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Abstract

Stochastic first-order methods such as Stochastic Extragradient (SEG) or Stochastic
Gradient Descent-Ascent (SGDA) for solving smooth minimax problems and,
more generally, variational inequality problems (VIP) have been gaining a lot of
attention in recent years due to the growing popularity of adversarial formulations
in machine learning. However, while high-probability convergence bounds are
known to reflect the actual behavior of stochastic methods more accurately, most
convergence results are provided in expectation. Moreover, the only known high-
probability complexity results have been derived under restrictive sub-Gaussian
(light-tailed) noise and bounded domain assumption [Juditsky et al., 2011a]. In
this work, we prove the first high-probability complexity results with logarithmic
dependence on the confidence level for stochastic methods for solving monotone
and structured non-monotone VIPs with non-sub-Gaussian (heavy-tailed) noise
and unbounded domains. In the monotone case, our results match the best-known
ones in the light-tails case [Juditsky et al., 2011a], and are novel for structured
non-monotone problems such as negative comonotone, quasi-strongly monotone,
and/or star-cocoercive ones. We achieve these results by studying SEG and SGDA
with clipping. In addition, we numerically validate that the gradient noise of many
practical GAN formulations is heavy-tailed and show that clipping improves the
performance of SEG/SGDA.

1 Introduction

Recently, game formulations have been receiving a lot of interest from the optimization and machine
learning communities. In such problems, different models/players competitively minimize their
loss functions, e.g., see adversarial example games [Bose et al., 2020], hierarchical reinforcement
learning [Wayne and Abbott, 2014, Vezhnevets et al., 2017], and generative adversarial networks
(GANs) [Goodfellow et al., 2014]. Very often, such problems are studied through the lens of solving
a variational inequality problem (VIP) [Harker and Pang, 1990, Ryu and Yin, 2021, Gidel et al.,
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2019a]. In the unconstrained case, for an operator3 F : Rd → Rd VIP can be written as follows:

find x∗ ∈ X ∗ where X ∗ := {x∗ ∈ Rd such that F (x∗) = 0}. (VIP)

In machine learning applications, operator F usually has an expectation form, i.e., F (x) = Eξ[Fξ(x)],
where x corresponds to the parameters of the model, ξ is a sample from some (possibly unknown)
distribution D, and Fξ(x) is the operator corresponding to the sample ξ.

Such problems are typically solved via first-order stochastic methods such as Stochastic Extragradient
(SEG), also known as Mirror-Prox algorithm [Juditsky et al., 2011a], or Stochastic Gradient Descent-
Ascent (SGDA) [Dem’yanov and Pevnyi, 1972, Nemirovski et al., 2009] due to their practical
efficiency. However, despite the significant attention to these methods and their modifications, their
convergence is usually analyzed in expectation only, e.g., see [Gidel et al., 2019a, Hsieh et al., 2019,
2020, Mishchenko et al., 2020, Loizou et al., 2021]. In contrast, while high-probability analysis more
accurately reflects the behavior of the stochastic methods [Gorbunov et al., 2020], a little is known
about it in the context of solving VIP. To the best of our knowledge, there is only one work addressing
this question for monotone variational inequalities [Juditsky et al., 2011a]. However, [Juditsky et al.,
2011a] derive their results under the assumption that the problem has “light-tailed” (sub-Gaussian)
noise and bounded domain, which is restrictive even for simple classes of minimization problems
[Zhang et al., 2020b]. This leads us to the following open question.

Q1: Is it possible to achieve the same high-probability results as in [Juditsky et al., 2011a]
without assuming that the noise is sub-Gaussian and the domain is bounded?

Next, in the context of GANs’ training, empirical investigation [Jelassi et al., 2022] and practical
use [Gulrajani et al., 2017, Miyato et al., 2018, Tran et al., 2019, Brock et al., 2019, Sauer et al., 2022]
indicate the practical superiority of Adam-based methods, e.g., alternating SGDA with stochastic
estimators from Adam [Kingma and Ba, 2014], over classical methods like SEG or (alternating)
SGDA. This interesting phenomenon has no rigorous theoretical explanation yet. In contrast, there
exists a partial understanding of why Adam-like methods perform well in different tasks such as train-
ing attention models [Zhang et al., 2020b]. In particular, Zhang et al. [2020b] empirically observe that
stochastic gradient noise is heavy-tailed in several NLP tasks and theoretically shows that vanilla SGD
[Robbins and Monro, 1951] can diverge in such cases and its version with gradient clipping (clipped-
SGD) [Pascanu et al., 2013] converges. Moreover, the state-of-the-art high-probability convergence
results for heavy-tailed stochastic minimization problems are also obtained for the methods with
gradient clipping [Nazin et al., 2019, Gorbunov et al., 2020, 2021, Cutkosky and Mehta, 2021]. Since
Adam can be seen as a version of adaptive clipped-SGD with momentum [Zhang et al., 2020b], these
advances establish the connection between good performance of Adam, heavy-tailed gradient noise,
and gradient clipping for minimization problems. Motivated by these recent advances in understanding
the superiority of Adam for minimization problems, we formulate the following research question.

Q2: In the training of popular GANs, does the gradient noise have heavy-tailed distribution
and does gradient clipping improve the performance of the classical SEG/SGDA?

In this paper, we give positive answers to Q1 and Q2. In particular, we derive high-probability
results for clipped-SEG and clipped-SDGA for monotone and structured non-monotone VIPs with
non-sub-Gaussian noise, validate that the gradient noise in several GANs formulations is indeed
heavy-tailed, and show that gradient clipping does significantly improve the results of SEG/SGDA in
these tasks. That is, our work closes a noticeable gap in theory of stochastic methods for solving VIPs.

1.1 Technical Preliminaries

Before we summarize our main contributions, we introduce some notations and technical assumptions.

Notation. Throughout the text 〈x, y〉 is the standard inner-product, ‖x‖ =
√
〈x, x〉 denotes `2-norm,

Br(x) = {u ∈ Rd | ‖u− x‖ ≤ r}. E[X] and Eξ[X] are full and conditional expectations w.r.t. the
randomness coming from ξ of random variable X . P{E} denotes the probability of event E. R0 =
‖x0−x∗‖ denotes the distance between the starting point x0 of a method and the solution x∗ of VIP.4

3For example, when we deal with a differentiable game/minimax problem, F can be chosen as the concatena-
tion of the gradients of the players’ objective functions, e.g., see [Gidel et al., 2019a] for the details.

4If not specified, we assume that x∗ is the projection of x0 to the solution set of VIP.
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High-probability convergence for VIP. For deterministic VIPs there exist several convergence
metrics P(x). These metrics include restricted gap-function [Nesterov, 2007] GapR(x) :=
maxy∈BR(x∗)〈F (y), x− y〉, (averaged) squared norm of the operator ‖F (x)‖2, and squared distance
to the solution ‖x− x∗‖2. Depending on the assumptions on the problem, one or another criterion is
preferable. For example, for monotone and strongly monotone problems GapR(x) and ‖x− x∗‖2 are
valid metrics of convergence, while in the non-monotone case, one typically has to use ‖F (x)‖2.

In the stochastic case, one needs either to upper bound E[P(x)] or to derive a bound on P(x) that
holds with some probability. In this work, we focus on the second type of bounds. That is, for a given
confidence level β ∈ (0, 1], we aim at deriving bounds on P(x) that hold with probability at least
1− β, where x is produced by clipped-SEG/clipped-SGDA. However, to achieve this goal one has
to introduce some assumptions on the stochastic noise such as bounded variance assumption, which
is standard in the stochastic optimization literature [Ghadimi and Lan, 2012, 2013, Juditsky et al.,
2011b, Nemirovski et al., 2009]. We rely on a weaker version of this assumption.

Assumption 1.1 (Bounded Variance). There exists a bounded set Q ⊆ Rd and σ ≥ 0 such that

E
[
‖Fξ(x)− F (x)‖2

]
≤ σ2, ∀ x ∈ Q. (1)

In contrast to most of the existing works assuming (1) on the whole space/domain, we need (1) to
hold only on some bounded set Q. More precisely, in the analysis, we rely on (1) only on some ball
Br(x

∗) around the solution x∗ and radius r ∼ R0. Although we consider an unconstrained VIP,
we manage to show that the iterates of clipped-SEG/clipped-SGDA stay inside this ball with high
probability. Therefore, for achieving our purposes, it is sufficient to make all the assumptions on the
problem only in some ball around the solution.

We also notice that the majority of existing works providing high-probability analysis with logarithmic
dependence5 on 1/β rely on the so-called light tails assumption: E[exp(‖Fξ(x)−F (x)‖2/σ2)] ≤ exp(1)
meaning that the noise has a sub-Gaussian distribution. This assumption always implies (1) but not
vice versa. However, even for minimization problems, there are only few works that do not rely
on the light tails assumption [Nazin et al., 2019, Davis et al., 2021, Gorbunov et al., 2020, 2021,
Cutkosky and Mehta, 2021]. In the context of solving VIPs, the existing high-probability guarantees
in [Juditsky et al., 2011a] rely on the light tails assumption.

Optimization properties. We also need to introduce several assumptions about the operator F . We
start with the standard Lipschitzness. As we write above, all assumptions are introduced only on
some bounded set Q, which will be specified later.

Assumption 1.2 (Lipschitzness). Operator F : Rd → Rd is L-Lipschitz on Q ⊆ Rd, i.e.,

‖F (x)− F (y)‖ ≤ L‖x− y‖, ∀ x, y ∈ Q. (Lip)

Next, we need to introduce some assumptions6 on the monotonicity of F , since approximating local
first-order optimal solutions is intractable in the general non-monotone case [Daskalakis et al., 2021,
Diakonikolas et al., 2021]. We start with the standard monotonicity assumption and its relaxations.

Assumption 1.3 (Monotonicity). Operator F : Rd → Rd is monotone on Q ⊆ Rd, i.e.,

〈F (x)− F (y), x− y〉 ≥ 0, ∀ x, y ∈ Q. (Mon)

Assumption 1.4 (Star-Negative Comonotonicity). Operator F : Rd → Rd is ρ-star-negatively
comonotone on Q ⊆ Rd for some ρ ∈ [0,+∞), i.e., for any x∗ we have

〈F (x), x− x∗〉 ≥ −ρ‖F (x)‖2, ∀ x ∈ Q. (SNC)

When ρ = 0, the operator F is called star-monotone (SM) on Q.

(SNC) is also known as weak Minty condition [Diakonikolas et al., 2021], a relaxation of negative
comonotonicity [Bauschke et al., 2021]. Another name of star-monotonicity (SM) is variational sta-
bility condition [Hsieh et al., 2020]. The following assumption is a relaxation of strong monotonicity.

5Using Markov inequality, one can easily derive high-probability bounds with non-desirable polynomial
dependence on 1/β, e.g., see the discussion in [Davis et al., 2021, Gorbunov et al., 2021].

6Each complexity result, which we derive, relies only on one or two of these assumptions simultaneously.
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Table 1: Summary of known and new high-probability complexity results for solving variational inequalities. Column “Setup” indicates
the additional assumptions in addition to Assumption 1.1. All assumptions are made only on some ball around the solution with radius∼ R0

(unless the opposite is indicated). By the complexity we mean the number of stochastic oracle calls needed for a method to guarantee that
P{Metric ≤ ε} ≥ 1 − β for some ε > 0, β ∈ (0, 1] and “Metric” is taken from the corresponding column. For simplicity, we omit
numerical and logarithmic factors in the complexity bounds. Column “HT?” indicates whether the result is derived in the heavy-tailed case
(without assuming that the noise is sub-Gaussian) and column “UD?” shows whether the analysis works on unbounded domains. Notation:
x̃Kavg = 1

K+1

∑K
k=0 x̃

k (for clipped-SEG), xKavg = 1
K+1

∑K
k=0 x

k (for clipped-SGDA), L = Lipschitz constant; D = diameter of the
domain (used in [Juditsky et al., 2011a]); GapD(x) = maxy∈X 〈F (y), x − y〉, where X is a bounded domain with diameter D where
the problem is defined (used in [Juditsky et al., 2011a]); σ2 = bound on the variance (in the results from [Juditsky et al., 2011a] σ2 is a
sub-Gaussian variance);R = any upper bound on ‖x0 − x∗‖; µ = quasi-strong monotonicity parameter; ` = star-cocoercivity parameter.

Setup Method Citation Metric Complexity HT? UD?

(Mon)+(Lip)
Mirror-Prox [Juditsky et al., 2011a](1) GapD(x̃Kavg) max

{
LD2

ε , σ
2D2

ε2

}
7 7

clipped-SEG Thm. C.1 & Cor. C.1 GapR(x̃Kavg) max
{
LR2

ε , σ
2R2

ε2

}
3 3

(SNC)+(Lip) clipped-SEG Thm. C.2 & Cor. C.2 (2) 1
K+1

K∑
k=0

‖F (xk)‖2 L2 max
{
R2

ε ,
σ2R2

ε2

}
3 3

(QSM)+(Lip) clipped-SEG Thm. C.3 & Cor. C.3 ‖xK − x∗‖2 max
{
L
µ ,

σ2

µε

}
3 3

(Mon)+(SC) clipped-SGDA Thm. D.1 & Cor. D.1 GapR(xKavg) max
{
`R2

ε , σ
2R2

ε2

}
3 3

(SC) clipped-SGDA Thm. D.2 & Cor. D.2 1
K+1

K∑
k=0

‖F (xk)‖2 `2 max
{
R2

ε ,
σ2R2

ε2

}
3 3

(QSM)+(SC) clipped-SGDA Thm. D.3 & Cor. D.3 ‖xK − x∗‖2 max
{
`
µ ,

σ2

µε

}
3 3

(1) Monotonicity and Lipschitzness of F are assumed on the whole domain.
(2) The results holds for any 0 ≤ ρ ≤ 1/(640LA), where A = ln

8(K+1)
β , if parameters of the method are set properly. Moreover,

batchsizes should be large enough (see Thm. 2.1 and C.2 for the details).

Assumption 1.5 (Quasi-Strong Monotonicity). Operator F : Rd → Rd is µ-quasi strongly monotone
on Q ⊆ Rd for some µ ≥ 0, i.e.,

〈F (x), x− x∗〉 ≥ µ‖x− x∗‖2, ∀x ∈ Q, where x∗ is the unique solution of (VIP). (QSM)

Under this name, the above assumption is introduced by [Loizou et al., 2021], but it is also known as
strong coherent Song et al. [2020] and strong stability [Mertikopoulos and Zhou, 2019] conditions.
Moreover, unlike strong monotonicity that always implies monotonicity, (QSM) can hold for non-
monotone operators [Loizou et al., 2021, Appendix A.6]. However, in contrast to (Mon), (QSM)
allows to achieve linear convergence7 of deterministic methods for solving VIP.

Finally, we consider a relaxation of standard cocoercivity: `〈F (x)−F (y), x−y〉 ≥ ‖F (x)−F (y)‖2.

Assumption 1.6 (Star-Cocoercivity). Operator F : Rd → Rd is `-star-cocoercive on Q ⊆ Rd for
some ` > 0, i.e.,

‖F (x)‖2 ≤ `〈F (x), x− x∗〉, ∀x ∈ Q, where x∗ is the projection of x on X ∗. (SC)

(Mon) (SM) (SNC)

(QSM) (SC)
+(Lip)

Figure 1: Relation between the assumptions
on the structured non-monotonicity of the
problem.

This assumption is introduced by [Loizou et al., 2021].
One can construct an operator F being star-cocoercive,
but not cocoercive [Gorbunov et al., 2022b]. Moreover,
although cocoercivity implies monotonicity and Lipschitz-
ness, there exist operators satisfying (SC), but neither
(Mon) nor (Lip) [Loizou et al., 2021, §A.6]. We sum-
marize the relations between the assumptions in Fig. 1.

1.2 Our Contributions

� New high-probability results for VIPs with heavy-tailed noise. In our work, we circumvent the
limitations of the existing high-probability analysis of stochastic methods for solving VIPs [Juditsky
et al., 2011a] and derive the first high-probability results for the methods that solve monotone VIPs
with heavy-tailed noise in the unconstrained case. The key algorithmic ingredient helping us to
achieve these results is a proper modification of SEG and SGDA based on the gradient clipping
and leading to our clipped-SEG and clipped-SGDA. Moreover, we derive several high-probability
results for clipped-SEG/clipped-SGDA applied to solve structured non-monotone VIPs. To the
best of our knowledge, these results do not have analogs even under the light tails assumption. We
summarize the derived complexity results in Tbl. 1.

7Linear convergence can be also achieved under different relatively weak assumptions such as sufficient
bilinearity [Abernethy et al., 2019, Loizou et al., 2020] or error bound condition [Hsieh et al., 2020].
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� Tight analysis. The derived complexities satisfy a desirable for high-probability results property:
they have logarithmic dependence on 1/β, where β is a confidence level. Next, up to the logarith-
mic factors, our results match known lower bounds8 in monotone and strongly monotone cases
[Beznosikov et al., 2020]. Moreover, we recover and even improve the results from [Juditsky et al.,
2011a], which are obtained in the light-tailed case, since our bounds do not depend on the diameter
of the domain, see Tbl. 1 for the details.

�Weak assumptions. One of the key features of our theoretical results is that it relies on assumptions
restricted to a ball around the solution. We achieve this via showing that, with high probability,
clipped-SEG/clipped-SGDA do not leave a ball (with a radius proportional to R0) around the
solution. In contrast, the existing works on stochastic methods for solving VIPs usually make
assumptions such as boundedness of the variance and Lipschitzness on the whole domain of the
considered problem. Since many practical tasks are naturally unconstrained, such assumptions become
too unrealistic since, e.g., stochastic gradients and their variance in the training of neural networks
with more than 2 layers grow polynomially fast when x goes to infinity. However, for a large class
of problems including the ones with polynomially growing operators, boundedness of the variance
and Lipschitzness hold on any compact set. That is, our analysis covers a broad class of problems.

� Numerical experiments. We empirically observe that heavy-tailed gradient noise arises in the
training of several practical GANs formulations including StyleGAN2 and WGAN-GP. More-
over, our experiments show that gradient clipping significantly improves the convergence of
SEG/SGDA on such tasks. These results shed a light on why Adam-based methods are good
at training GANs. Our codes are publicly available: https://github.com/busycalibrating/
clipped-stochastic-methods.

1.3 Closely Related Work

In this section, we discuss the most closely related works. Further discussion is deferred to § A.

High-probability convergence. To the best of our knowledge, the only work deriving high-
probability convergence in the context of solving VIPs is [Juditsky et al., 2011a]. In particular,
Juditsky et al. [2011a] consider monotone and Lipschitz VIP defined9 on a convex compact set X
with the diameter D := maxx,y∈X ‖x− y‖, and assume that the noise in Fξ(x) is light-tailed. In this
setting, Juditsky et al. [2011a] propose a stochastic version of the celebrated Extragradient method
(EG) [Korpelevich, 1976] with non-Euclidean proximal setup – Mirror-Prox. Moreover, Juditsky et al.
[2011a] derive that after K = O(max{LD

2

ε , σ
2D2

ε2 ln2 1
β }) stochastic oracle calls for some ε > 0,

β ∈ (0, 1], the averaged extrapolated iterate x̃Kavg = 1
K+1

∑K
k=0 x̃

k (see also clipped-SEG) satisfies
GapD(x̃Kavg) ≤ ε with probability at least 1 − β. Although this result has a desirable logarithmic
dependence on 1/β and optimal dependence on ε [Beznosikov et al., 2020], it is derived only for (i)
light-tailed case and (ii) bounded domains. Our results do not have such limitations.

2 Clipped Stochastic Extragradient

In this section, we consider a version of SEG with gradient clipping. That is, we apply clipping
operator clip(y, λ) := min{1, λ/‖y‖}y, which is defined for any y ∈ Rd (when y = 0 we set
clip(0, λ) := 0) and any clipping level λ > 0, to the mini-batched stochastic estimators used both
at the extrapolation and update steps of SEG. This results in the following iterative algorithm:

xk+1 = xk − γ2F̃ξk2
(x̃k), where x̃k = xk − γ1F̃ξk1

(xk), (clipped-SEG)

F̃ξk1
(xk) = clip

(
1

m1,k

m1,k∑
i=1

Fξi,k1
(xk), λ1,k

)
, F̃ξk2

(x̃k) = clip

(
1

m2,k

m2,k∑
i=1

Fξi,k2
(x̃k), λ2,k

)
,

where {ξi,k1 }
m1,k

i=1 , {ξ
i,k
2 }

m2,k

i=1 are independent samples from the distribution D. In the considered
algorithm, clipping bounds the effect of heavy-tailedness of the gradient noise, but also creates a bias

8These lower bounds are derived for the convergence in expectation. Deriving tight lower bounds for the
convergence with high-probability for solving stochastic VIPs is an open question.

9In this case, the goal is to find x∗ ∈ X such that inequality 〈F (x∗), x− x∗〉 ≥ 0 holds for all x ∈ X .
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that one has to properly control in the analysis. Moreover, we allow different stepsizes γ1, γ2 [Hsieh
et al., 2020, Diakonikolas et al., 2021, Gorbunov et al., 2022a], different batchsizes m1,k,m2,k,
and different clipping levels λ1,k, λ2,k. In particular, taking γ2 < γ1 is crucial for our analysis to
handle VIP satisfying star-negative comonotonicity (SNC) with ρ > 0. Our convergence results for
clipped-SEG are summarized in the following theorem. For simplicity, we omit here the numerical
constants, which are explicitly given in § C.

Theorem 2.1. Consider clipped-SEG run for K ≥ 0 iterations. Let R ≥ R0 = ‖x0 − x∗‖.
Case 1. Let Assump. 1.1, 1.2, 1.3 hold for Q = B4R(x∗), where γ1 = γ2 = γ with 0 < γ =
O(1/(LA)), λ1,k = λ2,k ≡ λ = Θ(R/(γA)), m1,k = m2,k ≡ m = Ω(max{1, (K+1)γ2σ2A/R2}),
where A = ln 6(K+1)

β , β ∈ (0, 1] are such that A ≥ 1.
Case 2. Let Assump. 1.1, 1.2, 1.4 hold for Q = B3R(x∗), where γ2 + 2ρ ≤ γ1 ≤
O(1/(LA)), λ1,k ≡ λ1 = Θ(R/(γ1A)), λ2,k ≡ λ2 = Θ(R/(γ2A)), m1,k ≡ m1 =

Ω(max{1,max{γ1γ2(K+1),
√
γ3
1γ2(K+1)}σ2A/R2}), m2,k ≡ m2 = Ω(max{1, (K+1)γ2

2σ
2A/R2}),

where A = ln 8(K+1)
β , β ∈ (0, 1] are such that A ≥ 1.

Case 3. Let Assump. 1.1, 1.2, 1.5 hold for Q = B3R(x∗), where γ1 = γ2 = γ with
0 < γ ≤ O(1/(LA)), λ1,k = λ2,k = λk = Θ(exp(−γµ(1+k/2))R/(γA)), m1,k = m2,k = mk =

Ω(max{1, (K+1)γ2σ2A/(exp(−γµk)R2)}), where A = ln 6(K+1)
β , β ∈ (0, 1] are such that A ≥ 1.

Then, to guarantee GapR(x̃Kavg) ≤ ε in Case 1 with x̃Kavg = 1
K+1

∑K
k=0 x̃

k, 1
K+1

∑K
k=0 ‖F (xk)‖2 ≤

Lε in Case 2, ‖xK − x∗‖2 ≤ ε in Case 3, with probability ≥ 1− β clipped-SEG requires

Case 1 and 2 : Õ
(

max
{
LR2

ε , σ
2R2

ε2

})
and Case 3: Õ

(
max

{
L
µ ,

σ2

µε

})
(2)

oracle calls. The above guarantees hold in two different regimes: large step-sizes γ ≈ 1/LA (requiring
large batch-sizes), and small step-sizes, allowing small batch-sizes m = O(1).

Proof sketch in Case 1. Modifying the analysis of EG, we first derive that for all t ≥ 0 we have
GapR(x̃tavg) and ‖xt − x∗‖2 are not greater than maxu∈BR(x∗){‖x0 − u‖2 + 2γ

∑t−1
l=0〈xl − u −

γF (x̃l), θl〉+ γ2
∑t−1
l=0(‖θl‖2 + 2‖ωl‖2)} if xl, x̃l lie in B4R(x∗) for all l = 0, 1, . . . , t− 1, where

θl = F (x̃l) − F̃ξl2
(x̃l) and ωl = F (xl) − F̃ξl1

(xl). Next, using this recursion and the induction
argument, we show that with high probability xt, x̃t ∈ B4R(x∗) for all t = 0, 1, . . . ,K + 1. This
gives us an upper bound for GapR(x̃tavg). After that, we upper bound maxu∈BR(x∗){2γ

∑t−1
l=0〈xl −

u− γF (x̃l), θl〉+ γ2
∑t−1
l=0(‖θl‖2 + 2‖ωl‖2)} by 5R2 with high-probability. We achieve this via the

proper choice of the clipping level λ = Θ(R/(γA)) implying that ‖F (x̃l)‖ ≤ λ/2 and ‖F (xl)‖ ≤ λ/2
with high probability for all l = 0, 1, . . . , t− 1. This clipping politics helps to properly bound the
bias and the variance of the clipped estimators using Lem. B.2. After that, it remains to apply the
Bernstein inequality for the martingale differences (Lem. B.1). See the detailed proof in § C.

In addition to the discussion given in the introduction (see § 1.2, 1.3 and Tbl. 1), we provide here
several important details about the derived results. First of all, we notice that up to the logarithmic
factors depending on β our high-probability convergence results recover the state-of-the-art in-
expectation ones for SEG in the monotone [Beznosikov et al., 2020], star-negative comonotone
[Diakonikolas et al., 2021], and quasi-strongly monotone [Gorbunov et al., 2022a] cases. Moreover,
as we show in Corollaries C.1 and C.3, to achieve these results in monotone and quasi-strongly
monotone cases, it is sufficient to choose constant batchsize m = O(1) and small enough stepsize
γ. In contrast, when the operator is star-negatively comonotone, we do rely on the usage of large
stepsize γ1 and large batchsize m1 = O(K) for the extrapolation step to obtain (2). However, known
in-expectation results from [Diakonikolas et al., 2021, Lee and Kim, 2021] also rely on large O(K)
batchsizes in this case. We leave the investigation of this limitation to the future work.
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3 Clipped Stochastic Gradient Descent-Ascent

In this section, we extend the approach described above to the analysis of SGDA with clipping. That
is, we consider the following algorithm:

xk+1 = xk − γF̃ξk(xk), where F̃ξk(xk) = clip

(
1

mk

mk∑
i=1

Fξi,k(xk), λk

)
(clipped-SGDA)

where {ξi,k}mi=1 are independent samples from the distribution D. In the above method, clipping
plays a similar role as in clipped-SEG. Our convergence results for clipped-SGDA are summarized
below. The general idea of the proof is similar to the one for clipped-SEG, see the details in
Appendix D, where we also explicitly give the constants that are omitted here for simplicity.

Theorem 3.1. Consider clipped-SGDA run for K ≥ 0 iterations. Let R ≥ R0 = ‖x0 − x∗‖.
Case 1. Let Assump. 1.1, 1.3, 1.6 hold for Q = B3R(x∗), where 0 < γ = O(1/(`A)), λk ≡ λ =

Θ(R/(γA)), mk ≡ m = Ω(max{1, (K+1)γ2σ2A/R2}), where β ∈ (0, 1] and A = ln 6(K+1)
β ≥ 1.

Case 2. Let Assump. 1.1, 1.6 hold for Q = B2R(x∗), where 0 < γ = O(1/(`A)), λk ≡ λ =

Θ(R/(γA)), mk ≡ m = Ω(max{1, (K+1)γ2σ2A/R2}), where β ∈ (0, 1] and A = ln 4(K+1)
β ≥ 1.

Case 3. Let Assump. 1.1, 1.5, 1.6 hold for Q = B2R(x∗), where 0 < γ = O(1/(`A)), λk =

Θ( e
−γµ(1+k/2)R

(γA) ), mk = Ω(max{1, (K+1)γ2σ2A
eγµkR2 }), where β ∈ (0, 1] and A = ln 4(K+1)

β ≥ 1.

Then, to guarantee GapR(x̃Kavg) ≤ ε in Case 1 with x̃Kavg = 1
K+1

∑K
k=0 x̃

k, 1
K+1

∑K
k=0 ‖F (xk)‖2 ≤

`ε in Case 2, ‖xK − x∗‖2 ≤ ε in Case 3, with probability ≥ 1− β, clipped-SGDA requires

Case 1 and 2: Õ
(

max
{
`R2

ε , σ
2R2

ε2

})
and Case 3: Õ

(
max

{
`
µ ,

σ2

µε

})
(3)

oracle calls. The above guarantees hold in two different regimes: large step-sizes γ ≈ 1/`A (requiring
large batch-sizes), and small step-sizes, allowing small batch-sizes m = O(1).

As for the clipped-SEG, up to the logarithmic factors depending on β, our high-probability con-
vergence results from the theorem above recover the state-of-the-art in-expectation ones for SGDA
under monotonicity and star-cocoercivity [Beznosikov et al., 2022], star-cocoercivity [Gorbunov
et al., 2022a]10, quasi-strong monotonicity and star-cocoercivity [Loizou et al., 2021] assumptions.
Moreover, in all the cases, one can achieve the results from (3) using constant batchsize m = O(1)
and small enough stepsize γ (see Corollaries D.1, D.2, D.3 for the details). Finally, to the best of our
knowledge, we derive the first high-probability convergence results for SGDA-type methods.

4 Experiments

To validate our theoretical results, we conduct experiments on heavy-tailed min-max problems to
demonstrate the importance of clipping when using non-adaptive methods such as SGDA or SEG.
We train a Wasserstein GAN with gradient penalty [Gulrajani et al., 2017] on CIFAR-10 [Krizhevsky
et al., 2009] using SGDA, clipped-SGDA, and clipped-SEG, and show the evolution of the gradient
noise histograms during training. We demonstrate that gradient clipping also stabilizes the training of
more sophisticated GANs when using SGD by training a StyleGAN2 model [Karras et al., 2020] on
FFHQ [Karras et al., 2019], downsampled to 128× 128. Although the generated sample quality is
not competitive with a model trained with Adam, we find that StyleGAN2 fails to generate anything
meaningful when trained with regular SGDA whereas clipped methods learn meaningful features.
We do not claim to outperform state-of-the-art adaptive methods (such as Adam); our focus is to
validate our theoretical results and to demonstrate that clipping improves SGDA in this context.

WGAN-GP. In this section, we focus on the ResNet architecture proposed in Gulrajani et al. [2017],
and we adapt our code from a publicly available WGAN-GP implementation.11 We first compute the
gradient noise distribution and validate if it is heavy-tailed. Taking the fixed randomly initialized

10Although Gorbunov et al. [2022a] do not consider SGDA explicitly, it does fit their framework implying
that SGDA achieves 1

K+1

∑K
k=0 E[‖F (xk)‖2] ≤ ε after K = O(max{ `R

2

ε
, σ

2R2

ε2
}) iterations with m = 1.

11https://github.com/w86763777/pytorch-gan-collections
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Figure 2: (a, b, c) Random samples generated from the best CIFAR models trained (100k steps) by the specified
optimizers, with their corresponding FIDs. (d, e) Gradient noise histograms for WGAN-GP upon initialization;
a Gaussian was fit using maximum likelihood estimation to showcase the tail of the distribution. pmR is a value
estimating the “heavy tailed-ness” of the distribution. (f) The best (lowest) FID scores obtained within the first
35k (out of 100k) training iterations for the same WGAN-GP model trained on CIFAR-10 when sweeping over
different hyperparameters. Red points indicate that the run diverged, meaning that the loss becomes NaN. Note
that we clip the FID for diverged runs to 300 to not skew the boxplot. Boxes are the quartiles of data.

weights, we iterate through 1000 steps (without parameter updates) to compute the noise norm for
each minibatch (sample with replacement as in normal GAN training). We show the distributions
for the generator and discriminator in Fig. 2 and also compute pmR = F1.5(X) and peR = F3(X),
where Fλ(X) = P (Q3 + λ(Q3 − Q1) < X), X is the gradient noise distribution, and Qi is the
ith quartile. This is a metric introduced by Jordanova and Petkova [2017] to measure how heavy-
tailed a distribution is based on the distribution’s quantiles, where pmR and peR quantify “mild” and
“extreme” (right side) heavy tails respectively. A normal distribution should have pmRN ≈ 0.0035 and
peRN ≈ 1.2× 10−6. In all tests, we compute the ratios ρmR = pmR/pmRN and ρeR = peR/peRN
and empirically find that we at least have mild heavy tails, and sometimes extremely heavy tails.

We train the ResNet generator on CIFAR-10 with SGDA/SEG, and clipped-SGDA/SEG. We use
the default architectures and training parameters specified in Gulrajani et al. [2017] (λGP = 10,
ndis = 5, learning rate decayed linearly to 0 over 100k steps), with the exception of doubling the
feature map of the generator. The clipped methods are implemented as standard gradient norm
clipping, applied after computing the gradient penalty term for the critic. In addition to norm clipping,
we also test coordinate-wise gradient clipping, which is more common in practice [Goodfellow et al.,
2016b]. For all methods, we tune the learning rates and clipping threshold where applicable. We do
not use momentum following a standard practice for GAN training [Gidel et al., 2019b].

We find that clipped methods outperform regular SGDA and SEG. In addition to helping prevent
exploding gradients, clipped methods achieve a better Fréchet inception distance (FID) score [Heusel
et al., 2017]; the best FID obtained for clipped methods is 19.65 in comparison to 67.37 for regular
SGDA, both trained for 100k steps. A summary of FIDs obtained during hyperparameter tuning
is shown Fig. 2, where the best FID score obtained in the first 35k iterations is drawn for each
hyperparameter configuration and optimization method. At a high level, we do a log-space sweep
over [2e−5, 0.2] for the learning rates, [10−1, 10] for the norm-clip parameter, and [10−3, 10−1] for
the coordinate clip parameter (with some exceptions) – please refer to § E for further details. We also
show the evolution of the gradient noise histograms during training for SGD and clipped-SGDA in
Fig. 4. Note that for regular SGD, the noise distribution remains heavy tailed and does not appear to
change much throughout training. In contrast, the noise histograms for clipped-SGDA (in particular
the generator) seem to develop lighter tails during training.

StyleGAN2. We extend our experiments to StyleGAN2, but limit our scope to clipped-SGDA
with coordinate clipping as coordinate clipped-SGDA generally performs the best, and StyleGAN2
is expensive to train. We train on FFHQ downsampled to 128 × 128 pixels, and use the recom-
mended StyleGAN2 hyperparameter configuration for this resolution (batch size = 32, γ = 0.1024,
map depth = 2, channel multiplier = 16384), see further experimental details in § E. We obtain
the gradient noise histograms at initialization and for the best trained clipped-SGDA from the
hyperparameter sweep and once again observe heavy tails (especially in the discriminator, see Fig. 3).
We find that all regular SGDA runs fail to learn anything meaningful, with FID scores fluctuating
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Figure 3: (a) Gradient noise histograms for StyleGAN2 at random initialization. (b) Gradient noise histograms
for StyleGAN2 trained with clipped-SGDA. (c) Random samples generated from several models trained with
SGDA with different learning rates (FID > 300). Each row corresponds to a different trained model, and all of
our attempts to train StyleGAN2 with SGDA produced similar results. (d) Random samples generated from the
best clipped-SGDA trained model (FID = 72.68).
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Figure 4: Evolution of gradient noise histograms for a WGAN-GP model. The top two rows are trained with
SGDA, and the bottom two rows are trained with clipped-SGDA.

around 320 and only able to generate noise. In contrast, while there is a clear gap in quality when
compared to what StyleGAN2 is capable of, a model trained with clipped-SGDA with appropriately
set hyperparameters is able to produce images that distinctly resemble faces (see Fig. 3).
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A Further Related Work

Convergence in expectation. Convergence in expectation of stochastic methods for solving VIPs is
relatively well-studied in the literature. In particular, versions of SEG are studied under bounded vari-
ance [Beznosikov et al., 2020, Hsieh et al., 2020], smoothness of stochastic realizations [Mishchenko
et al., 2020], and more refined assumptions unifying previously used ones [Gorbunov et al., 2022a].
Recent advances on the in-expectation convergence of SGDA are obtained in [Loizou et al., 2021,
Beznosikov et al., 2022].

Gradient clipping. In the context of solving minimization problems, gradient clipping [Pascanu et al.,
2013] and normalization [Hazan et al., 2015] are known to have a number of favorable properties such
as practical robustness to the rapid changes of the loss function [Goodfellow et al., 2016a], provable
convergence for structured non-smooth problems with polynomial growth Zhang et al. [2020a], Mai
and Johansson [2021] and for the problems with heavy-tailed noise in convex [Nazin et al., 2019,
Gorbunov et al., 2020, 2021] and non-convex cases [Zhang et al., 2020b, Cutkosky and Mehta, 2021].
Our work makes a further step towards a better understanding of gradient clipping and is the first to
study the theoretical convergence of clipped first-order stochastic methods for VIPs.

Structured non-monotonicity. There is a noticeable growing interest of the community in studying
the theoretical convergence guarantees of deterministic methods for solving VIP with non-monotone
operators F (x) having a certain structure, e.g., negative comonotonicty [Diakonikolas et al., 2021,
Lee and Kim, 2021, Böhm, 2022], quasi-strong monotonicity [Song et al., 2020, Mertikopoulos and
Zhou, 2019] and/or star-cocoercivity [Loizou et al., 2021, Gorbunov et al., 2022b,a, Beznosikov et al.,
2022]. In the context of stochastic VIPs, SEG (with different extrapolation and update stepsizes)
is analyzed under negative comonotonicity by Diakonikolas et al. [2021] and under quasi-strong
monotonicity by Gorbunov et al. [2022a], while SGDA is studied under quasi-strong monotonicity
and/or star-cocoercivity by [Loizou et al., 2021, Beznosikov et al., 2022]. These results establish
in-expectation convergence rates. Our paper continues this line of works and provides the first
high-probability analysis of stochastic methods for solving VIPs with structured non-monotonicity.
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B Auxiliary Results

Useful inequalities. For all a, b ∈ Rd and α > 0 the following relations hold:

2〈a, b〉 = ‖a‖2 + ‖b‖2 − ‖a− b‖2, (4)

‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2, (5)

−‖a− b‖2 ≤ −1

2
‖a‖2 + ‖b‖2. (6)

Bernstein inequality. In our proofs, we rely on the following lemma known as Bernstein inequality
for martingale differences [Bennett, 1962, Dzhaparidze and Van Zanten, 2001, Freedman et al., 1975].
Lemma B.1. Let the sequence of random variables {Xi}i≥1 form a martingale difference se-
quence, i.e. E [Xi | Xi−1, . . . , X1] = 0 for all i ≥ 1. Assume that conditional variances

σ2
i

def
= E

[
X2
i | Xi−1, . . . , X1

]
exist and are bounded and assume also that there exists deterministic

constant c > 0 such that |Xi| ≤ c almost surely for all i ≥ 1. Then for all b > 0, G > 0 and n ≥ 1

P

{∣∣∣ n∑
i=1

Xi

∣∣∣ > b and
n∑
i=1

σ2
i ≤ G

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
. (7)

Bias and variance of clipped stochastic vector. We also use the following properties of clipped
stochastic estimators from [Gorbunov et al., 2020].
Lemma B.2 (Simplified version of Lemma F.5 from [Gorbunov et al., 2020]). Let X be a random
vector in Rd and X̃ = clip(X,λ). Then,∥∥∥X̃ − E[X̃]

∥∥∥ ≤ 2λ. (8)

Moreover, if for some σ ≥ 0

E[X] = x ∈ Rd, E[‖X − x‖2] ≤ σ2 (9)

and x ≤ λ/2, then ∥∥∥E[X̃]− x
∥∥∥ ≤ 4σ2

λ
, (10)

E
[∥∥∥X̃ − x∥∥∥2] ≤ 18σ2, (11)

E
[∥∥∥X̃ − E[X̃]

∥∥∥2] ≤ 18σ2. (12)

Proof. The proof of this lemma is identical to the original one, since Gorbunov et al. [2020] rely only
on X̃ = clip(X,λ) to derive (8), and to prove (10)-(12) they use only (9), X̃ = clip(X,λ) and
x ≤ λ/2
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C Clipped Stochastic Extragradient: Missing Proofs and Details

C.1 Monotone Case

Lemma C.1. Let Assumptions 1.1, 1.2, 1.3 hold for Q = B4R(x∗), where R ≥ R0
def
= ‖x0 − x∗‖,

and γ1 = γ2 = γ, 0 < γ ≤ 1/
√
2L. If xk and x̃k lie in B4R(x∗) for all k = 0, 1, . . . ,K for some

K ≥ 0, then for all u ∈ B4R(x∗) the iterates produced by clipped-SEG satisfy

〈F (u), x̃Kavg − u〉 ≤
‖x0 − u‖2 − ‖xK+1 − u‖2

2γ(K + 1)
+

γ

2(K + 1)

K∑
k=0

(
‖θk‖2 + 2‖ωk‖2

)
+

1

K + 1

K∑
k=0

〈xk − u− γF (x̃k), θk〉, (13)

x̃Kavg
def
=

1

K + 1

K∑
k=0

x̃k, (14)

θk
def
= F (x̃k)− F̃ξk2

(x̃k), (15)

ωk
def
= F (xk)− F̃ξk1

(xk). (16)

Proof. Using the update rule of clipped-SEG, for all u ∈ B4R(x∗) we obtain

‖xk+1 − u‖2 = ‖xk − u‖2 − 2γ〈xk − u, F̃ξk2
(x̃k)〉+ γ2‖F̃ξk2

(x̃k)‖2

= ‖xk − u‖2 − 2γ〈xk − u, F (x̃k)〉+ 2γ〈xk − u, θk〉
+γ2‖F (x̃k)‖2 − 2γ2〈F (x̃k), θk〉+ γ2‖θk‖2

= ‖xk − u‖2 − 2γ〈x̃k − u, F (x̃k)〉 − 2γ〈xk − x̃k, F (x̃k)〉
+2γ〈xk − u− γF (x̃k), θk〉+ γ2‖F (x̃k)‖2 + γ2‖θk‖2

(Mon)
≤ ‖xk − u‖2 − 2γ〈x̃k − u, F (u)〉 − 2γ2〈F̃ξk1

(xk), F (x̃k)〉

+2γ〈xk − u− γF (x̃k), θk〉+ γ2‖F (x̃k)‖2 + γ2‖θk‖2
(4)
= ‖xk − u‖2 − 2γ〈x̃k − u, F (u)〉

+γ2‖F̃ξk1
(xk)− F (x̃k)‖2 − γ2‖F (x̃k)‖2 − γ2‖F̃ξk1

(xk)‖2

+2γ〈xk − u− γF (x̃k), θk〉+ γ2‖F (x̃k)‖2 + γ2‖θk‖2
(5)
≤ ‖xk − u‖2 − 2γ〈x̃k − u, F (u)〉

+2γ2‖ωk‖2 + 2γ2‖F (xk)− F (x̃k)‖2 − γ2‖F̃ξk1
(xk)‖2

+2γ〈xk − u− γF (x̃k), θk〉+ γ2‖θk‖2
(Lip)
≤ ‖xk − u‖2 − 2γ〈x̃k − u, F (u)〉 − γ2

(
1− 2γ2L2

)
‖F̃ξk1

(xk)‖2

+2γ〈xk − u− γF (x̃k), θk〉+ γ2‖θk‖2 + 2γ2‖ωk‖2

where in the last step we additionally use xk − x̃k = γF̃ξk1
(xk) after the application of Lipschitzness

of F . Since γ ≤ 1/
√
2L, we have γ2

(
1− 2γ2L2

)
‖F̃ξk1

(xk)‖2 ≥ 0, implying

2γ〈F (u), x̃k − u〉 ≤ ‖xk − u‖2 − ‖xk+1 − u‖2 + γ2
(
‖θk‖2 + 2‖ωk‖2

)
+2γ〈xk − u− γF (x̃k), θk〉.
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Finally, we sum up the above inequality for k = 0, 1, . . . ,K and divide both sides of the result by
2γ(K + 1):

〈F (u), x̃Kavg − u〉 =
1

K + 1

K∑
k=0

〈F (u), x̃k − u〉

≤ 1

2γ(K + 1)

K∑
k=0

(
‖xk − u‖2 − ‖xk+1 − u‖2

)
+

γ

2(K + 1)

K∑
k=0

‖θk‖2

+
1

K + 1

K∑
k=0

〈xk − u− γF (x̃k), θk〉+
γ

K + 1

K∑
k=0

‖ωk‖2

=
‖x0 − u‖2 − ‖xK+1 − u‖2

2γ(K + 1)
+

γ

2(K + 1)

K∑
k=0

(
‖θk‖2 + 2‖ωk‖2

)
+

1

K + 1

K∑
k=0

〈xk − u− γF (x̃k), θk〉.

This concludes the proof.

Theorem C.1. Let Assumptions 1.1, 1.2, 1.3 hold for Q = B4R(x∗), where R ≥ R0
def
= ‖x0 − x∗‖,

and12 γ1 = γ2 = γ,

0 < γ ≤ 1

160L ln 6(K+1)
β

, (17)

λ1,k = λ2,k ≡ λ =
R

20γ ln 6(K+1)
β

, (18)

m1,k = m2,k ≡ m ≥ max

{
1,

10800(K + 1)γ2σ2 ln 6(K+1)
β

R2

}
, (19)

for some K ≥ 0 and β ∈ (0, 1] such that ln 6(K+1)
β ≥ 1. Then, after K iterations the iterates

produced by clipped-SEG with probability at least 1− β satisfy

GapR(x̃Kavg) ≤
9R2

2γ(K + 1)
, (20)

where x̃Kavg is defined in (14).

Proof. We introduce new notation: Rk = ‖xk − x∗‖ for all k ≥ 0. The proof is based on
deriving via induction that R2

k ≤ C̃R2 for some numerical constant C̃ > 0. In particular, for
each k = 0, . . . ,K + 1 we define probability event Ek as follows: inequalities

max
u∈BR(x∗)

{
‖x0 − u‖2 + 2γ

t−1∑
l=0

〈xl − u− γF (x̃l), θl〉+ γ2
t−1∑
l=0

(
‖θl‖2 + 2‖ωl‖2

)}
︸ ︷︷ ︸

At

≤ 9R2, (21)

∥∥∥∥∥γ
t−1∑
l=0

θl

∥∥∥∥∥ ≤ R (22)

hold for t = 0, 1, . . . , k simultaneously. Our goal is to prove that P{Ek} ≥ 1 − kβ/(K+1) for
all k = 0, 1, . . . ,K + 1. We use the induction to show this statement. For k = 0 the statement

12In this and further results, we have relatively large numerical constants in the conditions on step-sizes,
batch-sizes, and clipping levels. However, our main goal is deriving results in terms of O(·), where numerical
constants are not taken into consideration. Although it is possible to significantly improve the dependence on
numerical factors, we do not do it for the sake of proofs’ simplicity.
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is trivial since ‖x0 − u‖2 ≤ 2‖x0 − x∗‖2 + 2‖x∗ − u‖2 ≤ 4R2 ≤ 9R2 and ‖γ
∑k−1
l=0 θl‖ = 0

for any u ∈ BR(x∗). Next, assume that the statement holds for k = T − 1 ≤ K, i.e., we have
P{ET−1} ≥ 1 − (T−1)β/(K+1). We need to prove that P{ET } ≥ 1 − Tβ/(K+1). First of all, we
show that probability event ET−1 implies Rt ≤ 3R for all t = 0, 1, . . . , T . For t = 0 we already
proved it. Next, assume that we have Rt ≤ 3R for all t = 0, 1, . . . , t′, where t′ < T . Then, for all
t = 0, 1, . . . , t′ we have

‖x̃t − x∗‖ = ‖xt − x∗ − γF̃ξt1
(xt)‖ ≤ ‖xt − x∗‖+ γ‖F̃ξt1

(xt)‖

≤ ‖xt − x∗‖+ γλ
(18)
≤ 3R+

R

20 ln 6(K+1)
β

≤ 4R, (23)

i.e., x̃t ∈ B4R(x∗). This means that the assumptions of Lemma C.1 hold and we have that probability
event ET−1 implies

max
u∈BR(x∗)

{
2γ(t′ + 1)〈F (u), x̃t

′

avg − u〉+ ‖xt
′+1 − u‖2

}
≤ max
u∈BR(x∗)

{
‖x0 − u‖2 + 2γ

t′−1∑
l=0

〈xl − u− γF (x̃l), θl〉

}

+γ2
t′−1∑
l=0

(
‖θl‖2 + 2‖ωl‖2

)
(21)
≤ 9R2,

meaning that

‖xt
′+1 − x∗‖2 ≤ max

u∈BR(x∗)

{
2γ(t′ + 1)〈F (u), x̃t

′

avg − u〉+ ‖xt
′+1 − u‖2

}
≤ 9R2,

i.e., Rt′+1 ≤ 3R. That is, we proved that probability event ET−1 implies Rt ≤ 3R and

max
u∈BR(x∗)

{
2γ(t+ 1)〈F (u), x̃tavg − u〉+ ‖xt+1 − u‖2

}
≤ 9R2 (24)

for all t = 0, 1, . . . , T . Moreover, in view of (23) ET−1 also implies that ‖x̃t − x∗‖ ≤ 4R for all
t = 0, 1, . . . , T . Using this, we derive that ET−1 implies

‖xt − x∗ − γF (x̃t)‖ ≤ ‖xt − x∗‖+ γ‖F (x̃t)‖
(Lip)
≤ 3R+ γL‖x̃t − x∗‖

(23)
≤ 3R+ 4RγL

(17)
≤ 5R, (25)

for all t = 0, 1, . . . , T . Consider random vectors

ηt =

{
xt − x∗ − γF (x̃t), if ‖xt − x∗ − γF (x̃t)‖ ≤ 5R,

0, otherwise,

for all t = 0, 1, . . . , T . We notice that ηt is bounded with probability 1:

‖ηt‖ ≤ 5R (26)
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for all t = 0, 1, . . . , T . Moreover, in view of (25), probability event ET−1 implies ηt = xt − x∗ −
γF (x̃t) for all t = 0, 1, . . . , T . Therefore, ET−1 implies

AT = max
u∈BR(x∗)

{
‖x0 − u‖2 + 2γ

T−1∑
l=0

〈x∗ − u, θl〉

}

+2γ

T−1∑
l=0

〈xl − x∗ − γF (x̃l), θl〉+ γ2
T−1∑
l=0

(
‖θl‖2 + 2‖ωl‖2

)
≤ 4R2 + 2γ max

u∈BR(x∗)

{〈
x∗ − u,

T−1∑
l=0

θl

〉}

+2γ

T−1∑
l=0

〈ηl, θl〉+ γ2
T−1∑
l=0

(
‖θl‖2 + 2‖ωl‖2

)
= 4R2 + 2γR

∥∥∥∥∥
T−1∑
l=0

θl

∥∥∥∥∥+ 2γ

T−1∑
l=0

〈ηl, θl〉+ γ2
T−1∑
l=0

(
‖θl‖2 + 2‖ωl‖2

)
,

where AT is defined in (21). To continue our derivation we introduce new notation:

θul
def
= Eξl2

[
F̃ξl2

(x̃l)
]
− F̃ξl2

(x̃l), θbl
def
= F (x̃l)− Eξl2

[
F̃ξl2

(x̃l)
]
, (27)

ωul
def
= Eξl1

[
F̃ξl1

(xl)
]
− F̃ξl1

(xl), ωbl
def
= F (xl)− Eξl1

[
F̃ξl1

(xl)
]
, (28)

for all l = 0, . . . , T − 1. By definition we have θl = θul + θbl , ωl = ωul + ωbl for all l = 0, . . . , T − 1.
Using the introduced notation, we continue our derivation as follows: ET−1 implies

AT
(5)
≤ 4R2 + 2γR

∥∥∥∥∥
T−1∑
l=0

θl

∥∥∥∥∥+ 2γ

T−1∑
l=0

〈ηl, θul 〉︸ ︷︷ ︸
¬

+ 2γ

T−1∑
l=0

〈ηl, θbl 〉︸ ︷︷ ︸
­

+ 2γ2
T−1∑
l=0

(
Eξl2

[
‖θul ‖2

]
+ 2Eξl1

[
‖ωul ‖2

])
︸ ︷︷ ︸

®

+ 2γ2
T−1∑
l=0

(
‖θul ‖2 + 2‖ωul ‖2 − Eξl2

[
‖θul ‖2

]
− 2Eξl1

[
‖ωul ‖2

])
︸ ︷︷ ︸

¯

+ 2γ2
T−1∑
l=0

(
‖θbl ‖2 + 2‖ωbl ‖2

)
︸ ︷︷ ︸

°

(29)

The rest of the proof is based on deriving good enough upper bounds for
2γR

∥∥∥∑T−1
l=0 θl

∥∥∥ ,¬,­,®,¯,°, i.e., we want to prove that 2γR
∥∥∥∑T−1

l=0 θl

∥∥∥+¬+­+®+¯+° ≤
5R2 with high probability.

Before we move on, we need to derive some useful inequalities for operating with θul , θ
b
l , ω

u
l , ω

b
l .

First of all, Lemma B.2 implies that

‖θul ‖ ≤ 2λ, ‖ωul ‖ ≤ 2λ (30)
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for all l = 0, 1, . . . , T − 1. Next, since {ξi,l1 }mi=1, {ξi,l2 }mi=1 are independently sampled from D, we
have Eξl1

[Fξl1
(xl)] = F (xl), Eξl2

[Fξl2
(x̃l)] = F (x̃l), and

Eξl1

[
‖Fξl1

(xl)− F (xl)‖2
]

=
1

m2

m∑
i=1

Eξi,l1

[
‖Fξi,l1

(xl)− F (xl)‖2
] (1)
≤ σ2

m
,

Eξl2

[
‖Fξl2

(x̃l)− F (x̃l)‖2
]

=
1

m2

m∑
i=1

Eξi,l2

[
‖Fξi,l2

(x̃l)− F (x̃l)‖2
] (1)
≤ σ2

m
,

for all l = 0, 1, . . . , T − 1. Moreover, probability event ET−1 implies

‖F (xl)‖
(Lip)
≤ L‖xl − x∗‖ ≤ 3LR

(17)
≤ R

40γ ln 6(K+1)
β

(18)
=

λ

2
,

‖F (x̃l)‖
(Lip)
≤ L‖x̃l − x∗‖

(23)
≤ 4LR

(17)
≤ R

40γ ln 6(K+1)
β

(18)
=

λ

2

for all l = 0, 1, . . . , T − 1. Therefore, in view of Lemma B.2, ET−1 implies that∥∥θbl ∥∥ ≤ 4σ2

mλ
,
∥∥ωbl ∥∥ ≤ 4σ2

mλ
, (31)

Eξl2

[
‖θl‖2

]
≤ 18σ2

m
, Eξl1

[
‖ωl‖2

]
≤ 18σ2

m
, (32)

Eξl2

[
‖θul ‖

2
]
≤ 18σ2

m
, Eξl1

[
‖ωul ‖

2
]
≤ 18σ2

m
, (33)

for all l = 0, 1, . . . , T − 1.

Upper bound for ¬. Since Eξl2
[θul ] = 0, we have

Eξl2
[2γ〈ηl, θul 〉] = 0.

Next, the summands in ¬ are bounded with probability 1:

|2γ〈ηl, θul 〉| ≤ 2γ‖ηl‖ · ‖θul ‖
(26),(30)
≤ 20γRλ

(18)
=

R2

ln 6(K+1)
β

def
= c. (34)

Moreover, these summands have bounded conditional variances σ2
l

def
= Eξl2

[
4γ2〈ηl, θul 〉2

]
:

σ2
l ≤ Eξl2

[
4γ2‖ηl‖2 · ‖θul ‖2

] (26)
≤ 100γ2R2Eξl2

[
‖θul ‖2

]
. (35)

That is, sequence {2γ〈ηl, θul 〉}l≥0 is a bounded martingale difference sequence having bounded con-
ditional variances {σ2

l }l≥0. Applying the Bernstein’s inequality (Lemma B.1) with Xl = 2γ〈ηl, θul 〉,
c defined in (34), b = R2, G = R4

6 ln
6(K+1)

β

, we get that

P

{
|¬| > R2 and

T−1∑
l=0

σ2
l ≤

R4

6 ln 6(K+1)
β

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

β

3(K + 1)
.

In other words, P{E¬} ≥ 1− β
3(K+1) , where probability event E¬ is defined as

E¬ =

{
either

T−1∑
l=0

σ2
l >

R4

6 ln 6(K+1)
β

or |¬| ≤ R2

}
. (36)

Moreover, we notice here that probability event ET−1 implies that

T−1∑
l=0

σ2
l

(35)
≤ 100γ2R2

T−1∑
l=0

Eξl2

[
‖θul ‖2

] (33),T≤K+1

≤ 1800(K + 1)γ2R2σ2

m

(19)
≤ R4

6 ln 6(K+1)
β

. (37)
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Upper bound for ­. Probability event ET−1 implies

­ ≤ 2γ

T−1∑
l=0

‖ηl‖ · ‖θbl ‖
(26),(31),T≤K+1

≤ 40(K + 1)γRσ2

mλ

(18)
=

40(K + 1)γ2σ2 ln 6(K+1)
β

m

(19)
≤ R2. (38)

Upper bound for ®. Probability event ET−1 implies

2γ2
T−1∑
l=0

Eξl2
[‖θul ‖2]

(32),T≤K+1

≤ 36γ2(K + 1)σ2

m

(19)
≤ 1

12
R2, (39)

4γ2
T−1∑
l=0

Eξl1
[‖ωul ‖2]

(32),T≤K+1

≤ 72γ2(K + 1)σ2

m

(19)
≤ 1

12
R2, (40)

®
(39),(40)
≤ 1

6
R2. (41)

Upper bound for ¯. First of all,

2γ2Eξl1,ξ
l
2

[
‖θul ‖2 + 2‖ωul ‖2 − Eξl2

[
‖θul ‖2

]
− 2Eξl1

[
‖ωul ‖2

]]
= 0.

Next, the summands in ¯ are bounded with probability 1:

2γ2
∣∣∣‖θul ‖2 + 2‖ωul ‖2 − Eξl2

[
‖θul ‖2

]
− 2Eξl1

[
‖ωul ‖2

]∣∣∣ ≤ 2γ2‖θul ‖2 + 2γ2Eξl2

[
‖θul ‖2

]
+4γ2‖ωul ‖2 + 4γ2Eξl1

[
‖ωul ‖2

]
(30)
≤ 48γ2λ2

(18)
≤ R2

6 ln 6(K+1)
β

def
= c. (42)

Moreover, these summands have bounded conditional variances σ̃2
l

def
=

4γ4Eξl1,ξ
l
2

[∣∣∣‖θul ‖2 + 2‖ωul ‖2 − Eξl2

[
‖θul ‖2

]
− 2Eξl1

[
‖ωul ‖2

]∣∣∣2]:

σ̃2
l

(42)
≤ γ2R2

3 ln 6(K+1)
β

Eξl1,ξ
l
2

[∣∣∣‖θul ‖2 + 2‖ωul ‖2 − Eξl2

[
‖θul ‖2

]
− 2Eξl1

[
‖ωul ‖2

]∣∣∣]
≤ 2γ2R2

3 ln 6(K+1)
β

Eξl1,ξ
l
2

[
‖θul ‖2 + 2‖ωul ‖2

]
. (43)

That is, sequence
{

2γ2
(
‖θul ‖2 + 2‖ωul ‖2 − Eξl2

[
‖θul ‖2

]
− 2Eξl1

[
‖ωul ‖2

])}
l≥0

is a bounded mar-

tingale difference sequence having bounded conditional variances {σ̃2
l }l≥0. Applying the Bernstein’s

inequality (Lemma B.1) with Xl = 2γ2
(
‖θul ‖2 + 2‖ωul ‖2 − Eξl2

[
‖θul ‖2

]
− 2Eξl1

[
‖ωul ‖2

])
, c de-

fined in (42), b = 1
6R

2, G = R4

216 ln
6(K+1)

β

, we get that

P

{
|¯| > 1

6
R2 and

T−1∑
l=0

σ̃2
l ≤

R4

216 ln 6(K+1)
β

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

β

3(K + 1)
.

In other words, P{E¯} ≥ 1− β
3(K+1) , where probability event E¯ is defined as

E¯ =

{
either

T−1∑
l=0

σ̃2
l >

R4

216 ln 6(K+1)
β

or |¯| ≤ 1

6
R2

}
. (44)
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Moreover, we notice here that probability event ET−1 implies that

T−1∑
l=0

σ̃2
l

(43)
≤ 2γ2R2

3 ln 6(K+1)
β

T−1∑
l=0

Eξl1,ξ
l
2

[
‖θul ‖2 + 2‖ωul ‖2

]
(33),T≤K+1

≤ 36(K + 1)γ2R2σ2

m

(19)
≤ R4

216 ln 6(K+1)
β

. (45)

Upper bound for °. Probability event ET−1 implies

° = 2γ2
T−1∑
l=0

(
‖θbl ‖2 + 2‖ωbl ‖2

) (31),T≤K+1

≤ 96γ2σ4(K + 1)

m2λ2

(18)
=

38400γ4σ4(K + 1) ln2 6(K+1)
β

m2R2

(19)
≤ 1

6
R2. (46)

Upper bound for 2γR
∥∥∥∑T−1

l=0 θl

∥∥∥. To handle this term, we introduce new notation:

ζl =

γ
l−1∑
r=0

θr, if
∥∥∥∥γ l−1∑

r=0
θr

∥∥∥∥ ≤ R,
0, otherwise

for l = 1, 2, . . . , T − 1. By definition, we have

‖ζl‖ ≤ R. (47)

Therefore, in view of (22), probability event ET−1 implies

2γR

∥∥∥∥∥
T−1∑
l=0

θl

∥∥∥∥∥ = 2R

√√√√γ2

∥∥∥∥∥
T−1∑
l=0

θl

∥∥∥∥∥
2

= 2R

√√√√γ2
T−1∑
l=0

‖θl‖2 + 2γ

T−1∑
l=0

〈
γ

l−1∑
r=0

θr, θl

〉

= 2R

√√√√γ2
T−1∑
l=0

‖θl‖2 + 2γ

T−1∑
l=0

〈ζl, θl〉

(27)
≤ 2R

√√√√√√® + ¯ + ° + 2γ

T−1∑
l=0

〈ζl, θul 〉︸ ︷︷ ︸
±

+ 2γ

T−1∑
l=0

〈ζl, θbl︸ ︷︷ ︸
²

〉. (48)

Following similar steps as before, we bound ± and ².

Upper bound for ±. Since Eξl2
[θul ] = 0, we have

Eξl2
[2γ〈ζl, θul 〉] = 0.

Next, the summands in ¯ are bounded with probability 1:

|2γ〈ζl, θul 〉| ≤ 2γ‖ηl‖ · ‖θul ‖
(47),(30)
≤ 4γRλ

(18)
≤ R2

4 ln 6(K+1)
β

def
= c. (49)

Moreover, these summands have bounded conditional variances σ̂2
l

def
= Eξl2

[
4γ2〈ζl, θul 〉2

]
:

σ̂2
l ≤ Eξl2

[
4γ2‖ζl‖2 · ‖θul ‖2

] (47)
≤ 4γ2R2Eξl2

[
‖θul ‖2

]
. (50)
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That is, sequence {2γ〈ζl, θul 〉}l≥0 is a bounded martingale difference sequence having bounded
conditional variances {σ̂2

l }l≥0. Applying Bernstein’s inequality (Lemma B.1) with Xl = 2γ〈ζl, θul 〉,
c defined in (34), b = R2

4 , G = R4

96 ln
6(K+1)

β

, we get that

P

{
|°| > 1

4
R2 and

T−1∑
l=0

σ̂2
l ≤

R4

96 ln 4(K+1)
β

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

β

3(K + 1)
.

In other words, P{E±} ≥ 1− β
3(K+1) , where probability event E± is defined as

E± =

{
either

T−1∑
l=0

σ̂2
l >

R4

96 ln 6(K+1)
β

or |°| ≤ 1

4
R2

}
. (51)

Moreover, we notice here that probability event ET−1 implies that

T−1∑
l=0

σ̂2
l

(50)
≤ 4γ2R2

T−1∑
l=0

Eξl2

[
‖θul ‖2

] (33),T≤K+1

≤ 72(K + 1)γ2R2σ2

m

(19)
≤ R4

96 ln 6(K+1)
β

. (52)

Upper bound for ². Probability event ET−1 implies

² ≤ 2γ

T−1∑
l=0

‖ζl‖ · ‖θbl ‖
(47),(31),T≤K+1

≤ 8(K + 1)γRσ2

mλ

(18)
=

160(K + 1)γ2σ2 ln 6(K+1)
β

m

(19)
≤ 1

4
R2. (53)

Final derivation. Putting all bounds together, we get that ET−1 implies

AT
(29)
≤ 4R2 + 2γR

∥∥∥∥∥
T−1∑
l=0

θl

∥∥∥∥∥+ ¬ + ­ + ® + ¯ + °,

2γR

∥∥∥∥∥
T−1∑
l=0

θl

∥∥∥∥∥ (48)
≤ 2R

√
® + ¯ + ° + ± + ²,

­
(38)
≤ R2, ®

(41)
≤ 1

6
R2, °

(46)
≤ 1

6
R2, ²

(53)
≤ 1

4
R2,

T−1∑
l=0

σ2
l

(37)
≤ R4

6 ln 6(K+1)
β

,

T−1∑
l=0

σ̃2
l

(45)
≤ R4

216 ln 6(K+1)
β

,

T−1∑
l=0

σ̂2
l

(52)
≤ R4

96 ln 6(K+1)
β

.

Moreover, in view of (36), (44), (51), and our induction assumption, we have

P{ET−1} ≥ 1− (T − 1)β

K + 1
,

P{E¬} ≥ 1− β

3(K + 1)
, P{E¯} ≥ 1− β

3(K + 1)
, P{E±} ≥ 1− β

3(K + 1)
,

where probability events E¬, E¯, and E± are defined as

E¬ =

{
either

T−1∑
l=0

σ2
l >

R4

6 ln 6(K+1)
β

or |¬| ≤ R2

}
,

E¯ =

{
either

T−1∑
l=0

σ̃2
l >

R4

216 ln 6(K+1)
β

or |¯| ≤ 1

6
R2

}
,

E± =

{
either

T−1∑
l=0

σ̂2
l >

R4

96 ln 6(K+1)
β

or |±| ≤ 1

4
R2

}
.
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Putting all of these inequalities together, we obtain that probability event ET−1 ∩ E¬ ∩ E¯ ∩ E±

implies ∥∥∥∥∥γ
T−1∑
l=0

θl

∥∥∥∥∥ ≤
√

1

6
R2 +

1

6
R2 +

1

6
R2 +

1

4
R2 +

1

4
R2 = R, (54)

AT ≤ 4R2 + 2R

√
1

6
R2 +

1

6
R2 +

1

6
R2 +

1

4
R2 +

1

4
R2

+R2 +R2 +
1

6
R2 +

1

6
R2 +

1

6
R2

≤ 9R2. (55)
Moreover, union bound for the probability events implies

P{ET } ≥ P{ET−1 ∩ E¬ ∩ E¯ ∩ E±} = 1− P{ET−1 ∪ E¬ ∪ E¯ ∪ E±} ≥ 1− Tβ

K + 1
. (56)

This is exactly what we wanted to prove (see the paragraph after inequalities (21), (22)). Therefore,
for all k = 0, 1, . . . ,K + 1 we have P{Ek} ≥ 1− kβ/(K+1)., i.e., for k = K + 1 we have that with
probability at least 1− β inequality

GapR(x̃Kavg) = max
u∈BR(x∗)

{
〈F (u), x̃Kavg − u〉

}
≤ 1

2γ(K + 1)
max

u∈BR(x∗)

{
2γ(K + 1)〈F (u), x̃tavg − u〉+ ‖xK+1 − u‖2

}
(24)
≤ 9R2

2γ(K + 1)

holds. This concludes the proof.

Corollary C.1. Let the assumptions of Theorem C.1 hold. Then, the following statements hold.

1. Large stepsize/large batch. The choice of stepsize and batchsize

γ =
1

160L ln 6(K+1)
β

, m = max

{
1,

27(K + 1)σ2

64L2R2 ln 6(K+1)
β

}
(57)

satisfies conditions (17) and (19). With such choice of γ,m, and the choice of λ as in (18),
the iterates produced by clipped-SEG after K iterations with probability at least 1 − β
satisfy

GapR(x̃Kavg) ≤
720LR2 ln 6(K+1)

β

K + 1
. (58)

In particular, to guarantee GapR(x̃Kavg) ≤ ε with probability at least 1− β for some ε > 0
clipped-SEG requires,

O
(
LR2

ε
ln

(
LR2

εβ

))
iterations, (59)

O
(

max

{
LR2

ε
,
σ2R2

ε2

}
ln

(
LR2

εβ

))
oracle calls. (60)

2. Small stepsize/small batch. The choice of stepsize and batchsize

γ = min

 1

160L ln 6(K+1)
β

,
R

60σ
√

3(K + 1) ln 6(K+1)
β

 , m = 1 (61)

satisfies conditions (17) and (19). With such choice of γ,m, and the choice of λ as in (18),
the iterates produced by clipped-SEG after K iterations with probability at least 1 − β
satisfy

GapR(x̃Kavg) ≤ max

720LR2 ln 6(K+1)
β

K + 1
,

270σR
√

ln 6(K+1)
β√

K + 1

 . (62)
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In particular, to guarantee GapR(x̃Kavg) ≤ ε with probability at least 1− β for some ε > 0,
clipped-SEG requires

O
(

max

{
LR2

ε
ln

(
LR2

εβ

)
,
σ2R2

ε2
ln

(
σ2R2

ε2β

)})
iterations/oracle calls. (63)

Proof. 1. Large stepsize/large batch. First of all, we verify that the choice of γ and m from
(57) satisfies conditions (17) and (19): (17) trivially holds and (19) holds since

m = max

{
1,

27(K + 1)σ2

64L2R2 ln 6(K+1)
β

}
= max

{
1,

10800(K + 1)γ2σ2 ln 6(K+1)
β

R2

}
.

Therefore, applying Theorem C.1, we derive that with probability at least 1− β

GapR(x̃Kavg) ≤
9R2

2γ(K + 1)

(57)
=

720LR2 ln 4(K+1)
β

K + 1
.

To guarantee GapR(x̃Kavg) ≤ ε, we choose K in such a way that the right-hand side of the
above inequality is smaller than ε that gives

K = O
(
LR2

ε
ln

(
LR2

εβ

))
.

The total number of oracle calls equals

2m(K + 1)
(57)
= 2 max

{
K + 1,

27(K + 1)2σ2

64L2R2 ln 6(K+1)
β

}

= O
(

max

{
LR2

ε
,
σ2R2

ε2

}
ln

(
LR2

εβ

))
.

2. Small stepsize/small batch. First of all, we verify that the choice of γ and m from (57)
satisfies conditions (17) and (19):

γ = min

 1

160L ln 6(K+1)
β

,
R

60σ
√

3(K + 1) ln 6(K+1)
β

 ≤ 1

160L ln 6(K+1)
β

,

m = 1
(61)
≥

10800(K + 1)γ2σ2 ln 6(K+1)
β

R2
.

Therefore, applying Theorem C.1, we derive that with probability at least 1− β

GapR(x̃Kavg) ≤ 9R2

2γ(K + 1)

(61)
= max

720LR2 ln 6(K+1)
β

K + 1
,

270σR
√

ln 6(K+1)
β√

K + 1

 .

To guarantee GapR(x̃Kavg) ≤ ε, we choose K in such a way that the right-hand side of the
above inequality is smaller than ε that gives

K = O
(

max

{
LR2

ε
ln

(
LR2

εβ

)
,
σ2R2

ε2
ln

(
σ2R2

ε2β

)})
.

The total number of oracle calls equals 2m(K + 1) = 2(K + 1).
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C.2 Star-Negative Comonotone Case

Lemma C.2. Let Assumptions 1.2, 1.4 hold for Q = B3R(x∗) = {x ∈ Rd | ‖x − x∗‖ ≤ 3R},
where R ≥ R0

def
= ‖x0 − x∗‖, and γ2 + 2ρ < γ1 ≤ 1/(2L). If xk and x̃k lie in B3R0(x∗) for all

k = 0, 1, . . . ,K for some K ≥ 0, then the iterates produced by clipped-SEG satisfy

γ1γ2
4(K + 1)

K∑
k=0

‖F (xk)‖2 ≤ ‖x0 − x∗‖2 − ‖xK+1 − x∗‖2

K + 1

+
1

K + 1

K∑
k=0

(
γ22‖ωk‖2 + 3γ1γ2‖ωk‖2

)
+

2γ2
K + 1

K∑
k=0

〈xk − x∗ − γ2F (x̃k), θk〉 (64)

where θk, ωk are defined in (15), (16).

Proof. Using the update rule of clipped-SEG, we obtain

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − 2γ2〈xk − x∗, F̃ξk2
(x̃k)〉+ γ22‖F̃ξk2

(x̃k)‖2

= ‖xk − x∗‖2 − 2γ2〈xk − x∗, F (x̃k)〉+ 2γ2〈xk − x∗, θk〉
+γ22‖F (x̃k)‖2 − 2γ22〈F (x̃k), θk〉+ γ22‖θk‖2

= ‖xk − x∗‖2 − 2γ2〈x̃k − x∗, F (x̃k)〉 − 2γ2〈xk − x̃k, F (x̃k)〉
+2γ2〈xk − x∗ − γ2F (x̃k), θk〉+ γ22‖F (x̃k)‖2 + γ2‖θk‖2

(SNC)
≤ ‖xk − x∗‖2 + 2γ2ρ‖F̃ (x̃k)‖2 − 2γ1γ2〈F̃ξk1

(xk), F (x̃k)〉

+2γ2〈xk − x∗ − γ2F (x̃k), θk〉+ γ22‖F (x̃k)‖2 + γ22‖θk‖2
(4)
= ‖xk − x∗‖2 + γ1γ2‖F̃ξk1

(xk)− F (x̃k)‖2 − γ1γ2‖F (x̃k)‖2 − γ1γ2‖F̃ξk1
(xk)‖2

+2γ2〈xk − x∗ − γ2F (x̃k), θk〉+ γ2 (2ρ+ γ2) ‖F (x̃k)‖2 + γ22‖θk‖2
(5)
≤ ‖xk − x∗‖2 + 2γ1γ2‖ωk‖2 + 2γ1γ2‖F (xk)− F (x̃k)‖2 − γ1γ2‖F̃ξk1

(xk)‖2

+2γ2〈xk − x∗ − γ2F (x̃k), θk〉+ γ2 (2ρ+ γ2 − γ1) ‖F (x̃k)‖2 + γ22‖θk‖2
(Lip)
≤ ‖xk − x∗‖2 − γ1γ2

(
1− 2γ21L

2
)
‖F̃ξk1

(xk)‖2

+2γ2〈xk − x∗ − γ2F (x̃k), θk〉+ γ22‖θk‖2 + 2γ1γ2‖ωk‖2,

where in the last step we additionally use xk − x̃k = γ1F̃ξk1
(xk) after the application of Lipschitz-

ness of F and we use our assumption on γ1, γ2, ρ: γ2 + 2ρ ≤ γ1. Since γ1 ≤ 1/(2L), we have
γ1γ2

(
1− 2γ21L

2
)
‖F̃ξk1

(xk)‖2 ≥ 0 and, using (6) with α = 1, we derive

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − γ1γ2
2

(
1− 2γ21L

2
)
‖F (xk)‖2

+2γ2〈xk − x∗ − γ2F (x̃k), θk〉+ γ22‖θk‖2 + 2γ1γ2

(
3

2
− γ21L2

)
‖ωk‖2.

Rearranging the terms and using 3
2 − γ

2
1L

2 ≤ 3
2 , 1− 2γ21L

2 ≥ 1/2, we derive

γ1γ2
4
‖F (xk)‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 +

(
γ22‖θk‖2 + 3γ1γ2‖ωk‖2

)
+2γ2〈xk − x∗ − 2γ2F (x̃k), θk〉.
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Finally, we sum up the above inequality for k = 0, 1, . . . ,K and divide both sides of the result by
(K + 1):

γ1γ2
4(K + 1)

K∑
k=0

‖F (xk)‖2 ≤ 1

K + 1

K∑
k=0

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
+

γ22
K + 1

K∑
k=0

‖θk‖2

+
2γ2
K + 1

K∑
k=0

〈xk − x∗ − γ2F (x̃k), θk〉+
3γ1γ2
K + 1

K∑
k=0

‖ωk‖2

=
‖x0 − x∗‖2 − ‖xK+1 − x∗‖2

K + 1

+
1

K + 1

K∑
k=0

(
γ22‖θk‖2 + 3γ1γ2‖ωk‖2

)
+

2γ2
K + 1

K∑
k=0

〈xk − x∗ − γ2F (x̃k), θk〉.

This finishes the proof.

Theorem C.2. Let Assumptions 1.1, 1.2, 1.4 hold for Q = B3R(x∗), where R ≥ R0
def
= ‖x0 − x∗‖,

and

γ2 + 2ρ ≤ γ1 ≤
1

160L ln 6(K+1)
β

, (65)

λ1,k ≡ λ1 =
R

20γ1 ln 6(K+1)
β

, λ1,k ≡ λ2 =
R

20γ2 ln 6(K+1)
β

, (66)

m1,k ≡ m1 ≥ max

{
1,

216 max{γ1γ2(K + 1),
√
γ31γ2(K + 1) ln 6(K+1)

β }σ2

R2

}
, (67)

m2,k ≡ m2 ≥ max

{
1,

3240(K + 1)γ22σ
2 ln 6(K+1)

β

R2

}
, (68)

for some K ≥ 0 and β ∈ (0, 1] such that ln 6(K+1)
β ≥ 1. Then, after K iterations the iterates

produced by clipped-SEG with probability at least 1− β satisfy

1

K + 1

K∑
k=0

‖F (xk)‖2 ≤ 36R2

γ1γ2(K + 1)
. (69)

Proof. As in the proof of Theorem C.1, we use the following notation: Rk = ‖xk − x∗‖2, k ≥ 0.
We will derive (69) by induction. In particular, for each k = 0, . . . ,K + 1 we define probability
event Ek as follows: inequalities

R2
t ≤ 4R2 (70)

hold for t = 0, 1, . . . , k simultaneously. Our goal is to prove that P{Ek} ≥ 1 − kβ/(K+1) for all
k = 0, 1, . . . ,K + 1. We use the induction to show this statement. For k = 0 the statement is trivial
since R2

0 ≤ 4R2 by definition. Next, assume that the statement holds for k = T − 1 ≤ K, i.e.,
we have P{ET−1} ≥ 1 − (T−1)β/(K+1). We need to prove that P{ET } ≥ 1 − Tβ/(K+1). First of
all, since R2

t ≤ 4R2, we have xt ∈ B2R(x∗). Operator F is L-Lipschitz on B3R(x∗). Therefore,
probability event ET−1 implies

‖F (xt)‖ ≤ L‖xt − x∗‖
(70)
≤ 2LR

(65),(66)
≤ λ1

2
. (71)

and

‖ωt‖2
(5)
≤ 2‖F̃ξ1

(xt)‖2 + 2‖F (xt)‖2
(71)
≤ 5

2
λ21

(66)
≤ R2

4γ21
(72)
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for all t = 0, 1, . . . , T − 1.

Next, we show that probability event ET−1 implies ‖x̃t − x∗‖ ≤ 3R and derive useful inequalities
related to θt for all t = 0, 1, . . . , T − 1. Indeed, due to Lipschitzness of F probability event ET−1
implies

‖x̃t − x∗‖2 = ‖xt − x∗ − γ1F̃ξ1
(xt)‖2

(5)
≤ 2‖xt − x∗‖2 + 2γ21‖F̃ξ1

(xt)‖2

(5)
≤ 2R2

t + 4γ21‖F (xt)‖2 + 4γ21‖ωt‖2
(Lip)
≤ 2(1 + 2γ21L

2)R2
t + 4γ21‖ωt‖2

(65),(72)
≤ 7R2 ≤ 9R2 (73)

and

‖F (x̃t)‖ ≤ L‖x̃t − x∗‖ ≤
√

7LR
(65),(66)
≤ λ2

2
(74)

for all t = 0, 1, . . . , T − 1.

That is, ET−1 implies that xt, x̃t ∈ B3R(x∗) for all t = 0, 1, . . . , T − 1. Applying Lemma C.2, we
get that probability event ET−1 implies

γ1γ2
4T

T−1∑
l=0

‖F (xl)‖2 ≤ R2 −R2
T

T
+

2γ2
T

T−1∑
l=0

〈xl − x∗ − γ2F (x̃l), θl〉

+
1

T

T−1∑
l=0

(
γ22‖θl‖2 + 3γ1γ2‖ωl‖2

)
(75)

R2
T ≤ R2 + 2γ2

T−1∑
l=0

〈xl − x∗ − γ2F (x̃l), θl〉+

T−1∑
l=0

(
γ22‖θl‖2 + 3γ1γ2‖ωl‖2

)
.

To estimate the sums in the right-hand side, we introduce new vectors:

ηt =

{
xt − x∗ − γ2F (x̃t), if ‖xt − x∗ − γ2F (x̃t)‖ ≤

√
7(1 + γ2L)R,

0, otherwise,
(76)

for t = 0, 1, . . . , T − 1. First of all, we point out that vectors ζt and ηt are bounded with probability
1, i.e., with probability 1

‖ηt‖ ≤
√

7(1 + γ2L)R (77)

for all t = 0, 1, . . . , T − 1. Next, we notice that ET−1 implies

‖xt − x∗ − γ2F (x̃t)‖ ≤ ‖xt − x∗‖+ γ2‖F (x̃t)‖
(73),(74)
≤

√
7(1 + γ2L)R

for t = 0, 1, . . . , T − 1, i.e., probability event ET−1 implies ηt = xt − x∗ − γ2F (x̃t) for all
t = 0, 1, . . . , T − 1. Therefore, ET−1 implies

R2
T ≤ R2 + 2γ2

T−1∑
l=0

〈ηl, θl〉+

T−1∑
l=0

(
γ22‖θl‖2 + 3γ1γ2‖ωl‖2

)
.

As in the monotone case, to continue the derivation, we introduce vectors θul , θ
b
l , ω

u
l , ω

b
l defined as

θul
def
= Eξl2

[
F̃ξl2

(x̃l)
]
− F̃ξl2

(x̃l), θbl
def
= F (x̃l)− Eξl2

[
F̃ξl2

(x̃l)
]
, (78)

ωul
def
= Eξl1

[
F̃ξl1

(xl)
]
− F̃ξl1

(xl), θbl
def
= F (xl)− Eξl1

[
F̃ξl1

(xl)
]
, (79)
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for all l = 0, . . . , T − 1. By definition we have θl = θul + θbl , ωl = ωul + ωbl for all l = 0, . . . , T − 1.
Using the introduced notation, we continue our derivation as follows: ET−1 implies

R2
T

(5)
≤ R2 + 2γ2

T−1∑
l=0

〈ηl, θul 〉︸ ︷︷ ︸
¬

+ 2γ2

T−1∑
l=0

〈ηl, θbl 〉︸ ︷︷ ︸
­

+ 2γ22

T−1∑
l=0

Eξl2

[
‖θul ‖2

]
︸ ︷︷ ︸

®

+ 2γ22

T−1∑
l=0

(
‖θul ‖2 − Eξl2

[
‖θul ‖2

])
︸ ︷︷ ︸

¯

+ 2γ22

T−1∑
l=0

‖θbl ‖2︸ ︷︷ ︸
°

+ 6γ1γ2

T−1∑
l=0

Eξl1

[
‖ωul ‖2

]
︸ ︷︷ ︸

±

+ 6γ1γ2

T−1∑
l=0

(
‖ωul ‖2 − Eξl1

[
‖ωul ‖2

])
︸ ︷︷ ︸

²

+ 6γ1γ2

T−1∑
l=0

‖ωbl ‖2︸ ︷︷ ︸
³

. (80)

The rest of the proof is based on deriving good enough upper bounds for ¬,­,®,¯,°,±,²,³, i.e.,
we want to prove that ¬ + ­ + ® + ¯ + ° + ± + ² + ³ ≤ 8R2 with high probability.

Before we move on, we need to derive some useful inequalities for operating with θul , θ
b
l , ω

u
l , ω

b
l .

First of all, Lemma B.2 implies that

‖θul ‖ ≤ 2λ2, ‖ωul ‖ ≤ 2λ1 (81)

for all l = 0, 1, . . . , T − 1. Next, since {ξi,l1 }
m1
i=1, {ξi,l2 }

m2
i=1 are independently sampled from D, we

have Eξl1
[Fξl1

(xl)] = F (xl), Eξl2
[Fξl2

(x̃l)] = F (x̃l), and

Eξl1

[
‖Fξl1

(xl)− F (xl)‖2
]

=
1

m2
1

m1∑
i=1

Eξi,l1

[
‖Fξi,l1

(xl)− F (xl)‖2
] (1)
≤ σ2

m1
,

Eξl2

[
‖Fξl2

(x̃l)− F (x̃l)‖2
]

=
1

m2
2

m2∑
i=1

Eξi,l2

[
‖Fξi,l2

(x̃l)− F (x̃l)‖2
] (1)
≤ σ2

m2
,

for all l = 0, 1, . . . , T − 1. Moreover, as we already derived, probability event ET−1 implies that
‖F (xl)‖ ≤ λl/2 and ‖F (x̃l)‖ ≤ λl/2 for all l = 0, 1, . . . , T − 1 (see (71) and (74)). Therefore, in
view of Lemma B.2, ET−1 implies that∥∥θbl ∥∥ ≤ 4σ2

m2λ2
,
∥∥ωbl ∥∥ ≤ 4σ2

m1λ1
, (82)

Eξl2

[
‖θl‖2

]
≤ 18σ2

m2
, Eξl1

[
‖ωl‖2

]
≤ 18σ2

m1
, (83)

Eξl2

[
‖θul ‖

2
]
≤ 18σ2

m2
, Eξl1

[
‖ωul ‖

2
]
≤ 18σ2

m1
, (84)

for all l = 0, 1, . . . , T − 1.

Upper bound for ¬. Since Eξl2
[θul ] = 0, we have

Eξl2
[2γ2〈ηl, θul 〉] = 0.

Next, the summands in ¬ are bounded with probability 1:

|2γ2〈ηl, θul 〉| ≤ 2γ2‖ηl‖ · ‖θul ‖
(77),(81)
≤ 4

√
7γ2(1 + γ2L)Rλl

(65),(66)
≤ R2

ln 6(K+1)
β

def
= c. (85)

Moreover, these summands have bounded conditional variances σ2
l

def
= Eξl2

[
4γ22〈ηl, θul 〉2

]
:

σ2
l ≤ Eξl2

[
4γ22‖ηl‖2 · ‖θul ‖2

] (77)
≤ 28γ22(1 + γ2L)2R2Eξl2

[
‖θul ‖2

] (65)
≤ 30γ22R

2Eξl2

[
‖θul ‖2

]
. (86)
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That is, sequence {2γ2〈ηl, θul 〉}l≥0 is a bounded martingale difference sequence having bounded
conditional variances {σ2

l }l≥0. Applying Bernstein’s inequality (Lemma B.1) with Xl = 2γ2〈ηl, θul 〉,
c defined in (85), b = R2, G = R4

6 ln
6(K+1)

β

, we get that

P

{
|¬| > R2 and

T−1∑
l=0

σ2
l ≤

R4

6 ln 6(K+1)
β

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

β

3(K + 1)
.

In other words, P{E¬} ≥ 1− β
3(K+1) , where probability event E¬ is defined as

E¬ =

{
either

T−1∑
l=0

σ2
l >

R4

6 ln 6(K+1)
β

or |¬| ≤ R2

}
. (87)

Moreover, we notice here that probability event ET−1 implies that

T−1∑
l=0

σ2
l

(86)
≤ 30γ22R

2
T−1∑
l=0

Eξl2

[
‖θul ‖2

] (84),T≤K+1

≤ 540γ22R
2σ2(K + 1)

m2

(68)
≤ R4

6 ln 6(K+1)
β

.(88)

Upper bound for ­. Probability event ET−1 implies

­ ≤ 2γ2

T−1∑
l=0

‖ηl‖ · ‖θbl ‖
(77),(82),T≤K+1

≤ 8
√

7γ2(1 + γ2L)σ2R(K + 1)

m2λ2

(65),(66)
=

161
√

7γ22σ
2(K + 1) ln 6(K+1)

β

m2

(68)
≤ R2. (89)

Upper bound for ®. Probability event ET−1 implies

® = 2γ22

T−1∑
l=0

Eξl2

[
‖θul ‖2

] (84),T≤K+1

≤ 36γ22σ
2(K + 1)

m2

(68)
≤ R2. (90)

Upper bound for ¯. We have

2γ22Eξl2

[
‖θul ‖2 − Eξl2

[
‖θul ‖2

]]
= 0.

Next, the summands in ¯ are bounded with probability 1:

2γ22

∣∣∣‖θul ‖2 − Eξl2

[
‖θul ‖2

]∣∣∣ ≤ 2γ22

(
‖θul ‖2 + Eξl2

[
‖θul ‖2

]) (81)
≤ 16γ22λ

2
2

(66)
≤ R2

ln 6(K+1)
β

def
= c. (91)

Moreover, these summands have bounded conditional variances σ̃2
l

def
=

4γ42Eξl2

[(
‖θul ‖2 − Eξl2

[
‖θul ‖2

])2]
:

σ̃2
l

(91)
≤ 2γ22R

2

ln 6(K+1)
β

Eξl2

[∣∣∣‖θul ‖2 − Eξl2

[
‖θul ‖2

]∣∣∣] ≤ 4γ22R
2

ln 6(K+1)
β

Eξl2

[
‖θul ‖2

]
(92)

That is, sequence {‖θul ‖2 − Eξl2
[‖θul ‖2]}l≥0 is a bounded martingale difference sequence having

bounded conditional variances {σ̃2
l }l≥0. Applying Bernstein’s inequality (Lemma B.1) with Xl =

‖θul ‖2 − Eξl2
[‖θul ‖2], c defined in (91), b = R2, G = R4

6 ln
6(K+1)

β

, we get that

P

{
|¯| > R2 and

T−1∑
l=0

σ̃2
l ≤

R4

6 ln 6(K+1)
β

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

β

3(K + 1)
.
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In other words, P{E¯} ≥ 1− β
3(K+1) , where probability event E¯ is defined as

E¯ =

{
either

T−1∑
l=0

σ̃2
l >

R4

6 ln 6(K+1)
β

or |¯| ≤ R2

}
. (93)

Moreover, we notice here that probability event ET−1 implies that
T−1∑
l=0

σ̃2
l

(92)
≤ 4γ22R

2

ln 6(K+1)
β

T−1∑
l=0

Eξl2

[
‖θul ‖2

] (84),T≤K+1

≤ 72γ22R
2σ2(K + 1)

m2 ln 6(K+1)
β

(68)
≤ R4

6 ln 6(K+1)
β

. (94)

Upper bound for °. Probability event ET−1 implies

° = 2γ22

T−1∑
l=0

‖θbl ‖2
(82),T≤K+1

≤ 32γ22σ
4(K + 1)

m2
2λ

2
2

(66)
=

12800γ42σ
4(K + 1) ln2 6(K+1)

β

m2
2R

2

(68)
≤ R2. (95)

Upper bound for ±. Probability event ET−1 implies

± = 6γ1γ2

T−1∑
l=0

Eξl1

[
‖ωul ‖2

] (84),T≤K+1

≤ 108γ1γ2σ
2(K + 1)

m1

(67)
≤ R2. (96)

Upper bound for ². We have

6γ1γ2Eξl1

[
‖ωul ‖2 − Eξl1

[
‖ωul ‖2

]]
= 0.

Next, the summands in ² are bounded with probability 1:

6γ1γ2

∣∣∣‖ωul ‖2 − Eξl1

[
‖ωul ‖2

]∣∣∣ ≤ 6γ1γ2

(
‖ωul ‖2 + Eξl1

[
‖ωul ‖2

]) (81)
≤ 48γ1γ2λ

2
1

(66)
≤ γ2R

2

γ1 ln 6(K+1)
β

γ2≤γ1
≤ R2

ln 6(K+1)
β

def
= c. (97)

Moreover, these summands have bounded conditional variances σ̂2
l

def
=

36γ21γ
2
2Eξl1

[(
‖ωul ‖2 − Eξl1

[
‖ωul ‖2

])2]
:

σ̂2
l

(97)
≤ 6γ22R

2

ln 6(K+1)
β

Eξl1

[∣∣∣‖ωul ‖2 − Eξl1

[
‖ωul ‖2

]∣∣∣] ≤ 12γ22R
2

ln 6(K+1)
β

Eξl1

[
‖ωul ‖2

]
(98)

That is, sequence {‖ωul ‖2 − Eξl1
[‖ωul ‖2]}l≥0 is a bounded martingale difference sequence having

bounded conditional variances {σ̂2
l }l≥0. Applying Bernstein’s inequality (Lemma B.1) with Xl =

‖ωul ‖2 − Eξl1
[‖ωul ‖2], c defined in (97), b = R2, G = R4

6 ln
6(K+1)

β

, we get that

P

{
|²| > R2 and

T−1∑
l=0

σ̂2
l ≤

R4

6 ln 6(K+1)
β

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

β

3(K + 1)
.

In other words, P{E²} ≥ 1− β
3(K+1) , where probability event E² is defined as

E² =

{
either

T−1∑
l=0

σ̂2
l >

R4

6 ln 6(K+1)
β

or |²| ≤ R2

}
. (99)

Moreover, we notice here that probability event ET−1 implies that
T−1∑
l=0

σ̂2
l

(98)
≤ 12γ22R

2

ln 6(K+1)
β

T−1∑
l=0

Eξl1

[
‖ωul ‖2

] (84),T≤K+1

≤ 216γ22R
2σ2(K + 1)

m1 ln 6(K+1)
β

(67)
≤ R4

6 ln 6(K+1)
β

. (100)
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Upper bound for ³. Probability event ET−1 implies

³ = 6γ1γ2

T−1∑
l=0

‖ωbl ‖2
(82),T≤K+1

≤ 96γ1γ2σ
4(K + 1)

m2
1λ

2
1

(66)
=

38400γ31γ2σ
4(K + 1) ln2 6(K+1)

β

m2
1R

2

(67)
≤ R2. (101)

Final derivation. Putting all bounds together, we get that ET−1 implies

R2
T

(80)
≤ R2 + ¬ + ­ + ® + ¯ + ° + ± + ² + ³,

­
(89)
≤ R2, ®

(90)
≤ R2, °

(95)
≤ R2, ±

(96)
≤ R2, ³

(101)
≤ R2,

T−1∑
l=0

σ2
l

(88)
≤ R4

6 ln 6(K+1)
β

,

T−1∑
l=0

σ̃2
l

(94)
≤ R4

6 ln 6(K+1)
β

,

T−1∑
l=0

σ̂2
l

(100)
≤ R4

6 ln 6(K+1)
β

.

Moreover, in view of (87), (93), (99), and our induction assumption, we have

P{ET−1} ≥ 1− (T − 1)β

K + 1
,

P{E¬} ≥ 1− β

3(K + 1)
, P{E¯} ≥ 1− β

3(K + 1)
, P{E²} ≥ 1− β

3(K + 1)
,

where probability events E¬, E¯, and E² are defined as

E¬ =

{
either

T−1∑
l=0

σ2
l >

R4

6 ln 6(K+1)
β

or |¬| ≤ R2

}
,

E¯ =

{
either

T−1∑
l=0

σ̃2
l >

R4

6 ln 6(K+1)
β

or |¯| ≤ R2

}
,

E² =

{
either

T−1∑
l=0

σ̂2
l >

R4

6 ln 6(K+1)
β

or |²| ≤ R2

}
.

Putting all of these inequalities together, we obtain that probability event ET−1 ∩ E¬ ∩ E¯ ∩ E²

implies

R2
T

(80)
≤ R2 + ¬ + ­ + ® + ¯ + ° + ± + ² + ³

≤ 9R2.

Moreover, union bound for the probability events implies

P{ET } ≥ P{ET−1 ∩ E¬ ∩ E¯ ∩ E²} = 1− P{ET−1 ∪ E¬ ∪ E¯ ∪ E²} ≥ 1− Tβ

K + 1
. (102)

This is exactly what we wanted to prove (see the paragraph after inequality (70)). In particular, EK+1

implies

1

K + 1

K+1∑
k=0

‖F (xk)‖2
(75)
≤

4(R2 −R2
K+1)

γ1γ2(K + 1)
+

4 (¬ + ­ + ® + ¯ + ° + ± + ² + ³)

γ1γ2(K + 1)

≤ 36R2

γ1γ2(K + 1)
.

This finishes the proof.

Corollary C.2. Let the assumptions of Theorem C.2 hold and

ρ ≤ 1

640L ln 6(K+1)
β

. (103)
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Then, the choice of step-sizes and batch-sizes

2γ2 = γ1 =
1

160L ln 6(K+1)
β

, m1 = m2 = max

{
1,

81(K + 1)σ2

640L2R2 ln 6(K+1)
β

}
(104)

satisfies conditions (65), (67), (68). With such choice of γ,m1,m2, and the choice of λ1, λ2 as in
(66), the iterates produced by clipped-SEG after K iterations with probability at least 1− β satisfy

1

K + 1

K∑
k=0

‖F (xk)‖2 ≤
1843200L2R2 ln2 6(K+1)

β

K + 1
. (105)

In particular, to guarantee 1
K+1

∑K
k=0 ‖F (xk)‖2 ≤ ε with probability at least 1− β for some ε > 0

clipped-SEG requires,

O
(
L2R2

ε
ln2

(
L2R2

εβ

))
iterations, (106)

O
(

max

{
L2R2

ε
ln2

(
L2R2

εβ

)
,
L2σ2R2

ε2
ln3

(
LR2

εβ

)})
oracle calls. (107)

Proof. First of all, we verify that the choice of γ1, γ2 and m1,m2 from (104) satisfies conditions
(65), (67), (68). Inequality (65) holds since

γ2 + 2ρ
(104)
=

1

320L ln 6(K+1)
β

+ 2ρ
(103)
≤ 1

320L ln 6(K+1)
β

+
1

320L ln 6(K+1)
β

(104)
= γ1

and (67), (68) are satisfied since

m1 = max

{
1,

81(K + 1)σ2

640L2R2 ln 6(K+1)
β

}

≥ max

{
1,

216 max{γ1γ2(K + 1),
√
γ31γ2(K + 1) ln 6(K+1)

β }σ2

R2

}
,

m2 = max

{
1,

81(K + 1)σ2

640L2R2 ln 6(K+1)
β

}
≥ max

{
1,

3240(K + 1)γ22σ
2 ln 6(K+1)

β

R2

}
.

Therefore, applying Theorem C.2, we derive that with probability at least 1− β

1

K + 1

K∑
k=0

‖F (xk)‖2 ≤ 36R2

γ1γ2(K + 1)

(104)
=

1843200L2R2 ln2 6(K+1)
β

K + 1
.

To guarantee 1
K+1

∑K
k=0 ‖F (xk)‖2 ≤ ε, we choose K in such a way that the right-hand side of the

above inequality is smaller than ε that gives

K = O
(
L2R2

ε
ln2

(
L2R2

εβ

))
.

The total number of oracle calls equals

2m(K + 1)
(104)
= 2 max

{
K + 1,

81(K + 1)2σ2

640L2R2 ln 6(K+1)
β

}

= O
(

max

{
L2R2

ε
ln2

(
L2R2

εβ

)
,
L2σ2R2

ε2
ln3

(
L2R2

εβ

)})
.
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C.3 Quasi-Strongly Monotone Case

Lemma C.3. Let Assumptions 1.2, 1.5 hold for Q = B3R(x∗) = {x ∈ Rd | ‖x − x∗‖ ≤ 3R},
where R ≥ R0

def
= ‖x0 − x∗‖, and γ1 = γ2 = γ, 0 < γ ≤ 1/2(L+2µ). If xk and x̃k

def
= xk − γF (xk)

lie in B3R(x∗) for all k = 0, 1, . . . ,K for some K ≥ 0, then the iterates produced by clipped-SEG
satisfy

‖xK+1 − x∗‖2 ≤ (1− γµ)K+1‖x0 − x∗‖2 − 4γ3µ

K∑
k=0

(1− γµ)K−k〈F (xk), ωk〉

+2γ

K∑
k=0

(1− γµ)K−k〈xk − x∗ − γF (x̃k), θk〉

+γ2
K∑
k=0

(1− γµ)K−k
(
‖θk‖2 + 4‖ωk‖2

)
, (108)

where θk, ωk are defined in (15), (16).

Proof. Using the update rule of clipped-SEG, we obtain

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − 2γ〈xk − x∗, F̃ξk2
(x̃k)〉+ γ2‖F̃ξk2

(x̃k)‖2

= ‖xk − x∗‖2 − 2γ〈xk − x∗, F (x̃k)〉+ 2γ〈xk − x∗, θk〉
+γ2‖F (x̃k)‖2 − 2γ2〈F (x̃k), θk〉+ γ2‖θk‖2

= ‖xk − x∗‖2 − 2γ〈x̃k − x∗, F (x̃k)〉 − 2γ〈xk − x̃k, F (x̃k)〉
+2γ〈xk − x∗ − γF (x̃k), θk〉+ γ2‖F (x̃k)‖2 + γ2‖θk‖2.

Since F is µ-quasi strongly monotone, we have

−2γ〈x̃k − x∗, F (x̃k)〉 ≤ −2γµ‖x̃k − x∗‖2
(6)
≤ −γµ‖xk − x∗‖2 + 2γµ‖x̃k − xk‖2

= −γµ‖xk − x∗‖2 + 2γ3µ‖F̃ξ1
(xk)‖2

= −γµ‖xk − x∗‖2 + 2γ3µ‖F (xk)‖2 − 4γ3µ〈F (xk), ωk〉+ 2γ3µ‖ωk‖2.

Moreover, −2γ〈xk − x̃k, F (x̃k)〉 can be rewritten as

−2γ〈xk − x̃k, F (x̃k)〉 = −2γ2〈F̃ξ1
(xk), F (x̃k)〉

= γ2‖F̃ξ1
(xk)− F (xk)‖2 − γ2‖F̃ξ1

(xk)‖2 − γ2‖F (x̃k)‖2.
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Putting all together, we get

‖xk+1 − x∗‖2 ≤ (1− γµ)‖xk − x∗‖2 + 2γ3µ‖F (xk)‖2 − 4γ3µ〈F (xk), ωk〉+ 2γ3µ‖ωk‖2

+γ2‖F̃ξ1
(xk)− F (xk)‖2 − γ2‖F̃ξ1

(xk)‖2 − γ2‖F (x̃k)‖2

+2γ〈xk − x∗ − γF (x̃k), θk〉+ γ2‖F (x̃k)‖2 + γ2‖θk‖2
(5)
≤ (1− γµ)‖xk − x∗‖2 + 2γ3µ‖F (xk)‖2 − 4γ3µ〈F (xk), ωk〉+ 2γ3µ‖ωk‖2

+2γ2‖ωk‖2 + 2γ2‖F (xk)− F (x̃k)‖2 − γ2‖F̃ξ1
(xk)‖2

+2γ〈xk − x∗ − γF (x̃k), θk〉+ γ2‖θk‖2
(Lip)
≤ (1− γµ)‖xk − x∗‖2 + 2γ3µ‖F (xk)‖2 − 4γ3µ〈F (xk), ωk〉

+2γ2(1 + γµ)‖ωk‖2 − γ2(1− 2γ2L2)‖F̃ξ1
(xk)‖2

+2γ〈xk − x∗ − γF (x̃k), θk〉+ γ2‖θk‖2
(6)
≤ (1− γµ)‖xk − x∗‖2 − γ2

(
1

2
− γ2L2 − 2γµ

)
‖F (xk)‖2

−4γ3µ〈F (xk), ωk〉+ γ2(3− 2γ2L2 + 2γµ)‖ωk‖2

+2γ〈xk − x∗ − γF (x̃k), θk〉+ γ2‖θk‖2

≤ (1− γµ)‖xk − x∗‖2 − 4γ3µ〈F (xk), ωk〉
+2γ〈xk − x∗ − γF (x̃k), θk〉+ γ2

(
‖θk‖2 + 4‖ωk‖2

)
,

where in the last step we apply 0 < γ ≤ 1/2(L+2µ). Unrolling the recurrence, we obtain (108).

Theorem C.3. Let Assumptions 1.1, 1.2, 1.5, hold for Q = B3R(x∗) = {x ∈ Rd | ‖x− x∗‖ ≤ 3R},
where R ≥ R0

def
= ‖x0 − x∗‖, and γ1 = γ2 = γ,

0 < γ ≤ 1

650L ln 6(K+1)
β

, (109)

λ1,k = λ2,k = λk =
exp(−γµ(1 + k/2))R

120γ ln 6(K+1)
β

, (110)

m1,k = m2,k = mk ≥ max

{
1,

264600γ2(K + 1)σ2 ln 6(K+1)
β

exp(−γµk)R2

}
, (111)

for some K ≥ 0 and β ∈ (0, 1] such that ln 6(K+1)
β ≥ 1. Then, after K iterations the iterates

produced by clipped-SEG with probability at least 1− β satisfy

‖xK+1 − x∗‖2 ≤ 2 exp(−γµ(K + 1))R2. (112)

Proof. As in the proof of Theorem C.1, we use the following notation: Rk = ‖xk − x∗‖2, k ≥ 0.
We will derive (112) by induction. In particular, for each k = 0, . . . ,K + 1 we define probability
event Ek as follows: inequalities

R2
t ≤ 2 exp(−γµt)R2 (113)

hold for t = 0, 1, . . . , k simultaneously. Our goal is to prove that P{Ek} ≥ 1 − kβ/(K+1) for all
k = 0, 1, . . . ,K + 1. We use the induction to show this statement. For k = 0 the statement is trivial
since R2

0 ≤ 2R2 by definition. Next, assume that the statement holds for k = T − 1 ≤ K, i.e.,
we have P{ET−1} ≥ 1 − (T−1)β/(K+1). We need to prove that P{ET } ≥ 1 − Tβ/(K+1). First of
all, since R2

t ≤ 2 exp(−γµt)R2 ≤ 9R2, we have xt ∈ B3R(x∗). Operator F is L-Lipschitz on
B3R(x∗). Therefore, probability event ET−1 implies

‖F (xt)‖ ≤ L‖xt − x∗‖
(113)
≤
√

2L exp(−γµt/2)R
(109),(110)
≤ λt

2
. (114)

and

‖ωt‖2
(5)
≤ 2‖F̃ξ1

(xt)‖2 + 2‖F (xt)‖2
(114)
≤ 5

2
λ2t

(110)
≤ exp(−γµt)R2

4γ2
(115)
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for all t = 0, 1, . . . , T − 1.

Next, we show that probability event ET−1 implies ‖x̃t − x∗‖ ≤ 3R and derive useful inequalities
related to θt for all t = 0, 1, . . . , T − 1. Indeed, due to Lipschitzness of F probability event ET−1
implies

‖x̃t − x∗‖2 = ‖xt − x∗ − γF̃ξ1
(xt)‖2

(5)
≤ 2‖xt − x∗‖2 + 2γ2‖F̃ξ1

(xt)‖2

(5)
≤ 2R2

t + 4γ2‖F (xt)‖2 + 4γ2‖ωt‖2
(Lip)
≤ 2(1 + 2γ2L2)R2

t + 4γ2‖ωt‖2
(109),(115)
≤ 7 exp(−γµt)R2 ≤ 9R2 (116)

and

‖F (x̃t)‖ ≤ L‖x̃t − x∗‖ ≤
√

7L exp(−γµt/2)R
(109),(110)
≤ λt

2
(117)

for all t = 0, 1, . . . , T − 1.

That is, ET−1 implies that xt, x̃t ∈ B3R(x∗) for all t = 0, 1, . . . , T − 1. Applying Lemma C.3 and
(1− γµ)T ≤ exp(−γµT ), we get that probability event ET−1 implies

R2
T ≤ exp(−γµT )R2 − 4γ3µ

T−1∑
l=0

(1− γµ)T−1−l〈F (xl), ωl〉

+2γ

T−1∑
l=0

(1− γµ)T−1−l〈xl − x∗ − γF (x̃l), θl〉

+γ2
T−1∑
l=0

(1− γµ)T−1−l
(
‖θl‖2 + 4‖ωl‖2

)
.

To estimate the sums in the right-hand side, we introduce new vectors:

ζt =

{
F (xt), if ‖F (xt)‖ ≤

√
2L exp(−γµt/2)R,

0, otherwise,
(118)

ηt =

{
xt − x∗ − γF (x̃t), if ‖xt − x∗ − γF (x̃t)‖ ≤

√
7(1 + γL) exp(−γµt/2)R,

0, otherwise,
(119)

for t = 0, 1, . . . , T − 1. First of all, we point out that vectors ζt and ηt are bounded with probability
1, i.e., with probability 1

‖ζt‖ ≤
√

2L exp(−γµt/2)R, ‖ηt‖ ≤
√

7(1 + γL) exp(−γµt/2)R (120)

for all t = 0, 1, . . . , T − 1. Next, we notice that ET−1 implies ‖F (xt)‖ ≤
√

2L exp(−γµt/2)R (due
to (114)) and

‖xt − x∗ − γF (x̃t)‖ ≤ ‖xt − x∗‖+ γ‖F (x̃t)‖
(116),(117)
≤

√
7(1 + γL) exp(−γµt/2)R

for t = 0, 1, . . . , T − 1, i.e., probability event ET−1 implies ζt = F (xt) and ηt = xt− x∗− γF (x̃t)
for all t = 0, 1, . . . , T − 1. Therefore, ET−1 implies

R2
T ≤ exp(−γµT )R2 − 4γ3µ

T−1∑
l=0

(1− γµ)T−1−l〈ζl, ωl〉

+2γ

T−1∑
l=0

(1− γµ)T−1−l〈ηl, θl〉+ γ2
T−1∑
l=0

(1− γµ)T−1−l
(
‖θl‖2 + 4‖ωl‖2

)
.
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As in the monotone case, to continue the derivation, we introduce vectors θul , θ
b
l , ω

u
l , ω

b
l defined as

θul
def
= Eξl2

[
F̃ξl2

(x̃l)
]
− F̃ξl2

(x̃l), θbl
def
= F (x̃l)− Eξl2

[
F̃ξl2

(x̃l)
]
, (121)

ωul
def
= Eξl1

[
F̃ξl1

(xl)
]
− F̃ξl1

(xl), ωbl
def
= F (xl)− Eξl1

[
F̃ξl1

(xl)
]
, (122)

for all l = 0, . . . , T − 1. By definition we have θl = θul + θbl , ωl = ωul + ωbl for all l = 0, . . . , T − 1.
Using the introduced notation, we continue our derivation as follows: ET−1 implies

R2
T

(5)
≤ exp(−γµT )R2−4γ3µ

T−1∑
l=0

(1− γµ)T−1−l〈ζl, ωul 〉︸ ︷︷ ︸
¬

−4γ3µ

T−1∑
l=0

(1− γµ)T−1−l〈ζl, ωbl 〉︸ ︷︷ ︸
­

+ 2γ

T−1∑
l=0

(1− γµ)T−1−l〈ηl, θul 〉︸ ︷︷ ︸
®

+ 2γ

T−1∑
l=0

(1− γµ)T−1−l〈ηl, θbl 〉︸ ︷︷ ︸
¯

+ 2γ2
T−1∑
l=0

(1− γµ)T−1−l
(
Eξl2

[
‖θul ‖2

]
+ 4Eξl1

[
‖ωul ‖2

])
︸ ︷︷ ︸

°

+ 2γ2
T−1∑
l=0

(1− γµ)T−1−l
(
‖θul ‖2 + 4‖ωul ‖2 − Eξl2

[
‖θul ‖2

]
− 4Eξl1

[
‖ωul ‖2

])
︸ ︷︷ ︸

±

+ 2γ2
T−1∑
l=0

(1− γµ)T−1−l
(
‖θbl ‖2 + 4‖ωbl ‖2

)
︸ ︷︷ ︸

²

. (123)

The rest of the proof is based on deriving good enough upper bounds for ¬,­,®,¯,°,±,², i.e.,
we want to prove that ¬ + ­ + ® + ¯ + ° + ± + ² ≤ exp(−γµT )R2 with high probability.

Before we move on, we need to derive some useful inequalities for operating with θul , θ
b
l , ω

u
l , ω

b
l .

First of all, Lemma B.2 implies that

‖θul ‖ ≤ 2λl, ‖ωul ‖ ≤ 2λl (124)

for all l = 0, 1, . . . , T − 1. Next, since {ξi,l1 }
ml
i=1, {ξi,l2 }

ml
i=1 are independently sampled from D, we

have Eξl1
[Fξl1

(xl)] = F (xl), Eξl2
[Fξl2

(x̃l)] = F (x̃l), and

Eξl1

[
‖Fξl1

(xl)− F (xl)‖2
]

=
1

m2
l

ml∑
i=1

Eξi,l1

[
‖Fξi,l1

(xl)− F (xl)‖2
] (1)
≤ σ2

ml
,

Eξl2

[
‖Fξl2

(x̃l)− F (x̃l)‖2
]

=
1

m2
l

ml∑
i=1

Eξi,l2

[
‖Fξi,l2

(x̃l)− F (x̃l)‖2
] (1)
≤ σ2

ml
,

for all l = 0, 1, . . . , T − 1. Moreover, as we already derived, probability event ET−1 implies that
‖F (xl)‖ ≤ λl/2 and ‖F (x̃l)‖ ≤ λl/2 for all l = 0, 1, . . . , T − 1 (see (114) and (117)). Therefore, in
view of Lemma B.2, ET−1 implies that∥∥θbl ∥∥ ≤ 4σ2

mlλl
,
∥∥ωbl ∥∥ ≤ 4σ2

mlλl
, (125)

Eξl2

[
‖θl‖2

]
≤ 18σ2

ml
, Eξl1

[
‖ωl‖2

]
≤ 18σ2

ml
, (126)

Eξl2

[
‖θul ‖

2
]
≤ 18σ2

ml
, Eξl1

[
‖ωul ‖

2
]
≤ 18σ2

ml
, (127)

for all l = 0, 1, . . . , T − 1.
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Upper bound for ¬. Since Eξl1
[ωul ] = 0, we have

Eξl1

[
−4γ3µ(1− γµ)T−1−l〈ζl, ωul 〉

]
= 0.

Next, the summands in ¬ are bounded with probability 1:

| − 4γ3µ(1− γµ)T−1−l〈ζl, ωul 〉| ≤ 4γ3µ exp(−γµ(T − 1− l))‖ζl‖ · ‖ωul ‖
(120),(124)
≤ 8

√
2γ3µL exp(−γµ(T − 1− l/2))Rλl

(109),(110)
≤ exp(−γµT )R2

7 ln 6(K+1)
β

def
= c. (128)

Moreover, these summands have bounded conditional variances σ2
l

def
=

Eξl1

[
16γ6µ2(1− γµ)2T−2−2l〈ζl, ωul 〉2

]
:

σ2
l ≤ Eξl1

[
16γ6µ2 exp(−γµ(2T − 2− 2l))‖ζl‖2 · ‖ωul ‖2

]
(120)
≤ 36γ6µ2L2 exp(−γµ(2T − 2− l))R2Eξl1

[
‖ωul ‖2

]
(109)
≤ 4γ2 exp(−γµ(2T − l))R2

2809 ln 6(K+1)
β

Eξl1

[
‖ωul ‖2

]
. (129)

That is, sequence {−4γ3µ(1− γµ)T−1−l〈ζl, ωul 〉}l≥0 is a bounded martingale difference sequence
having bounded conditional variances {σ2

l }l≥0. Applying Bernstein’s inequality (Lemma B.1) with
Xl = −4γ3µ(1− γµ)T−1−l〈ζl, ωul 〉, c defined in (128), b = 1

7 exp(−γµT )R2, G = exp(−2γµT )R4

294 ln
6(K+1)

β

,

we get that

P

{
|¬| > 1

7
exp(−γµT )R2 and

T−1∑
l=0

σ2
l ≤

exp(−2γµT )R4

294 ln 6(K+1)
β

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

β

3(K + 1)
.

In other words, P{E¬} ≥ 1− β
3(K+1) , where probability event E¬ is defined as

E¬ =

{
either

T−1∑
l=0

σ2
l >

exp(−2γµT )R4

294 ln 6(K+1)
β

or |¬| ≤ 1

7
exp(−γµT )R2

}
. (130)

Moreover, we notice here that probability event ET−1 implies that
T−1∑
l=0

σ2
l

(129)
≤ 4γ2 exp(−2γµT )R2

2809 ln 6(K+1)
β

T−1∑
l=0

Eξl1

[
‖ωul ‖2

]
exp(−γµl)

(127),T≤K+1

≤ 72γ2 exp(−2γµT )R2σ2

2809 ln 6(K+1)
β

K∑
l=0

1

ml exp(−γµl)

(111)
≤ exp(−2γµT )R4

294 ln 6(K+1)
β

. (131)

Upper bound for ­. Probability event ET−1 implies

­ ≤ 4γ3µ

T−1∑
l=0

exp(−γµ(T − 1− l))‖ζl‖ · ‖ωbl ‖

(120),(125)
≤ 16

√
2 exp(−γµ(T − 1))γ3µLR

T−1∑
l=0

σ2

mlλl exp(−γµl/2)

(110)
= 1920

√
2 exp(−γµ(T − 2))γ4µL

T−1∑
l=0

σ2 ln 6(K+1)
β

ml exp(−γµl)
(109),(111),T≤K+1

≤ 1

7
exp(−γµT )R2. (132)
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Upper bound for ®. Since Eξl2
[θul ] = 0, we have

Eξl2

[
2γ(1− γµ)T−1−l〈ηl, θul 〉

]
= 0.

Next, the summands in ® are bounded with probability 1:

|2γ(1− γµ)T−1−l〈ηl, θul 〉| ≤ 2γ exp(−γµ(T − 1− l))‖ηl‖ · ‖θul ‖
(120),(124)
≤ 4

√
7γ(1 + γL) exp(−γµ(T − 1− l/2))Rλl

(109),(110)
≤ exp(−γµT )R2

7 ln 6(K+1)
β

def
= c. (133)

Moreover, these summands have bounded conditional variances σ̃2
l

def
=

Eξl2

[
4γ2(1− γµ)2T−2−2l〈ηl, θul 〉2

]
:

σ̃2
l ≤ Eξl2

[
4γ2 exp(−γµ(2T − 2− 2l))‖ηl‖2 · ‖θul ‖2

]
(120)
≤ 49γ2(1 + γL)2 exp(−γµ(2T − 2− l))R2Eξl2

[
‖θul ‖2

]
(109)
≤ 50γ2 exp(−γµ(2T − l))R2Eξl2

[
‖θul ‖2

]
. (134)

That is, sequence {2γ(1 − γµ)T−1−l〈ηl, θul 〉}l≥0 is a bounded martingale difference sequence
having bounded conditional variances {σ̃2

l }l≥0. Applying Bernstein’s inequality (Lemma B.1) with
Xl = 2γ(1− γµ)T−1−l〈ηl, θul 〉, c defined in (133), b = 1

7 exp(−γµT )R2, G = exp(−2γµT )R4

294 ln
6(K+1)

β

, we

get that

P

{
|®| > 1

7
exp(−γµT )R2 and

T−1∑
l=0

σ̃2
l ≤

exp(−2γµT )R4

294 ln 6(K+1)
β

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

β

3(K + 1)
.

In other words, P{E®} ≥ 1− β
3(K+1) , where probability event E® is defined as

E® =

{
either

T−1∑
l=0

σ̃2
l >

exp(−2γµT )R4

294 ln 6(K+1)
β

or |®| ≤ 1

7
exp(−γµT )R2

}
. (135)

Moreover, we notice here that probability event ET−1 implies that
T−1∑
l=0

σ̃2
l

(134)
≤ 50γ2 exp(−2γµT )R2

T−1∑
l=0

Eξl2

[
‖θul ‖2

]
exp(−γµl)

(127),T≤K+1

≤ 900γ2 exp(−2γµT )R2σ2
K∑
l=0

1

ml exp(−γµl)
(111)
≤ exp(−2γµT )R4

294 ln 6(K+1)
β

. (136)

Upper bound for ¯. Probability event ET−1 implies

¯ ≤ 2γ exp(−γµ(T − 1))

T−1∑
l=0

‖ηl‖ · ‖θbl ‖
exp(−γµl)

(120),(125)
≤ 8

√
7γ(1 + γL) exp(−γµ(T − 1))R

T−1∑
l=0

σ2

mlλl exp(−γµl/2)

(110)
≤ 960

√
7γ2(1 + γL) exp(−γµ(T − 2))

T−1∑
l=0

σ2 ln 6(K+1)
β

ml exp(−γµl)
(111),T≤K+1

≤ 1

7
exp(−γµT )R2. (137)
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Upper bound for °. Probability event ET−1 implies

° = 2γ2 exp(−γµ(T − 1))

T−1∑
l=0

Eξl2

[
‖θul ‖2

]
+ 4Eξl1

[
‖ωul ‖2

]
exp(−γµl)

(127)
≤ 180γ2 exp(−γµ(T − 1))

T−1∑
l=0

σ2

ml exp(−γµl)
(111),T≤K+1

≤ 1

7
exp(−γµT )R2. (138)

Upper bound for ±. First of all, we have

2γ2(1− γµ)T−1−lEξl1,ξ
l
2

[
‖θul ‖2 + 4‖ωul ‖2 − Eξl2

[
‖θul ‖2

]
− 4Eξl1

[
‖ωul ‖2

]]
= 0.

Next, the summands in ± are bounded with probability 1:

2γ2(1− γµ)T−1−l
∣∣∣‖θul ‖2 + 4‖ωul ‖2 − Eξl2

[
‖θul ‖2

]
− 4Eξl1

[
‖ωul ‖2

]∣∣∣ (124)
≤ 80γ2 exp(−γµT )λ2l

exp(−γµ(1 + l))

(110)
≤ exp(−γµT )R2

7 ln 6(K+1)
β

def
= c. (139)

Moreover, these summands have bounded conditional variances σ̂2
l

def
=

Eξl1,ξ
l
2

[
4γ4(1− γµ)2T−2−2l

∣∣∣‖θul ‖2 + 4‖ωul ‖2 − Eξl2

[
‖θul ‖2

]
− 4Eξl1

[
‖ωul ‖2

]∣∣∣2]:

σ̂2
l

(139)
≤ 2γ2 exp(−2γµT )R2

7 exp(−γµ(1 + l)) ln 6(K+1)
β

Eξl1,ξ
l
2

[∣∣∣‖θul ‖2 + 4‖ωul ‖2 − Eξl2

[
‖θul ‖2

]
− 4Eξl1

[
‖ωul ‖2

]∣∣∣]
≤ 4γ2 exp(−2γµT )R2

7 exp(−γµ(1 + l)) ln 6(K+1)
β

Eξl1,ξ
l
2

[
‖θul ‖2 + 4‖ωul ‖2

]
. (140)

That is, sequence
{

2γ2(1− γµ)T−1−l
(
‖θul ‖2 + 4‖ωul ‖2 − Eξl2

[
‖θul ‖2

]
− 4Eξl1

[
‖ωul ‖2

])}
l≥0

is a bounded martingale difference sequence having bounded conditional variances
{σ̂2

l }l≥0. Applying Bernstein’s inequality (Lemma B.1) with Xl = 2γ2(1 −
γµ)T−1−l

(
‖θul ‖2 + 4‖ωul ‖2 − Eξl2

[
‖θul ‖2

]
− 4Eξl1

[
‖ωul ‖2

])
, c defined in (139), b =

1
7 exp(−γµT )R2, G = exp(−2γµT )R4

294 ln
6(K+1)

β

, we get that

P

{
|±| > 1

7
exp(−γµT )R2 and

T−1∑
l=0

σ̂2
l ≤

exp(−2γµT )R4

294 ln 6(K+1)
β

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

β

3(K + 1)
.

In other words, P{E±} ≥ 1− β
3(K+1) , where probability event E± is defined as

E± =

{
either

T−1∑
l=0

σ̂2
l >

exp(−2γµT )R4

294 ln 6(K+1)
β

or |±| ≤ 1

7
exp(−γµT )R2

}
. (141)

Moreover, we notice here that probability event ET−1 implies that
T−1∑
l=0

σ̂2
l

(140)
≤ 4γ2 exp(−γµ(2T − 1))R2

7 ln 6(K+1)
β

T−1∑
l=0

Eξl1,ξ
l
2

[
‖θul ‖2 + 4‖ωul ‖2

]
exp(−γµl)

(127),T≤K+1

≤ 360γ2 exp(−γµ(2T − 1))R2σ2

7 ln 6(K+1)
β

K∑
l=0

1

ml exp(−γµl)

(111)
≤ exp(−2γµT )R4

294 ln 6(K+1)
β

. (142)
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Upper bound for ². Probability event ET−1 implies

² = 2γ2
T−1∑
l=0

exp(−γµ(T − 1− l))
(
‖θbl ‖2 + 4‖ωbl ‖2

)
(125)
≤ 160γ2 exp(−γµ(T − 1))

T−1∑
l=0

σ4

m2
l λ

2
l exp(−γµl)

(110)
= 2304000γ4 exp(−γµ(T − 3))

T−1∑
l=0

σ4 ln2 6(K+1)
β

m2
lR

2 exp(−2γµl)

(111),T≤K+1

≤ 1

7
exp(−γµT )R2. (143)

Final derivation. Putting all bounds together, we get that ET−1 implies

R2
T

(123)
≤ exp(−γµT )R2 + ¬ + ­ + ® + ¯ + ° + ± + ²,

­
(132)
≤ 1

7
exp(−γµT )R2, ¯

(137)
≤ 1

7
exp(−γµT )R2,

°
(138)
≤ 1

7
exp(−γµT )R2, ²

(143)
≤ 1

7
exp(−γµT )R2,

T−1∑
l=0

σ2
l

(131)
≤ exp(−2γµT )R4

294 ln 6(K+1)
β

,

T−1∑
l=0

σ̃2
l

(136)
≤ exp(−2γµT )R4

294 ln 6(K+1)
β

,

T−1∑
l=0

σ̂2
l

(142)
≤ exp(−2γµT )R4

294 ln 6(K+1)
β

.

Moreover, in view of (130), (135), (141), and our induction assumption, we have

P{ET−1} ≥ 1− (T − 1)β

K + 1
,

P{E¬} ≥ 1− β

3(K + 1)
, P{E®} ≥ 1− β

3(K + 1)
, P{E±} ≥ 1− β

3(K + 1)
,

where probability events E¬, E®, and E± are defined as

E¬ =

{
either

T−1∑
l=0

σ2
l >

exp(−2γµT )R4

294 ln 6(K+1)
β

or |¬| ≤ 1

7
exp(−γµT )R2

}
,

E® =

{
either

T−1∑
l=0

σ̃2
l >

exp(−2γµT )R4

294 ln 6(K+1)
β

or |®| ≤ 1

7
exp(−γµT )R2

}
,

E± =

{
either

T−1∑
l=0

σ̂2
l >

exp(−2γµT )R4

294 ln 6(K+1)
β

or |±| ≤ 1

7
exp(−γµT )R2

}
.

Putting all of these inequalities together, we obtain that probability event ET−1 ∩ E¬ ∩ E® ∩ E±

implies

R2
T

(123)
≤ exp(−γµT )R2 + ¬ + ­ + ® + ¯ + ° + ± + ²

≤ 2 exp(−γµT )R2.

Moreover, union bound for the probability events implies

P{ET } ≥ P{ET−1 ∩ E¬ ∩ E® ∩ E±} = 1− P{ET−1 ∪ E¬ ∪ E® ∪ E±} ≥ 1− Tβ

K + 1
. (144)

This is exactly what we wanted to prove (see the paragraph after inequality (113)). In particular, with
probability at least 1− β satisfy we have

‖xK+1 − x∗‖2 ≤ 2 exp(−γµ(K + 1))R2,

which finishes the proof.
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Corollary C.3. Let the assumptions of Theorem C.3 hold. Then, the following statements hold.

1. Large stepsize/large batch. The choice of stepsize and batchsize

γ =
1

650L ln 6(K+1)
β

, mk = max

{
1,

264600γ2(K + 1)σ2 ln 6(K+1)
β

exp(−γµk)R2

}
(145)

satisfies conditions (109) and (111). With such choice of γ,mk, and the choice of λk as in
(110), the iterates produced by clipped-SEG after K iterations with probability at least
1− β satisfy

‖xK+1 − x∗‖2 ≤ 2 exp

(
− µ(K + 1)

650L ln 6(K+1)
β

)
R2. (146)

In particular, to guarantee ‖xK+1 − x∗‖2 ≤ ε with probability at least 1 − β for some
ε > 0 clipped-SEG requires

O
(
L

µ
ln

(
R2

ε

)
ln

(
L

µβ
ln

(
R2

ε

)))
iterations, (147)

O
(

max

{
L

µ
,
σ2

µ2ε

}
ln

(
R2

ε

)
ln

(
L

µβ
ln

(
R2

ε

)))
oracle calls. (148)

2. Small stepsize/small batch. The choice of stepsize and batchsize

γ = min

{
1

650L ln 6(K+1)
β

,
ln (BK)

µ(K + 1)

}
, mk ≡ 1 (149)

satisfies conditions (109) and (111), where BK = max

{
2, (K+1)µ2R2

264600σ2 ln( 6(K+1)
β ) ln2(BK)

}
=

O

max

2, (K+1)µ2R2

264600σ2 ln( 6(K+1)
β ) ln2

(
max

{
2,

(K+1)µ2R2

264600σ2 ln( 6(K+1)
β )

})

. With such choice

of γ,mk, and the choice of λk as in (110), the iterates produced by clipped-SEG after K
iterations with probability at least 1− β satisfy

‖xK+1−x∗‖2 ≤ max

2 exp

(
− µ(K + 1)

650L ln 6(K+1)
β

)
R2,

529200σ2 ln
(

6(K+1)
β

)
ln2(BK)

µ2(K + 1)

 .

(150)
In particular, to guarantee ‖xK+1 − x∗‖2 ≤ ε with probability at least 1 − β for some
ε > 0 clipped-SEG requires

O
(

max

{
L

µ
ln

(
R2

ε

)
ln

(
L

µβ
ln

(
R2

ε

))
,
σ2

µ2ε
ln

(
σ2

µ2εβ

)
ln2 (Bε)

})
(151)

iterations/oracle calls, where

Bε = max

2,
R2

ε ln
(

σ2

µ2εβ

)
ln2

(
max

{
2, R2

ε ln
(

σ2

µ2εβ

)})
 .

Proof. 1. Large stepsize/large batch. First of all, it is easy to see that the choice of γ and
mk from (145) satisfies conditions (109) and (111). Therefore, applying Theorem C.3, we
derive that with probability at least 1− β

‖xK+1 − x∗‖2 ≤ 2 exp(−γµ(K + 1))R2 (145)
= 2 exp

(
− µ(K + 1)

650L ln 6(K+1)
β

)
R2.
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To guarantee ‖xK+1 − x∗‖2 ≤ ε, we choose K in such a way that the right-hand side of
the above inequality is smaller than ε that gives

K = O
(
L

µ
ln

(
R2

ε

)
ln

(
L

µβ
ln

(
R2

ε

)))
.

The total number of oracle calls equals

K∑
k=0

2mk
(145)
= 2

K∑
k=0

max

{
1,

264600γ2(K + 1)σ2 ln 6(K+1)
β

exp(−γµk)R2

}

= O

(
max

{
K,

γ(K + 1) exp(γµ(K + 1))σ2 ln 6(K+1)
β

µR2

})

= O
(

max

{
L

µ
,
σ2

µ2ε

}
ln

(
R2

ε

)
ln

(
L

µβ
ln

(
R2

ε

)))
.

2. Small stepsize/small batch. First of all, we verify that the choice of γ and mk from (149)
satisfies conditions (109) and (111): (109) trivially holds and (111) holds since for all
k = 0, . . . ,K

264600γ2(K + 1)σ2 ln 6(K+1)
β

exp(−γµk)R2
≤

264600γ2(K + 1)σ2 ln 6(K+1)
β

exp(−γµ(K + 1))R2

(149)
≤

264600 ln2 (BK) exp(γµ(K + 1))σ2 ln 6(K+1)
β

µ2(K + 1)R2

(149)
≤ 1.

Therefore, applying Theorem C.3, we derive that with probability at least 1− β

‖xK+1 − x∗‖2 ≤ 2 exp(−γµ(K + 1))R2

(149)
= max

{
2 exp

(
− µ(K + 1)

650L ln 6(K+1)
β

)
R2,

2R2

BK

}

= max

2 exp

(
− µ(K + 1)

650L ln 6(K+1)
β

)
R2,

529200σ2 ln
(

6(K+1)
β

)
ln2(BK)

µ2(K + 1)

 .

To guarantee ‖xK+1 − x∗‖2 ≤ ε, we choose K in such a way that the right-hand side of
the above inequality is smaller than ε that gives K of the order

O
(

max

{
L

µ
ln

(
R2

ε

)
ln

(
L

µβ
ln

(
R2

ε

))
,
σ2

µ2ε
ln

(
σ2

µ2εβ

)
ln2 (Bε)

})
,

where

Bε = max

2,
R2

ε ln
(

σ2

µ2εβ

)
ln2

(
max

{
2, R2

ε ln
(

σ2

µ2εβ

)})
 .

The total number of oracle calls equals
∑K
k=0 2mk = 2(K + 1).
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D Clipped Stochastic Gradient Descent-Ascent: Missing Proofs and Details

D.1 Monotone Star-Cocoercive Case

Lemma D.1. Let Assumption 1.3 hold for Q = B2R(x∗), where R ≥ R0
def
= ‖x0 − x∗‖ and

0 < γ ≤ 2/`. If xk lies in B2R(x∗) for all k = 0, 1, . . . ,K for some K ≥ 0, then for all
u ∈ B3R(x∗) the iterates produced by clipped-SGDA satisfy

2γ〈F (u), xKavg − u〉 ≤
‖x0 − u‖2 − ‖xK+1 − u‖2

K + 1

+
2γ

K + 1

K∑
k=0

〈xk − u− γF (xk), ωk〉

+
γ2

K + 1

K∑
k=0

(
‖F (xk)‖2 + ‖ωk‖2

)
, (152)

xKavg
def
=

1

K + 1

K∑
k=0

xk, (153)

ωk
def
= F (xk)− F̃ξk(xk). (154)

Proof. Using the update rule of clipped-SGDA, we obtain

‖xk+1 − u‖2 = ‖xk − u‖2 − 2γ〈xk − u, F̃ξk(xk)〉+ γ2‖F̃ξk(xk)‖2

= ‖xk − u‖2 − 2γ〈xk − u, F (xk)〉+ 2γ〈xk − u, ωk〉
+γ2‖F (xk)‖2 − 2γ2〈F (xk), ωk〉+ γ2‖ωk‖2

(Mon)
≤ ‖xk − u‖2 − 2γ〈xk − u, F (u)〉+ 2γ〈xk − u− γF (xk), ωk〉

+γ2
(
‖F (xk)‖2 + ‖ωk‖2

)
.

Rearranging the terms, we derive

2γ〈F (u), xk − u〉 ≤ ‖xk − u‖2 − ‖xk+1 − u‖2 + 2γ〈xk − u− γF (xk), ωk〉
+γ2

(
‖F (xk)‖2 + ‖ωk‖2

)
.

Finally, we sum up the above inequality for k = 0, 1, . . . ,K and divide both sides of the result by
(K + 1):

2γ〈F (u), xKavg − u〉 ≤
1

K + 1

K∑
k=0

(
‖xk − u‖2 − ‖xk+1 − u‖2

)
+

2γ

K + 1

K∑
k=0

〈xk − u− γF (xk), ωk〉

+
γ2

K + 1

K∑
k=0

(
‖F (xk)‖2 + ‖ωk‖2

)
=
‖x0 − u‖2 − ‖xK+1 − u‖2

K + 1

+
2γ

K + 1

K∑
k=0

〈xk − u− γF (xk), ωk〉

+
γ2

K + 1

K∑
k=0

(
‖F (xk)‖2 + ‖ωk‖2

)
.

This finishes the proof.
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We also derive the following lemma, which we use in the analysis of the star-cocoercive case as well.

Lemma D.2. Let Assumption 1.6 hold for Q = B2R(x∗), where R ≥ R0
def
= ‖x0 − x∗‖ and

0 < γ ≤ 2/`. If xk lies in B2R(x∗) for all k = 0, 1, . . . ,K for some K ≥ 0, then the iterates
produced by clipped-SGDA satisfy

γ

K + 1

(
2

`
− γ
) K∑
k=0

‖F (xk)‖2 ≤ ‖x0 − x∗‖2 − ‖xK+1 − x∗‖2

K + 1

+
2γ

K + 1

K∑
k=0

〈xk − x∗ − γF (xk), ωk〉

+
γ2

K + 1

K∑
k=0

‖ωk‖2, (155)

where ωk is defined in (154).

Proof. Using the update rule of clipped-SGDA, we obtain

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − 2γ〈xk − x∗, F̃ξk(xk)〉+ γ2‖F̃ξk(xk)‖2

= ‖xk − x∗‖2 − 2γ〈xk − x∗, F (xk)〉+ 2γ〈xk − x∗, ωk〉
+γ2‖F (xk)‖2 − 2γ2〈F (xk), ωk〉+ γ2‖ωk‖2

(SC)
≤ ‖xk − x∗‖2 + 2γ〈xk − x∗, ωk〉 − 2γ2〈F (xk), ωk〉

+γ

(
γ − 2

`

)
‖F (xk)‖2 + γ2‖ωk‖2.

Since 0 < γ ≤ 2/`, we have γ (2/`− γ) ‖F (xk)‖2 ≥ 0 and, rearranging the terms, we derive

γ

(
2

`
− γ
)
‖F (xk)‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + 2γ〈xk − x∗, ωk〉

−2γ2〈F (xk), ωk〉+ γ2‖ωk‖2.
Finally, we sum up the above inequality for k = 0, 1, . . . ,K and divide both sides of the result by
(K + 1):

γ

K + 1

(
2

`
− γ
) K∑
k=0

‖F (xk)‖2 ≤ 1

K + 1

K∑
k=0

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
+

γ2

K + 1

K∑
k=0

‖ωk‖2

+
2γ

K + 1

K∑
k=0

〈xk − x∗, ωk〉 −
2γ2

K + 1

K∑
k=0

〈F (xk), ωk〉

=
‖x0 − x∗‖2 − ‖xK+1 − x∗‖2

K + 1
+

γ2

K + 1

K∑
k=0

‖ωk‖2

+
2γ

K + 1

K∑
k=0

〈xk − x∗, ωk〉 −
2γ2

K + 1

K∑
k=0

〈F (xk), ωk〉.

This finishes the proof.

Theorem D.1. Let Assumptions 1.1, 1.3, 1.6, hold for Q = B2R(x∗), where R ≥ R0
def
= ‖x0 − x∗‖,

and

γ ≤ 1

170` ln 6(K+1)
β

, (156)

λ =
R

60γ ln 6(K+1)
β

, (157)

m ≥ max

{
1,

97200(K + 1)γ2σ2 ln 6(K+1)
β

R2

}
, (158)
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for some K ≥ 0 and β ∈ (0, 1] such that ln 6(K+1)
β ≥ 1. Then, after K iterations the iterates

produced by clipped-SGDA with probability at least 1− β satisfy

GapR(xKavg) ≤
9R2

2γ(K + 1)
. (159)

Proof. We introduce new notation: Rk = ‖xk − x∗‖ for all k ≥ 0. The proof is based on the
induction. In particular, for each k = 0, . . . ,K + 1 we define the probability event Ek as follows:
inequalities

‖xt − x∗‖2 ≤ 2R2 and γ

∥∥∥∥∥
t−1∑
l=0

ωl

∥∥∥∥∥ ≤ R (160)

hold for t = 0, 1, . . . , k simultaneously. Our goal is to prove that P{Ek} ≥ 1− kβ/(K+1) for all k =
0, 1, . . . ,K + 1. We use the induction to show this statement. For k = 0 the statement is trivial since
R2

0 ≤ 2R2 by definition and
∑−1
l=0 ωl = 0. Next, assume that the statement holds for k = T ≤ K,

i.e., we have P{ET } ≥ 1− Tβ/(K+1). We need to prove that P{ET+1} ≥ 1− (T+1)β/(K+1). Let us
notice that probability event ET implies xt ∈ B2R(x∗) for all t = 0, 1, . . . , T . This means that the
assumptions of Lemma D.2 hold and we have that probability event ET implies (γ < 1/`)

γ

`(T + 1)

T∑
t=0

‖F (xt)‖2 ≤ ‖x0 − x∗‖2 − ‖xT+1 − x∗‖2

T + 1

+
2γ

T + 1

T∑
t=0

〈xt − x∗ − γF (xt), ωt〉

+
γ2

T + 1

T∑
t=0

‖ωt‖2 (161)

and

‖F (xt)‖
(SC)
≤ `‖xt − x∗‖

(160)
≤
√

2`R
(156),(157)
≤ λ

2
(162)

for all t = 0, 1, . . . , T . From (161) we have

R2
T+1 ≤ R2

0 + 2γ

T∑
t=0

〈xt − x∗ − γF (xt), ωt〉+ γ2
T∑
t=0

‖ωt‖2.

Next, we notice that

‖xt − x∗ − γF (xt)‖ ≤ ‖xt − x∗‖+ γ‖F (xt)‖
(SC),(160)
≤ 2R+ γ`‖xt − x∗‖

(160)
≤ 2R+ 2Rγ`

(156)
≤ 3R, (163)

for all t = 0, 1, . . . , T . Consider random vectors

ηt =

{
xt − x∗ − γF (xt), if ‖xt − x∗ − γF (xt)‖ ≤ 3R,

0, otherwise,

for all t = 0, 1, . . . , T . We notice that ηt is bounded with probability 1:

‖ηt‖ ≤ 3R (164)

for all t = 0, 1, . . . , T . Moreover, in view of (163), probability event ET implies ηt = xt − x∗ −
γF (xt) for all t = 0, 1, . . . , T . Therefore, ET implies

R2
T+1 ≤ R2 + 2γ

T∑
t=0

〈ηt, ωt〉+ γ2
T∑
t=0

‖ωt‖2.
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To continue our derivation we introduce new notation:

ωut
def
= Eξt

[
F̃ξt(x

t)
]
− F̃ξt(x

t), ωbt
def
= F (xt)− Eξt

[
F̃ξt(x

t)
]

(165)

By definition we have ωt = ωut +ωbt for all t = 0, . . . , T . Using the introduced notation, we continue
our derivation as follows: ET implies

R2
T+1 ≤ R2 + 2γ

T∑
t=0

〈ηt, ωut 〉︸ ︷︷ ︸
¬

+ 2γ

T∑
t=0

〈ηt, ωbt 〉︸ ︷︷ ︸
­

+ 2γ2
T∑
t=0

(
Eξt

[
‖ωut ‖2

])
︸ ︷︷ ︸

®

+ 2γ2
T∑
t=0

(
‖ωut ‖2 − Eξt

[
‖ωut ‖2

])
︸ ︷︷ ︸

¯

+ 2γ2
T∑
t=0

(
‖ωbt‖2

)
︸ ︷︷ ︸

°

. (166)

We emphasize that the above inequality does not rely on monotonicity of F .

As we notice above, ET implies xt ∈ B2R(x∗) for all t = 0, 1, . . . , T . This means that the
assumptions of Lemma D.1 hold and we have that probability event ET implies

2γ(T + 1)GapR(xTavg) ≤ max
u∈BR(x∗)

{
‖x0 − u‖2 + 2γ

T∑
t=0

〈xt − u− γF (xt), ωt〉

}

+γ2
T∑
t=0

(
‖F (xt)‖2 + ‖ωt‖2

)
,

= max
u∈BR(x∗)

{
‖x0 − u‖2 + 2γ

T∑
t=0

〈x∗ − u, ωt〉

}

+2γ

T∑
t=0

〈xt − x∗ − γF (xt), ωt〉

+γ2
T∑
t=0

(
‖F (xt)‖2 + ‖ωt‖2

)
.

We notice that ET implies ηt = xt − x∗ − γF (xt) for all t = 0, 1, . . . , T as well as (161) and
γ < 1/`. Therefore, probability event ET implies

2γ(T + 1)GapR(xTavg) ≤ max
u∈BR(x∗)

{
‖x0 − u‖2

}
+ 2γ max

u∈BR(x∗)

{
T∑
t=0

〈x∗ − u, ωt〉

}

+2γ

T∑
t=0

〈ηt, ωt〉+
γ

`

T∑
t=0

‖F (xt)‖2 + γ2
T∑
t=0

‖ωt‖2

≤ 4R2 + 2γ max
u∈BR(x∗)

{〈
x∗ − u,

T∑
t=0

ωt

〉}

+R2 + 4γ

T∑
t=0

〈ηt, ωt〉+ 2γ2
T∑
t=0

‖ωt‖2

≤ 5R2 + 2γR

∥∥∥∥∥
T∑
t=0

ωt

∥∥∥∥∥+ 2 · (¬ + ­ + ® + ¯ + °) , (167)

where ¬,­,®,¯,° are defined in (166).

The rest of the proof is based on deriving good enough upper bounds for ¬,­,®,¯,°, i.e., we want
to prove that ¬ + ­ + ® + ¯ + ° ≤ R2 and 2γR

∥∥∥∑T
t=0 ωt

∥∥∥ ≤ 2R2 with high probability.
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Before we move on, we need to derive some useful inequalities for operating with ωut , ω
b
t . First of all,

Lemma B.2 implies that
‖ωut ‖ ≤ 2λ (168)

for all t = 0, 1, . . . , T . Next, since {ξi,t}mi=1 are independently sampled from D, we have
Eξt [Fξt(x

t)] = F (xt), and

Eξt
[
‖Fξt(x

t)− F (xt)‖2
]

=
1

m2

m∑
i=1

Eξi,t
[
‖Fξi,t(xt)− F (xt)‖2

] (1)
≤ σ2

m
,

for all l = 0, 1, . . . , T . Therefore, in view of Lemma B.2, ET implies that∥∥ωbt∥∥ ≤ 4σ2

mλ
, (169)

Eξt

[
‖ωt‖2

]
≤ 18σ2

m
, (170)

Eξt

[
‖ωut ‖

2
]
≤ 18σ2

m
(171)

for all l = 0, 1, . . . , T .

Upper bound for ¬. Since Eξt [ω
u
t ] = 0, we have

Eξt [2γ〈ηt, ωut 〉] = 0.

Next, the summands in ¬ are bounded with probability 1:

|2γ〈ηt, ωut 〉| ≤ 2γ‖ηt‖ · ‖ωut ‖
(164),(168)
≤ 12γRλ

(157)
≤ R2

5 ln 6(K+1)
β

def
= c. (172)

Moreover, these summands have bounded conditional variances σ2
t

def
= Eξt

[
4γ2〈ηt, ωut 〉2

]
:

σ2
t ≤ Eξt

[
4γ2‖ηt‖2 · ‖ωut ‖2

] (164)
≤ 36γ2R2Eξt

[
‖ωut ‖2

]
. (173)

That is, sequence {2γ〈ηt, ωut 〉}t≥0 is a bounded martingale difference sequence having bounded
conditional variances {σ2

t }t≥0. Applying Bernstein’s inequality (Lemma B.1) with Xt = 2γ〈ηt, ωut 〉,
c defined in (172), b = R2

5 , G = R4

150 ln
6(K+1)

β

, we get that

P

{
|¬| > R2

5
and

T∑
t=0

σ2
t ≤

R4

150 ln 6(K+1)
β

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

β

3(K + 1)
.

In other words, P{E¬} ≥ 1− β
3(K+1) , where probability event E¬ is defined as

E¬ =

{
either

T∑
t=0

σ2
t >

R4

150 ln 6(K+1)
β

or |¬| ≤ R2

5

}
. (174)

Moreover, we notice here that probability event ET implies that

T∑
t=0

σ2
t

(173)
≤ 36γ2R2

T∑
t=0

Eξt
[
‖ωut ‖2

] (171),T≤K+1

≤ 648γ2R2σ2(K + 1)

m

(158)
≤ R4

150 ln 6(K+1)
β

. (175)

Upper bound for ­. Probability event ET implies

­ ≤ 2γ

T∑
t=0

‖ηl‖ · ‖ωbt‖
(164),(169),T≤K+1

≤ 24γσ2R(K + 1)

mλ

(157)
=

1440γ2σ2(K + 1) ln 6(K+1)
β

m

(158)
≤ R2

5
. (176)
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Upper bound for ®. Probability event ET implies

® = 2γ2
T∑
t=0

Eξt
[
‖ωut ‖2

] (171),T≤K+1

≤ 36γ2σ2(K + 1)

m

(158)
≤ R2

5
. (177)

Upper bound for ¯. We have

2γ2Eξt
[
‖ωut ‖2 − Eξt

[
‖ωut ‖2

]]
= 0.

Next, the summands in ¯ are bounded with probability 1:

2γ2
∣∣‖ωut ‖2 − Eξt

[
‖ωut ‖2

]∣∣ ≤ 2γ2
(
‖ωut ‖2 + Eξt

[
‖ωut ‖2

]) (168)
≤ 16γ2λ2

(157)
≤ R2

225 ln 6(K+1)
β

≤ R2

5 ln 6(K+1)
β

def
= c. (178)

Moreover, these summands have bounded conditional variances σ̃2
t

def
=

4γ4Eξt

[(
‖ωut ‖2 − Eξt

[
‖ωut ‖2

])2]
:

σ̃2
t

(178)
≤ 2γ2R2

225 ln 6(K+1)
β

Eξt
[∣∣‖ωut ‖2 − Eξt

[
‖ωut ‖2

]∣∣] ≤ 4γ2R2

225 ln 6(K+1)
β

Eξt
[
‖ωut ‖2

]
. (179)

That is, sequence {‖ωut ‖2 − Eξt [‖ωut ‖2]}t≥0 is a bounded martingale difference sequence having
bounded conditional variances {σ̃2

t }t≥0. Applying Bernstein’s inequality (Lemma B.1) with Xt =

‖ωut ‖2 − Eξt [‖ωut ‖2], c defined in (178), b = R2

5 , G = R4

150 ln
6(K+1)

β

, we get that

P

{
|¯| > R2

5
and

T∑
t=0

σ̃2
t ≤

R4

150 ln 6(K+1)
β

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

β

3(K + 1)
.

In other words, P{E¯} ≥ 1− β
3(K+1) , where probability event E¯ is defined as

E¯ =

{
either

T∑
t=0

σ̃2
t >

R4

150 ln 6(K+1)
β

or |¯| ≤ R2

5

}
. (180)

Moreover, we notice here that probability event ET implies that

T∑
t=0

σ̃2
t

(179)
≤ 4γ2R2

225 ln 6(K+1)
β

T∑
t=0

Eξt
[
‖ωut ‖2

] (171),T≤K+1

≤ 8γ2R2σ2(K + 1)

25m ln 6(K+1)
β

(158)
≤ R4

150 ln 6(K+1)
β

. (181)

Upper bound for °. Probability event ET implies

° = 2γ2
T∑
t=0

‖ωbt‖2
(169),T≤K+1

≤ 32γ2σ4(K + 1)

m2λ2
(157)
=

115200γ4σ4(K + 1) ln2 6(K+1)
β

m2R2

(158)
≤ R2

5
. (182)

Upper bound for γ
∥∥∥∑T

t=0 ωt

∥∥∥. To handle this term, we introduce new notation:

ζl =

γ
l−1∑
r=0

ωr, if
∥∥∥∥γ l−1∑

r=0
ωr

∥∥∥∥ ≤ R,
0, otherwise
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for l = 1, 2, . . . , T − 1. By definition, we have

‖ζl‖ ≤ R. (183)

Therefore, in view of (160), probability event ET implies

γ

∥∥∥∥∥
T∑
l=0

ωl

∥∥∥∥∥ =

√√√√γ2

∥∥∥∥∥
T∑
l=0

ωl

∥∥∥∥∥
2

=

√√√√γ2
T∑
l=0

‖ωl‖2 + 2γ

T∑
l=0

〈
γ

l−1∑
r=0

ωr, ωl

〉

=

√√√√γ2
T∑
l=0

‖ωl‖2 + 2γ

T∑
l=0

〈ζl, ωl〉

(166)
≤

√√√√√√® + ¯ + ° + 2γ

T∑
l=0

〈ζl, ωul 〉︸ ︷︷ ︸
±

+ 2γ

T∑
l=0

〈ζl, ωbl︸ ︷︷ ︸
²

〉. (184)

Following similar steps as before, we bound ± and ².

Upper bound for ±. Since Eξt [ω
u
t ] = 0, we have

Eξt [2γ〈ζt, ωut 〉] = 0.

Next, the summands in ± are bounded with probability 1:

|2γ〈ζt, ωut 〉| ≤ 2γ‖ζt‖ · ‖ωut ‖
(183),(168)
≤ 4γRλ

(157)
≤ R2

5 ln 6(K+1)
β

def
= c. (185)

Moreover, these summands have bounded conditional variances σ̂2
t

def
= Eξt

[
4γ2〈ζt, ωut 〉2

]
:

σ̂2
t ≤ Eξt

[
4γ2‖ζt‖2 · ‖ωut ‖2

] (164)
≤ 4γ2R2Eξt

[
‖ωut ‖2

]
. (186)

That is, sequence {2γ〈ζt, ωut 〉}t≥0 is a bounded martingale difference sequence having bounded
conditional variances {σ̂2

t }t≥0. Applying Bernstein’s inequality (Lemma B.1) with Xt = 2γ〈ζt, ωut 〉,
c defined in (172), b = R2

5 , G = R4

150 ln
6(K+1)

β

, we get that

P

{
|±| > R2

5
and

T∑
t=0

σ̂2
t ≤

R4

150 ln 6(K+1)
β

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

β

3(K + 1)
.

In other words, P{E±} ≥ 1− β
3(K+1) , where probability event E± is defined as

E± =

{
either

T∑
t=0

σ̂2
t >

R4

150 ln 6(K+1)
β

or |±| ≤ R2

5

}
. (187)

Moreover, we notice here that probability event ET implies that
T∑
t=0

σ̂2
t

(186)
≤ 4γ2R2

T∑
t=0

Eξt
[
‖ωut ‖2

] (171),T≤K+1

≤ 72γ2R2σ2(K + 1)

m

(158)
≤ R4

150 ln 6(K+1)
β

. (188)

Upper bound for ². Probability event ET implies

² ≤ 2γ

T∑
t=0

‖ζt‖ · ‖ωbt‖
(183),(169),T≤K+1

≤ 8γσ2R(K + 1)

mλ

(157)
=

480γ2σ2(K + 1) ln 6(K+1)
β

m

(158)
≤ R2

5
. (189)
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Final derivation. Putting all bounds together, we get that ET implies

R2
T+1

(166)
≤ R2 + ¬ + ­ + ® + ¯ + °,

2γ(T + 1)GapR(xTavg)
(167)
≤ 5R2 + 2γR

∥∥∥∥∥
T∑
t=0

ωt

∥∥∥∥∥+ 2 · (¬ + ­ + ® + ¯ + °) ,

γ

∥∥∥∥∥
T∑
l=0

ωl

∥∥∥∥∥ (184)
≤
√

® + ¯ + ° + ± + ²,

­
(176)
≤ R2

5
, ®

(177)
≤ R2

5
, °

(182)
≤ R2

5
, ²

(189)
≤ R2

5
,

T∑
t=0

σ2
t

(175)
≤ R4

150 ln 6(K+1)
β

,

T∑
t=0

σ̃2
t

(181)
≤ R4

150 ln 6(K+1)
β

,

T∑
t=0

σ̂2
t

(188)
≤ R4

150 ln 6(K+1)
β

.

Moreover, in view of (174), (180), (189), and our induction assumption, we have

P{ET } ≥ 1− Tβ

K + 1
,

P{E¬} ≥ 1− β

3(K + 1)
, P{E¯} ≥ 1− β

3(K + 1)
, P{E±} ≥ 1− β

3(K + 1)
,

where probability events E¬, E¯, and E± are defined as

E¬ =

{
either

T∑
t=0

σ2
t >

R4

150 ln 6(K+1)
β

or |¬| ≤ R2

5

}
,

E¯ =

{
either

T∑
t=0

σ̃2
t >

R4

150 ln 6(K+1)
β

or |¯| ≤ R2

5

}
,

E± =

{
either

T∑
t=0

σ̂2
t >

R4

150 ln 6(K+1)
β

or |±| ≤ R2

5

}
.

Putting all of these inequalities together, we obtain that probability event ET ∩E¬∩E¯∩E± implies

R2
T+1 ≤ R2 + ¬ + ­ + ® + ¯ + ° ≤ 2R2,

γ

∥∥∥∥∥
T∑
l=0

ωl

∥∥∥∥∥ ≤
√

® + ¯ + ° + ± + ² ≤ R,

2γ(T + 1)GapR(xTavg) ≤ 5R2 + 2γR

∥∥∥∥∥
T∑
t=0

ωt

∥∥∥∥∥+ 2 · (¬ + ­ + ® + ¯ + °)

≤ 9R2.

Moreover, union bound for the probability events implies

P{ET+1} ≥ P{ET ∩ E¬ ∩ E¯ ∩ E±} = 1− P{ET ∪ E¬ ∪ E¯ ∪ E±} ≥ 1− Tβ

K + 1
.

This is exactly what we wanted to prove (see the paragraph after inequality (160)). In particular, EK
implies

GapR(xKavg) ≤
9R2

2γ(K + 1)
,

which finishes the proof.

Corollary D.1. Let the assumptions of Theorem D.1 hold. Then, the following statements hold.
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1. Large stepsize/large batch. The choice of stepsize and batchsize

γ =
1

170` ln 6(K+1)
β

, m = max

{
1,

972(K + 1)σ2

289`2R2 ln 6(K+1)
β

}
(190)

satisfies conditions (156) and (158). With such choice of γ,m, and the choice of λ as in
(157), the iterates produced by clipped-SGDA after K iterations with probability at least
1− β satisfy

Gap(xKavg) ≤
765`R2 ln 6(K+1)

β

K + 1
. (191)

In particular, to guarantee Gap(xKavg) ≤ ε with probability at least 1 − β for some ε > 0
clipped-SGDA requires,

O
(
`R2

ε
ln

(
`R2

εβ

))
iterations, (192)

O
(

max

{
`R2

ε
,
σ2R2

ε2

}
ln

(
`R2

εβ

))
oracle calls. (193)

2. Small stepsize/small batch. The choice of stepsize and batchsize

γ = min

 1

170` ln 6(K+1)
β

,
R

180σ
√

3(K + 1) ln 6(K+1)
β

 , m = 1 (194)

satisfies conditions (156) and (158). With such choice of γ,m, and the choice of λ as in
(157), the iterates produced by clipped-SGDA after K iterations with probability at least
1− β satisfy

Gap(xKavg) ≤ max

765`R2 ln 6(K+1)
β

K + 1
,

810σR
√

3 ln 6(K+1)
β√

K + 1

 . (195)

In particular, to guarantee Gap(xKavg) ≤ ε with probability at least 1− β for some ε > 0,
clipped-SGDA requires

O
(

max

{
`R2

ε
ln

(
`R2

εβ

)
,
σ2R2

ε2
ln

(
σ2R2

ε2β

)})
iterations/oracle calls. (196)

Proof. 1. Large stepsize/large batch. First of all, we verify that the choice of γ and m from
(190) satisfies conditions (156) and (158): (156) trivially holds and (158) holds since

m = max

{
1,

972(K + 1)σ2

289`2R2 ln 6(K+1)
β

}
= max

{
1,

97200(K + 1)γ2σ2 ln 6(K+1)
β

R2

}
.

Therefore, applying Theorem D.1, we derive that with probability at least 1− β

Gap(xKavg) ≤
9R2

2γ(K + 1)

(190)
≤

765`R2 ln 6(K+1)
β

K + 1
.

To guarantee Gap(xKavg) ≤ ε, we choose K in such a way that the right-hand side of the
above inequality is smaller than ε that gives

K = O
(
`R2

ε
ln

(
`R2

εβ

))
.

The total number of oracle calls equals

m(K + 1)
(190)
= max

{
K + 1,

972(K + 1)2σ2

289`2R2 ln 6(K+1)
β

}

= O
(

max

{
`R2

ε
,
σ2R2

ε2

}
ln

(
`R2

εβ

))
.

54



2. Small stepsize/small batch. First of all, we verify that the choice of γ and m from (194)
satisfies conditions (156) and (158):

γ = min

 1

170` ln 6(K+1)
β

,
R

180σ
√

3(K + 1) ln 6(K+1)
β

 ≤ 1

170` ln 6(K+1)
β

,

m = 1
(194)
≥

97200(K + 1)γ2σ2 ln 6(K+1)
β

R2
.

Therefore, applying Theorem D.1, we derive that with probability at least 1− β

Gap(xKavg) ≤ 9R2

2γ(K + 1)

(194)
= max

765`R2 ln 6(K+1)
β

K + 1
,

810σR
√

3 ln 6(K+1)
β√

K + 1

 .

To guarantee Gap(xKavg) ≤ ε, we choose K in such a way that the right-hand side of the
above inequality is smaller than ε that gives

K = O
(

max

{
`R2

ε
ln

(
`R2

εβ

)
,
σ2R2

ε2
ln

(
σ2R2

ε2β

)})
.

The total number of oracle calls equals K + 1.

D.2 Star-Cocoercive Case

Theorem D.2. Let Assumptions 1.1, 1.6, hold for Q = B2R(x∗), where R ≥ R0
def
= ‖x0 − x∗‖, and

γ ≤ 1

170` ln 4(K+1)
β

, (197)

λ =
R

60γ ln 4(K+1)
β

, (198)

m ≥ max

{
1,

97200(K + 1)γ2σ2 ln 4(K+1)
β

R2

}
, (199)

for some K ≥ 0 and β ∈ (0, 1] such that ln 4(K+1)
β ≥ 1. Then, after K iterations the iterates

produced by clipped-SGDA with probability at least 1− β satisfy

1

K + 1

K∑
k=0

‖F (xk)‖2 ≤ 2`R2

γ(K + 1)
. (200)

Proof. We introduce new notation: Rk = ‖xk − x∗‖ for all k ≥ 0. The proof is based on
deriving via induction that R2

k ≤ CR2 for some numerical constant C > 0. In particular, for
each k = 0, . . . ,K + 1 we define probability event Ek as follows: inequalities

‖xt − x∗‖2 ≤ 2R2, (201)

hold for t = 0, 1, . . . , k simultaneously. Our goal is to prove that P{Ek} ≥ 1 − kβ/(K+1) for all
k = 0, 1, . . . ,K + 1. We notice that inequalities (161) and (166) are derived without assuming
monotonicity of F . Therefore, following exactly the same step as in the proof of Theorem D.1 (up to
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the replacement of ln 6(K+1)
β by ln 4(K+1)

β ), we get that

R2
T+1

(166)
≤ R2 + ¬ + ­ + ® + ¯ + °,

­
(176)
≤ R2

5
, ®

(177)
≤ R2

5
, °

(182)
≤ R2

5
,

T∑
t=0

σ2
t

(175)
≤ R4

150 ln 4(K+1)
β

,

T∑
t=0

σ̃2
t

(181)
≤ R4

150 ln 4(K+1)
β

.

Moreover, in view of (174), (180), and our induction assumption, we have

P{ET } ≥ 1− Tβ

K + 1
,

P{E¬} ≥ 1− β

2(K + 1)
, P{E¯} ≥ 1− β

2(K + 1)
,

where probability events E¬, and E¯ are defined as

E¬ =

{
either

T∑
t=0

σ2
t >

R4

150 ln 4(K+1)
β

or |¬| ≤ R2

5

}
,

E¯ =

{
either

T∑
t=0

σ̃2
t >

R4

150 ln 4(K+1)
β

or |¯| ≤ R2

5

}
.

Putting all of these inequalities together, we obtain that probability event ET−1 ∩ E¬ ∩ E¯ implies

R2
T+1 ≤ R2 + ¬ + ­ + ® + ¯ + ° ≤ 2R2.

Moreover, union bound for the probability events implies

P{ET+1} ≥ P{ET ∩ E¬ ∩ E¯} = 1− P{ET ∪ E¬ ∪ E¯} ≥ 1− Tβ

K + 1
. (202)

This is exactly what we wanted to prove (see the paragraph after inequality (201)). In particular, EK
implies

1

K + 1

K∑
k=0

‖F (xk)‖2
(161)
≤

`(R2 −R2
K+1)

γ(K + 1)
+
`(¬ + ­ + ® + ¯ + °)

γ(K + 1)

≤ 2`R2

γ(K + 1)
.

This finishes the proof.

Corollary D.2. Let the assumptions of Theorem D.2 hold. Then, the following statements hold.

1. Large stepsize/large batch. The choice of stepsize and batchsize

γ =
1

170` ln 4(K+1)
β

, m = max

{
1,

972(K + 1)σ2

289`2R2 ln 4(K+1)
β

}
(203)

satisfies conditions (197) and (199). With such choice of γ,m, and the choice of λ as in
(198), the iterates produced by clipped-SGDA after K iterations with probability at least
1− β satisfy

1

K + 1

K∑
k=0

‖F (xk)‖2 ≤
340`2R2 ln 4(K+1)

β

K + 1
. (204)

In particular, to guarantee 1
K+1

∑K
k=0 ‖F (xk)‖2 ≤ ε with probability at least 1 − β for

some ε > 0 clipped-SGDA requires,

O
(
`2R2

ε
ln

(
`2R2

εβ

))
iterations, (205)

O
(

max

{
`2R2

ε
,
`2σ2R2

ε2

}
ln

(
`2R2

εβ

))
oracle calls. (206)
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2. Small stepsize/small batch. The choice of stepsize and batchsize

γ = min

 1

170` ln 4(K+1)
β

,
R

180σ
√

3(K + 1) ln 4(K+1)
β

 , m = 1 (207)

satisfies conditions (197) and (199). With such choice of γ,m, and the choice of λ as in
(198), the iterates produced by clipped-SGDA after K iterations with probability at least
1− β satisfy

1

K + 1

K∑
k=0

‖F (xk)‖2 ≤ max

340`2R2 ln 4(K+1)
β

K + 1
,

360`σR
√

3 ln 4(K+1)
β√

K + 1

 . (208)

In particular, to guarantee 1
K+1

∑K
k=0 ‖F (xk)‖2 ≤ ε with probability at least 1 − β for

some ε > 0, clipped-SGDA requires

O
(

max

{
`2R2

ε
ln

(
`2R2

εβ

)
,
`2σ2R2

ε2
ln

(
`2σ2R2

ε2β

)})
iterations/oracle calls. (209)

Proof. 1. Large stepsize/large batch. First of all, we verify that the choice of γ and m from
(203) satisfies conditions (197) and (199): (197) trivially holds and (199) holds since

m = max

{
1,

972(K + 1)σ2

289`2R2 ln 4(K+1)
β

}
= max

{
1,

97200(K + 1)γ2σ2 ln 4(K+1)
β

R2

}
.

Therefore, applying Theorem D.2, we derive that with probability at least 1− β

1

K + 1

K∑
k=0

‖F (xk)‖2 ≤ 2`R2

γ(K + 1)

(203)
≤

340`2R2 ln 4(K+1)
β

K + 1
.

To guarantee 1
K+1

∑K
k=0 ‖F (xk)‖2 ≤ ε, we choose K in such a way that the right-hand

side of the above inequality is smaller than ε that gives

K = O
(
`2R2

ε
ln

(
`2R2

εβ

))
.

The total number of oracle calls equals

m(K + 1)
(203)
= max

{
K + 1,

972(K + 1)2σ2

289`2R2 ln 4(K+1)
β

}

= O
(

max

{
`2R2

ε
,
`2σ2R2

ε2

}
ln

(
`2R2

εβ

))
.

2. Small stepsize/small batch. First of all, we verify that the choice of γ and m from (207)
satisfies conditions (197) and (199):

γ = min

 1

170` ln 4(K+1)
β

,
R

180σ
√

3(K + 1) ln 4(K+1)
β

 ≤ 1

170` ln 4(K+1)
β

,

m = 1
(207)
≥

97200(K + 1)γ2σ2 ln 4(K+1)
β

R2
.

Therefore, applying Theorem D.2, we derive that with probability at least 1− β

1

K + 1

K∑
k=0

‖F (xk)‖2 ≤ 2`R2

γ(K + 1)

(207)
= max

340`2R2 ln 4(K+1)
β

K + 1
,

360`σR
√

3 ln 4(K+1)
β√

K + 1

 .
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To guarantee 1
K+1

∑K
k=0 ‖F (xk)‖2 ≤ ε, we choose K in such a way that the right-hand

side of the above inequality is smaller than ε that gives

K = O
(

max

{
`2R2

ε
ln

(
`2R2

εβ

)
,
`2σ2R2

ε2
ln

(
`2σ2R2

ε2β

)})
.

The total number of oracle calls equals K + 1.

D.3 Quasi-Strongly Monotone Star-Cocoercive Case

Lemma D.3. Let Assumptions 1.5, 1.6 hold for Q = B2R(x∗), where R ≥ R0
def
= ‖x0 − x∗‖, and

0 < γ ≤ 1/`. If xk lies in B2R(x∗) for all k = 0, 1, . . . ,K for some K ≥ 0, then the iterates
produced by clipped-SGDA satisfy

‖xK+1 − x∗‖2 ≤ (1− γµ)K+1‖x0 − x∗‖2 + 2γ

K∑
k=0

(1− γµ)K−k〈xk − x∗ − γF (xk), ωk〉

+γ2
K∑
k=0

(1− γµ)K−k‖ωk‖2, (210)

where ωk is defined in (154).

Proof. Using the update rule of clipped-SGDA, we obtain

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − 2γ〈xk − x∗, F̃ξk(xk)〉+ γ2‖F̃ξk(xk)‖2

= ‖xk − x∗‖2 − 2γ〈xk − x∗, F (xk)〉+ 2γ〈xk − x∗, ωk〉
+γ2‖F (xk)‖2 − 2γ2〈F (xk), ωk〉+ γ2‖ωk‖2

= ‖xk − x∗‖2 + 2γ〈xk − x∗ − γF (xk), ωk〉
−2γ〈xk − x∗, F (xk)〉+ γ2‖F (xk)‖2 + γ2‖ωk‖2

(SC)
≤ ‖xk − x∗‖2 + 2γ〈xk − x∗ − γF (xk), ωk〉

−2γ〈xk − x∗, F (xk)〉+ γ2`〈xk − x∗, F (xk)〉+ γ2‖ωk‖2

= ‖xk − x∗‖2 + 2γ〈xk − x∗ − γF (xk), ωk〉

−2γ

(
1− γ`

2

)
〈xk − x∗, F (xk)〉+ γ2‖ωk‖2

(QSM),γ≤ 1
`

≤ ‖xk − x∗‖2 + 2γ〈xk − x∗ − γF (xk), ωk〉

−2γµ

(
1− γ`

2

)
‖xk − x∗‖2 + γ2‖ωk‖2

γ≤ 1
`

≤ (1− γµ)‖xk − x∗‖2 + 2γ〈xk − x∗ − γF (xk), ωk〉+ γ2‖ωk‖2.
Unrolling the recurrence, we obtain (210).

Theorem D.3. Let Assumptions 1.1, 1.5, 1.6 hold for Q = B2R(x∗) = {x ∈ Rd | ‖x− x∗‖ ≤ 2R},
where R ≥ R0

def
= ‖x0 − x∗‖, and

0 < γ ≤ 1

400` ln 4(K+1)
β

, (211)

λk =
exp(−γµ(1 + k/2))R

120γ ln 4(K+1)
β

, (212)

mk ≥ max

{
1,

27000γ2(K + 1)σ2 ln 4(K+1)
β

exp(−γµk)R2

}
, (213)
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for some K ≥ 0 and β ∈ (0, 1] such that ln 4(K+1)
β ≥ 1. Then, after K iterations the iterates

produced by clipped-SGDA with probability at least 1− β satisfy

‖xK+1 − x∗‖2 ≤ 2 exp(−γµ(K + 1))R2. (214)

Proof. As in the proof of Theorem D.1, we use the following notation: Rk = ‖xk − x∗‖2, k ≥ 0.
We will derive (214) by induction. In particular, for each k = 0, . . . ,K + 1 we define probability
event Ek as follows: inequalities

R2
t ≤ 2 exp(−γµt)R2 (215)

hold for t = 0, 1, . . . , k simultaneously. Our goal is to prove that P{Ek} ≥ 1 − kβ/(K+1) for all
k = 0, 1, . . . ,K + 1. We use the induction to show this statement. For k = 0 the statement is trivial
since R2

0 ≤ 2R2 by definition. Next, assume that the statement holds for k = T ≤ K, i.e., we have
P{ET } ≥ 1 − Tβ/(K+1). We need to prove that P{ET+1} ≥ 1 − (T+1)β/(K+1). First of all, since
R2
t ≤ 2 exp(−γµt)R2 ≤ 2R2, we have xt ∈ B2R(x∗). Operator F is `-star-cocoercive on B2R(x∗).

Therefore, probability event ET implies

‖F (xt)‖
(SC)
≤ `‖xt − x∗‖

(215)
≤
√

2` exp(−γµt/2)R
(211),(212)
≤ λt

2
. (216)

and

‖ωt‖2
(5)
≤ 2‖F̃ξ(xt)‖2 + 2‖F (xt)‖2

(216)
≤ 5

2
λ2t

(212)
≤ exp(−γµt)R2

4γ2
(217)

for all t = 0, 1, . . . , T .

Applying Lemma D.3 and (1− γµ)T ≤ exp(−γµT ), we get that probability event ET implies

R2
T ≤ exp(−γµT )R2 + 2γ

T∑
t=0

(1− γµ)T−t〈xt − x∗ − γF (xt), ωt〉

+γ2
T∑
t=0

(1− γµ)T−t‖ωt‖2.

To estimate the sums in the right-hand side, we introduce new vectors:

ηt =

{
xt − x∗ − γF (xt), if ‖xt − x∗ − γF (xt)‖ ≤

√
2(1 + γ`) exp(−γµt/2)R,

0, otherwise,
(218)

for t = 0, 1, . . . , T . First of all, we point out that vector ηt is bounded with probability 1, i.e., with
probability 1

‖ηt‖ ≤
√

2(1 + γ`) exp(−γµt/2)R (219)

for all t = 0, 1, . . . , T . Next, we notice that ET implies ‖F (xt)‖ ≤
√

2` exp(−γµt/2)R (due
to (216)) for t = 0, 1, . . . , T , i.e., probability event ET implies ηt = xt − x∗ − γF (xt) for all
t = 0, 1, . . . , T . Therefore, ET implies

R2
T ≤ exp(−γµT )R2 + 2γ

T∑
t=0

(1− γµ)T−t〈ηt, ωt〉

+γ2
T∑
t=0

(1− γµ)T−t‖ωt‖2.

As in the monotone case, to continue the derivation, we introduce vectors ωut , ω
b
t defined as

ωut
def
= Eξt

[
F̃ξt(x

t)
]
− F̃ξt(x

t), ωbt
def
= F (xt)− Eξt

[
F̃ξt(x

t)
]
, (220)
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for all t = 0, . . . , T . By definition we have ωt = ωut + ωbt for all t = 0, . . . , T . Using the introduced
notation, we continue our derivation as follows: ET implies

R2
T

(5)
≤ exp(−γµT )R2 + 2γ

T∑
t=0

(1− γµ)T−t〈ηt, ωut 〉︸ ︷︷ ︸
¬

+ 2γ

T∑
t=0

(1− γµ)T−t〈ηt, ωbt 〉︸ ︷︷ ︸
­

+ 2γ2
T∑
t=0

(1− γµ)T−tEξt
[
‖ωut ‖2

]
︸ ︷︷ ︸

®

+ 2γ2
T∑
t=0

(1− γµ)T−t
(
‖ωut ‖2 − Eξt

[
‖ωut ‖2

])
︸ ︷︷ ︸

¯

+ 2γ2
T∑
t=0

(1− γµ)T−t
(
‖ωbt‖2

)
︸ ︷︷ ︸

°

. (221)

The rest of the proof is based on deriving good enough upper bounds for ¬,­,®,¯,°, i.e., we want
to prove that ¬ + ­ + ® + ¯ + ° ≤ exp(−γµT )R2 with high probability.

Before we move on, we need to derive some useful inequalities for operating with ωut , ω
b
t . First of all,

Lemma B.2 implies that
‖ωut ‖ ≤ 2λt (222)

for all t = 0, 1, . . . , T . Next, since {ξi,t}mti=1 are independently sampled from D, we have
Eξt [Fξt(x

t)] = F (xt), and

Eξt
[
‖Fξt(x

t)− F (xt)‖2
]

=
1

m2
t

mt∑
i=1

Eξi,t
[
‖Fξi,t(xt)− F (xt)‖2

] (1)
≤ σ2

mt
,

for all l = 0, 1, . . . , T . Moreover, as we already derived, probability eventET implies that ‖F (xt)‖ ≤
λt/2 for all t = 0, 1, . . . , T (see (216)). Therefore, in view of Lemma B.2, ET implies that∥∥ωbt∥∥ ≤ 4σ2

mtλt
, (223)

Eξt

[
‖ωt‖2

]
≤ 18σ2

mt
, (224)

Eξt

[
‖ωut ‖

2
]
≤ 18σ2

mt
, (225)

for all l = 0, 1, . . . , T .

Upper bound for ¬. Since Eξt [ω
u
t ] = 0, we have

Eξt
[
2γ(1− γµ)T−t〈ηt, ωut 〉

]
= 0.

Next, the summands in ¬ are bounded with probability 1:

|2γ(1− γµ)T−t〈ηt, ωut 〉| ≤ 2γ exp(−γµ(T − t))‖ηt‖ · ‖ωut ‖
(219),(222)
≤ 4

√
2γ(1 + γ`) exp(−γµ(T − t/2))Rλt

(211),(212)
≤ exp(−γµT )R2

5 ln 4(K+1)
β

def
= c. (226)

Moreover, these summands have bounded conditional variances σ2
t

def
=

Eξt
[
4γ2(1− γµ)2T−2t〈ηt, ωut 〉2

]
:

σ2
t ≤ Eξt

[
4γ2 exp(−γµ(2T − 2t))‖ηt‖2 · ‖ωut ‖2

]
(219)
≤ 8γ2(1 + γ`)2 exp(−γµ(2T − t))R2Eξt

[
‖ωut ‖2

]
(211)
≤ 10γ2 exp(−γµ(2T − t))R2Eξt

[
‖ωut ‖2

]
. (227)
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That is, sequence {2γ(1− γµ)T−t〈ηt, ωut 〉}t≥0 is a bounded martingale difference sequence having
bounded conditional variances {σ2

t }t≥0. Applying Bernstein’s inequality (Lemma B.1) with Xt =

2γ(1− γµ)T−t〈ηt, ωut 〉, c defined in (226), b = 1
5 exp(−γµT )R2, G = exp(−2γµT )R4

150 ln
4(K+1)

β

, we get that

P

{
|¬| > 1

5
exp(−γµT )R2 and

T∑
t=0

σ2
t ≤

exp(−2γµT )R4

150 ln 4(K+1)
β

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

β

2(K + 1)
.

In other words, P{E¬} ≥ 1− β
2(K+1) , where probability event E¬ is defined as

E¬ =

{
either

T∑
t=0

σ2
t >

exp(−2γµT )R4

150 ln 4(K+1)
β

or |¬| ≤ 1

5
exp(−γµT )R2

}
. (228)

Moreover, we notice here that probability event ET implies that
T∑
t=0

σ2
t

(227)
≤ 10γ2 exp(−2γµT )R2

T∑
t=0

Eξt
[
‖ωut ‖2

]
exp(−γµt)

(225),T≤K+1

≤ 180γ2 exp(−2γµT )R2σ2
K∑
t=0

1

mt exp(−γµt)
(213)
≤ exp(−2γµT )R4

150 ln 6(K+1)
β

. (229)

Upper bound for ­. Probability event ET implies

­ ≤ 2γ exp(−γµT )

T∑
t=0

‖ηt‖ · ‖ωbt‖
exp(−γµt)

(219),(223)
≤ 8

√
2γ(1 + γ`) exp(−γµT )R

T∑
t=0

σ2

mtλt exp(−γµt/2)

(212)
≤ 960

√
2γ2(1 + γ`) exp(−γµ(T − 1))

T∑
t=0

σ2 ln 4(K+1)
β

mt exp(−γµt)
(213),T≤K+1

≤ 1

5
exp(−γµT )R2. (230)

Upper bound for ®. Probability event ET implies

® = 2γ2 exp(−γµT )

T∑
t=0

Eξt
[
‖ωut ‖2

]
exp(−γµt)

(225)
≤ 36γ2 exp(−γµT )

T∑
t=0

σ2

mt exp(−γµt)
(213),T≤K+1

≤ 1

5
exp(−γµT )R2. (231)

Upper bound for ¯. First of all, we have
2γ2(1− γµ)T−tEξt

[
‖ωut ‖2 − Eξt

[
‖ωut ‖2

]]
= 0.

Next, the summands in ¯ are bounded with probability 1:

2γ2(1− γµ)T−t
∣∣‖ωut ‖2 − Eξt

[
‖ωut ‖2

]∣∣ (222)
≤ 16γ2 exp(−γµT )λ2t

exp(−γµt)
(212)
≤ exp(−γµT )R2

5 ln 4(K+1)
β

def
= c. (232)
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Moreover, these summands have bounded conditional variances σ̃2
t

def
=

Eξt

[
4γ4(1− γµ)2T−2t

∣∣‖ωut ‖2 − Eξt
[
‖ωut ‖2

]∣∣2]:
σ̃2
t

(232)
≤ 2γ2 exp(−2γµT )R2

5 exp(−γµt) ln 4(K+1)
β

Eξt
[∣∣‖ωut ‖2 − Eξt

[
‖ωut ‖2

]∣∣]
≤ 4γ2 exp(−2γµT )R2

5 exp(−γµt) ln 4(K+1)
β

Eξt
[
‖ωut ‖2

]
. (233)

That is, sequence
{

2γ2(1− γµ)T−t
(
‖ωut ‖2 − Eξt

[
‖ωut ‖2

])}
t≥0 is a bounded martingale differ-

ence sequence having bounded conditional variances {σ̃2
t }t≥0. Applying Bernstein’s inequal-

ity (Lemma B.1) with Xt = 2γ2(1 − γµ)T−t
(
‖ωut ‖2 − Eξt

[
‖ωut ‖2

])
, c defined in (232), b =

1
5 exp(−γµT )R2, G = exp(−2γµT )R4

150 ln
4(K+1)

β

, we get that

P

{
|¯| > 1

5
exp(−γµT )R2 and

T∑
t=0

σ̃2
t ≤

exp(−2γµT )R4

150 ln 4(K+1)
β

}
≤ 2 exp

(
− b2

2G+ 2cb/3

)
=

β

2(K + 1)
.

In other words, P{E¯} ≥ 1− β
2(K+1) , where probability event E¯ is defined as

E¯ =

{
either

T∑
t=0

σ̃2
t >

exp(−2γµT )R4

150 ln 4(K+1)
β

or |¯| ≤ 1

5
exp(−γµT )R2

}
. (234)

Moreover, we notice here that probability event ET implies that
T∑
t=0

σ̃2
t

(233)
≤ 4γ2 exp(−2γµT )R2

5 ln 4(K+1)
β

T∑
t=0

Eξt
[
‖ωut ‖2

]
exp(−γµt)

(225),T≤K+1

≤ 72γ2 exp(−2γµT )R2σ2

5 ln 4(K+1)
β

K∑
t=0

1

mt exp(−γµt)

(213)
≤ exp(−2γµT )R4

150 ln 4(K+1)
β

. (235)

Upper bound for °. Probability event ET implies

° = 2γ2
T∑
t=0

exp(−γµ(T − t))
(
‖ωbt‖2

)
(223)
≤ 32γ2 exp(−γµT )

T∑
t=0

σ4

m2
tλ

2
t exp(−γµt)

(212)
= 460800γ4 exp(−γµ(T − 2))
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σ4 ln2 4(K+1)
β

m2
tR

2 exp(−2γµt)

(213),T≤K+1

≤ 1

5
exp(−γµT )R2. (236)

Final derivation. Putting all bounds together, we get that ET implies

R2
T

(221)
≤ exp(−γµT )R2 + ¬ + ­ + ® + ¯ + °,

­
(230)
≤ 1

5
exp(−γµT )R2,

®
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≤ 1

5
exp(−γµT )R2, °
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≤ 1

5
exp(−γµT )R2,

T∑
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σ2
t
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≤ exp(−2γµT )R4

150 ln 4(K+1)
β

,

T∑
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σ̃2
t

(235)
≤ exp(−2γµT )R4

150 ln 4(K+1)
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.
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Moreover, in view of (228), (234), and our induction assumption, we have

P{ET } ≥ 1− Tβ

K + 1
,

P{E¬} ≥ 1− β

2(K + 1)
, P{E¯} ≥ 1− β

2(K + 1)
,

where probability events E¬, and E¯ are defined as

E¬ =

{
either

T∑
t=0

σ2
t >

exp(−2γµT )R4

150 ln 4(K+1)
β

or |¬| ≤ 1

5
exp(−γµT )R2

}
,

E¯ =

{
either

T∑
t=0

σ̃2
t >

exp(−2γµT )R4

150 ln 4(K+1)
β

or |¯| ≤ 1

5
exp(−γµT )R2

}
.

Putting all of these inequalities together, we obtain that probability event ET ∩ E¬ ∩ E¯ implies

R2
T

(221)
≤ exp(−γµT )R2 + ¬ + ­ + ® + ¯ + °

≤ 2 exp(−γµT )R2.

Moreover, union bound for the probability events implies

P{ET+1} ≥ P{ET ∩ E¬ ∩ E¯} = 1− P{ET ∪ E¬ ∪ E¯} ≥ 1− (T + 1)β

K + 1
. (237)

This is exactly what we wanted to prove (see the paragraph after inequality (215)). In particular, with
probability at least 1− β we have

‖xK+1 − x∗‖2 ≤ 2 exp(−γµ(K + 1))R2,

which finishes the proof.

Corollary D.3. Let the assumptions of Theorem D.3 hold. Then, the following statements hold.

1. Large stepsize/large batch. The choice of stepsize and batchsize

γ =
1

400` ln 4(K+1)
β

, mk = max

{
1,

27000γ2(K + 1)σ2 ln 4(K+1)
β

exp(−γµk)R2

}
(238)

satisfies conditions (211) and (213). With such choice of γ,mk, and the choice of λk as in
(212), the iterates produced by clipped-SGDA after K iterations with probability at least
1− β satisfy

‖xK+1 − x∗‖2 ≤ 2 exp

(
− µ(K + 1)

400` ln 4(K+1)
β

)
R2. (239)

In particular, to guarantee ‖xK+1 − x∗‖2 ≤ ε with probability at least 1 − β for some
ε > 0 clipped-SGDA requires

O
(
`

µ
ln

(
R2

ε

)
ln

(
`

µβ
ln

(
R2

ε

)))
iterations, (240)

O
(
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{
`

µ
,
σ2

µ2ε

}
ln

(
R2

ε

)
ln

(
`

µβ
ln

(
R2

ε

)))
oracle calls. (241)

2. Small stepsize/small batch. The choice of stepsize and batchsize

γ = min

{
1

400` ln 4(K+1)
β

,
ln (BK)

µ(K + 1)

}
, mk ≡ 1 (242)
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satisfies conditions (211) and (213), where BK = max

{
2, (K+1)µ2R2

27000σ2 ln( 4(K+1)
β ) ln2(BK)

}
=

O
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(K+1)µ2R2

27000σ2 ln( 4(K+1)
β )

})

. With such choice of

γ,mk, and the choice of λk as in (212), the iterates produced by clipped-SGDA after K
iterations with probability at least 1− β satisfy

‖xK+1−x∗‖2 ≤ max
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54000σ2 ln
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ln2(BK)
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(243)
In particular, to guarantee ‖xK+1 − x∗‖2 ≤ ε with probability at least 1 − β for some
ε > 0 clipped-SGDA requires
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iterations/oracle calls, where

Bε = max
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2, R2

ε ln
(

σ2

µ2εβ

)})
 .

Proof. 1. Large stepsize/large batch. First of all, it is easy to see that the choice of γ and
mk from (238) satisfies conditions (211) and (213). Therefore, applying Theorem D.3, we
derive that with probability at least 1− β

‖xK+1 − x∗‖2 ≤ 2 exp(−γµ(K + 1))R2 (238)
= 2 exp

(
− µ(K + 1)

400` ln 4(K+1)
β

)
R2.

To guarantee ‖xK+1 − x∗‖2 ≤ ε, we choose K in such a way that the right-hand side of
the above inequality is smaller than ε that gives

K = O
(
`

µ
ln
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)
ln
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µβ
ln

(
R2
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)))
.

The total number of oracle calls equals
K∑
k=0
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.

2. Small stepsize/small batch. First of all, we verify that the choice of γ and mk from (242)
satisfies conditions (211) and (213): (211) trivially holds and (213) holds since for all
k = 0, . . . ,K

27000γ2(K + 1)σ2 ln 4(K+1)
β

exp(−γµk)R2
≤

27000γ2(K + 1)σ2 ln 4(K+1)
β

exp(−γµ(K + 1))R2

(242)
≤

27000 ln2 (BK) exp(γµ(K + 1))σ2 ln 4(K+1)
β

µ2(K + 1)R2

(242)
≤ 1.
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Therefore, applying Theorem D.3, we derive that with probability at least 1− β

‖xK+1 − x∗‖2 ≤ 2 exp(−γµ(K + 1))R2
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= max
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To guarantee ‖xK+1 − x∗‖2 ≤ ε, we choose K in such a way that the right-hand side of
the above inequality is smaller than ε that gives K of the order
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where
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The total number of oracle calls equals
∑K
k=0mk = (K + 1).
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E Extra Experiments

In this section, we provide more details for the experiments done in § 4, as well as additional tables,
figures, and image samples from some of our trained models.

E.1 WGAN-GP

In all cases, everything in the experimental setup other than learning rates and clip values remained
constant. We use the same ResNet architectures and training parameters specified in Gulrajani
et al. [2017]: the gradient penalty coefficient λGP = 10, ndis = 5 where ndis is the number of
discriminator steps for every generator step, and a learning rate decayed linearly to 0 over 100k steps.
The only exception is we double the feature map of the generator from 128 to 256 dimensions. For all
stochastic extragradient (SEG) methods, we use the ExtraSGD implementation provided by Gidel
et al. [2019a]. We alternate between exploration and update steps and do not treat the exploration
steps as “free” – this means we only have 50k parameter updates as opposed to 100k for all SGDA
methods (we decay the learning rate twice as fast such that it still reaches 0 after 50k parameter
updates).

All of the hyperparameter sweeps performed for SGDA, clipped-SGDA, clipped-SEG, clipped-
SGDA (coordinate), and clipped-SEG (coordinate), as well as the associated best FID score obtained
within the first 35k training steps, can be found in Tables 2, 6, 5, 6, and 7 respectively. Bold rows
denote the hyperparameters that were trained for the full 100k steps and are henceforth referred to as
the “best models”. For each of the methods tested, additional samples for the best models trained can
be found in Figures 7, 8, 9, 10, & 11. We also plot the evolution of the gradient noise histograms in
Figures 12, 13, 14, 15, & 16. We emphasize that our goal is not to get the best possible FID score
(e.g. are often able to obtain marginally better FIDs by training for longer), but rather to compare the
systematic differences in performance between the various unclipped and clipped methods. Therefore,
log-space hyperparameter sweeps are appropriate for our experiments and we do not tune further.

E.2 StyleGAN2

We train on FFHQ downsampled to 128 × 128 pixels, and use the recommended StyleGAN2
hyperparameter configuration for this resolution: batch size = 32, γ = 0.1024, map depth = 2,
and channel multiplier = 16384. For both SGDA and clipped-SGDA, we sweep over a (roughly)
log-scale of learning rates and clipping values; a summary of the hyperparmaters and best FID scores
obtained Table 8 and Table 9 respectively.

Based on the results in Table 9, the best hyperparameters are lr=0.35 and clip=0.0025 which we then
used to train our “best model”. We trained for longer, and decayed the learning rate twice (by a factor
of ×10) when the FID plateaued or worsened. The best schedule we found was to scale the learning
rate by ×0.1 after 6000 kimgs (thousands of real images shown to the discriminator), by another
×0.1 after 3600 kimgs, and then train until the FID begins increasing (for another 8000 kimgs) – for
a total of 17600 kimgs. We did not explore different scale factors or other schedules (such as cosine
annealing). Additional samples for this model can be found in Figure 18(a).

In general, we observe that every SGDA-trained model for the wide range of learning rates we
tested failed to improve the FID, while models trained with clipped-SGDA (with appropriately set
hyperparameters) are generally able to learn some meaningful features and improve the FID. We show
this behaviour in Figure 17 – the FID scores for SGDA-trained models fluctuate around 320 and only
generate noise such as the samples shown in Figure 18(b), which is in contrast to models trained with
clipped-SGDA. Note that the range of the hyperparameter sweep is fairly narrow and favourable for
clipped-SGDA, while being quite wide for SGDA. The purpose for these parameter ranges is not to
directly compare the parameter sweeps (which would unfairly favour clipped-SGDA), but to show
that in general SGDA fails, while clipped-SGDA is capable of learning.
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Table 2: SGDA hyperparameter sweep, and
the best FID score obtained in 35k training
steps.

G-LR D-LR FID

6e-06 6e-06 233.3
2e-05 2e-05 177.2
2e-05 4e-05 183.4
2e-05 8e-05 187.3
0.0002 0.0002 85.6
0.0002 0.0004 82.8
0.0002 0.0008 NaN
0.002 0.002 NaN
0.02 0.02 NaN
0.2 0.2 NaN

Table 3: SEG hyperparameter sweep, and the
best FID score obtained in 35k training steps.

G-LR D-LR FID

6e-06 6e-06 236.1
2e-05 2e-05 208.6
2e-05 4e-05 213.7
4e-05 4e-05 176.5
4e-05 0.0001 NaN
0.0002 0.0002 NaN
0.0002 0.0004 NaN
0.0002 0.0008 NaN
0.002 0.002 NaN
0.02 0.02 NaN
0.2 0.2 NaN
2 2 NaN

Table 4: clipped-SGDA (norm) hyperparame-
ter sweep, and the best FID score obtained in
35k training steps.

G-LR D-LR G-clip D-clip FID

0.002 0.002 0.1 0.1 257.6
0.002 0.002 1 1 121.6
0.002 0.002 10 10 145.4
0.02 0.02 0.1 0.1 115.4
0.02 0.02 1 1 141.8
0.02 0.02 10 10 27.4
0.2 0.2 0.1 0.1 133.0
0.2 0.2 1 1 26.3
2 2 0.1 0.1 26.1

Table 5: clipped-SEG (norm) hyperparameter
sweep, and the best FID score obtained in 35k
training steps (17.5k parameter updates).

G-LR D-LR G-clip D-clip FID

0.002 0.002 0.1 0.1 232.5
0.002 0.002 1 1 150.5
0.002 0.002 10 10 192.7
0.02 0.02 0.1 0.1 161.0
0.02 0.02 1 1 160.3
0.02 0.02 10 10 39.3
0.2 0.2 0.1 0.1 160.0
0.2 0.2 1 1 36.3
2 2 0.1 0.1 37.7

Table 6: clipped-SGDA (coordinate) hyperpa-
rameter sweep, and the best FID score obtained
in 35k training steps.

G-LR D-LR G-clip D-clip FID

0.0002 0.0002 0.001 0.001 292.2
0.0002 0.0002 0.01 0.01 108.6
0.0002 0.0002 0.1 0.1 91.5
0.002 0.002 0.001 0.001 76.5
0.002 0.002 0.01 0.01 43.5
0.002 0.002 0.1 0.1 45.1
0.02 0.02 0.001 0.001 37.3
0.02 0.02 0.01 0.01 26.7
0.02 0.02 0.1 0.1 34.7

Table 7: clipped-SEG (coordinate) hyperpa-
rameter sweep, and the best FID score ob-
tained in 35k training steps (17.5k parameter
updates).

G-LR D-LR G-clip D-clip FID

0.0002 0.0002 0.001 0.001 298.7
0.0002 0.0002 0.01 0.01 146.5
0.0002 0.0002 0.1 0.1 158.4
0.002 0.002 0.001 0.001 112.8
0.002 0.002 0.01 0.01 52.7
0.002 0.002 0.1 0.1 66.5
0.02 0.02 0.001 0.001 43.5
0.02 0.02 0.01 0.01 36.2
0.02 0.02 0.1 0.1 75.3
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Figure 5: FID curves when training WGAN-GP for 35k steps with SGDA, clipped-SGDA (norm),
and clipped-SGDA (coordinate), corresponding to the hyperparameters in Tables 2, 4 & 6 respectively.
The left figure is the individual runs for each choice of hyperparameters, and the right is the mean and
95% confidence interval of these runs. Note that 4 of 10 runs diverged (NaN loss) for SGDA, which
is not reflected in the mean FID for the right figure beyond the first step.
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Figure 6: FID curves when training WGAN-GP for 35k steps with SEG, clipped-SEG (norm), and
clipped-SEG (coordinate), corresponding to the hyperparameters in Tables 3, 5 & 7 respectively.
The left figure is the individual runs for each choice of hyperparameters, and the right is the mean and
95% confidence interval of these runs. Note that 8 of 12 runs diverged (NaN loss) for SEG, which is
not reflected in the mean FID for the right figure beyond the first step.
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Figure 7: Samples generated from the best WGAN-GP model trained with SGDA.

Figure 8: Samples generated from the best WGAN-GP model trained with clipped-SGDA.

Figure 9: Samples generated from the best WGAN-GP model trained with clipped-SEG.

69



Figure 10: Samples generated from the best WGAN-GP model trained with clipped-SGDA (coordi-
nate clipping).

Figure 11: Samples generated from the best WGAN-GP model trained with clipped-SEG (coordinate
clipping).
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Figure 12: Evolution of gradient noise histograms for the best WGAN-GP model trained with SGDA.
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Figure 13: Evolution of gradient noise histograms for the best WGAN-GP model trained with clipped-SGDA.
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Figure 14: Evolution of gradient noise histograms for the best WGAN-GP model trained with clipped-SEG.
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Figure 15: Evolution of gradient noise histograms for the best WGAN-GP model trained with clipped-SGDA
(cordinate clipping).
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Figure 16: Evolution of gradient noise histograms for the best WGAN-GP model trained with clipped-SEG
(cordinate clipping).

Table 8: StyleGAN2 SGDA hyperparameter
sweep, and the best FID score obtained in
2600 kimgs.

G-LR D-LR FID

0.003 0.003 319.7
0.0075 0.0075 318.5

0.01 0.01 317.7
0.035 0.035 301.9
0.05 0.05 300.3
0.075 0.075 299.6

0.1 0.1 308.5
0.35 0.35 342.6
0.5 0.5 346.6

Table 9: StyleGAN2 clipped-SGDA (coordinate)
hyperparameter sweep, and the best FID score ob-
tained in 2600 kimgs. Bold row denotes the best
run which was trained to convergence.

G-LR D-LR G-clip D-clip FID

0.2 0.2 0.001 0.001 243.5
0.3 0.3 0.001 0.001 169.5
0.35 0.35 0.0005 0.0005 192.9
0.35 0.35 0.001 0.001 148.6
0.35 0.35 0.0025 0.0025 104.9
0.35 0.35 0.005 0.005 149.1
0.35 0.5 0.01 0.01 170.6
0.4 0.4 0.001 0.001 155.8
0.5 0.5 0.0001 0.0001 289.8
0.5 0.5 0.001 0.001 136.1
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Figure 17: FID curves when training StyleGAN2 for 2600 kimgs (thousands of images seen by the
discriminator) with SGDA and clipped-SGDA (coordinate), corresponding to the hyperparameters
in Tables 8 & 9 respectively. The left figure is the individual runs for each choice of hyperparameters,
and the right is the mean and 95% confidence interval of these runs. Every SGDA-trained model
for the wide range of learning rates we tried failed to improve the FID, while models trained with
clipped-SGDA (with appropriately set hyperparameters) are generally able to learn some meaningful
features and improve the FID.
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(a) Additional samples generated from our best model trained with clipped-SGDA (lr=0.35, clip=0.0025).

(b) Additional samples generated from several different SGDA trained models, all of which failed to generate
meaningful features. Each row corresponds to a model trained with different learning rates.

Figure 18: More StyleGAN2 samples.

74


	1 Introduction
	1.1 Technical Preliminaries
	1.2 Our Contributions
	1.3 Closely Related Work

	2 Clipped Stochastic Extragradient
	3 Clipped Stochastic Gradient Descent-Ascent
	4 Experiments
	A Further Related Work
	B Auxiliary Results
	C Clipped Stochastic Extragradient: Missing Proofs and Details
	C.1 Monotone Case
	C.2 Star-Negative Comonotone Case
	C.3 Quasi-Strongly Monotone Case

	D Clipped Stochastic Gradient Descent-Ascent: Missing Proofs and Details
	D.1 Monotone Star-Cocoercive Case
	D.2 Star-Cocoercive Case
	D.3 Quasi-Strongly Monotone Star-Cocoercive Case

	E Extra Experiments
	E.1 WGAN-GP
	E.2 StyleGAN2


