]) based on coordinate descent acceleration [Nesterov and
Stich, 2017] for the dual problem formulation. In [Hendrikx et al., 2020a] was proposed a dual-
free generalization of [Hendrikx et al., 2020b] with a bit worse oracle complexity estimate.
The main idea is to apply a non-accelerated coordinate descent for the dual problem with
Bregman divergence determined by the dual function itself. In [Li et al., 2020] an optimal
algorithm both for communications steps and oracle calls per node was developed.

Another way to obtain a better result for the required number of communication steps
is possible if {fkj} have i.i.d. nature (that is typically for data science applications). In this
case fk is statistically similar to f . Based on this fact in centralized architecture, we may
use on a master node statistical preconditioned algorithms that can significantly reduce the
required number of communications with slaves [Hendrikx et al., 2020c].
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