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5 Some lower bounds for optimal sampling

recovery of functions with mixed smoothness

A. Gasnikov and V. Temlyakov

Abstract

Recently, there was a substantial progress in the problem of sam-

pling recovery on function classes with mixed smoothness. Mostly, it

has been done by proving new and sometimes optimal upper bounds

for both linear sampling recovery and for nonlinear sampling recovery.

In this paper we address the problem of lower bounds for the optimal

rates of nonlinear sampling recovery. In the case of linear recovery one

can use the well developed theory of estimating the Kolmogorov and

linear widths for establishing some lower bounds for the optimal rates.

In the case of nonlinear recovery we cannot use the above approach.

It seems like the only technique, which is available now, is based on

some simple observations. We demonstrate how these observations

can be used.

1 Introduction

Recently, there was a substantial progress in the problem of sampling recovery
on function classes with mixed smoothness. This paper is a followup of the
recent papers [7], [20], [21], and [12]. In this paper we address the problem
of lower bounds for the optimal rates of sampling recovery. The problem
of sampling recovery on function classes with mixed smoothness has a long
history with first results going back to the 1963 (see [11]). In many cases
this problem is still open. We refer the reader to the books [5] and [18] for
the corresponding historical discussion.

In this section we describe the problem setting and present some known
upper bounds. In Sections 3 – 5 we obtain some new results. Section 6
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contains a discussion. In this paper we admit the following convenient and
standard notation agreement. We use C, C ′ and c, c′ to denote various
positive constants. Their arguments indicate the parameters, which they
may depend on. Normally, these constants do not depend on a function f
and running parameters m, v, u. We use the following symbols for brevity.
For two nonnegative sequences a = {an}

∞
n=1 and b = {bn}

∞
n=1 the relation

an ≪ bn means that there is a number C(a, b) such that for all n we have
an ≤ C(a, b)bn. Relation an ≫ bn means that bn ≪ an and an ≍ bn means
that an ≪ bn and an ≫ bn. For a real number x denote [x] the integer part
of x, ⌈x⌉ – the smallest integer, which is greater than or equal to x.

We study the multivariate periodic functions defined on Td := [0, 2π]d.
Denote for 1 ≤ p <∞

‖f‖p :=

(

(2π)−d

∫

Td

|f(x)|pdx

)1/p

, x = (x1, . . . , xd)

and for p = ∞
‖f‖∞ := sup

x∈Td

|f(x)|.

We begin with the definition of classes Wr
q .

Definition 1.1. In the univariate case, for r > 0, let

Fr(x) := 1 + 2

∞
∑

k=1

k−r cos(kx− rπ/2) (1.1)

and in the multivariate case, for x = (x1, . . . , xd), let

Fr(x) :=
d
∏

j=1

Fr(xj).

Denote
Wr

q := {f : f = ϕ ∗ Fr, ‖ϕ‖q ≤ 1},

where

(ϕ ∗ Fr)(x) := (2π)−d

∫

Td

ϕ(y)Fr(x− y)dy.

The classes Wr
q are classical classes of functions with dominated mixed

derivative (Sobolev-type classes of functions with mixed smoothness). The
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reader can find results on approximation properties of these classes in the
books [18] and [5].

We now proceed to the definition of the classes Hr
p, which is based on the

mixed differences. In this paper we obtain new results for these classes.

Definition 1.2. Let t = (t1, . . . , td) and ∆l
tf(x) be the mixed l-th difference

with step tj in the variable xj, that is

∆l
tf(x) := ∆l

td,d
. . .∆l

t1,1
f(x1, . . . , xd).

Let e be a subset of natural numbers in [1, d]. We denote

∆l
t(e) :=

∏

j∈e

∆l
tj ,j
, ∆l

t(∅) := Id − identity operator.

We define the class Hr
p,lB, l > r, as the set of f ∈ Lp such that for any e

∥

∥∆l
t(e)f(x)

∥

∥

p
≤ B

∏

j∈e

|tj|
r. (1.2)

In the case B = 1 we omit it. It is known (see, for instance, [18], p.137)
that the classes Hr

p,l with different l > r are equivalent. So, for convenience
we fix one l = [r] + 1 and omit l from the notation.

It is well known that in the univariate case (d = 1) the approximation
properties of the above W and H classes are similar. It is also well known
that in the multivariate case (d ≥ 2) asymptotic characteristics (for instance,
Kolmogorov widths, entropy numbers, best hyperbolic cross trigonometric
approximations and others) have different rate of decay in the majority of
cases. Recently, a new scale of classes has been introduced and studied. It
turns out that this scale is convenient for simultaneous analysis of optimal
sampling recovery of both theW and theH classes. We give a corresponding
definitions now. Let s = (s1, . . . , sd) be a vector whose coordinates are
nonnegative integers

ρ(s) :=
{

k ∈ Z
d : [2sj−1] ≤ |kj| < 2sj , j = 1, . . . , d

}

,

where [a] means the integer part of a real number a. For f ∈ L1(T
d)

δs(f,x) :=
∑

k∈ρ(s)

f̂(k)ei(k,x), f̂(k) := (2π)−d

∫

Td

f(x)e−i(k,x)dx.
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Definition 1.3. Consider functions with absolutely convergent Fourier se-
ries. For such functions define the Wiener norm (the A-norm or the ℓ1-norm)

‖f‖A :=
∑

k

|f̂(k)|.

The following classes, which are convenient in studying sparse approximation
with respect to the trigonometric system, were introduced and studied in [17].
Define for f ∈ L1(T

d)

fj :=
∑

‖s‖1=j

δs(f), j ∈ N0, N0 := N ∪ {0}.

For parameters a ∈ R+, b ∈ R define the class

W
a,b
A := {f : ‖fj‖A ≤ 2−aj(j̄)(d−1)b, j̄ := max(j, 1), j ∈ N}.

The following embedding result follows easily from known results. We
give a detailed proof of it in Section 2.

Proposition 1.1. We have for r > 1/q

Wr
q →֒ W

a,b
A with a = r − 1/q, b = 1− 1/q, 1 < q ≤ 2; (1.3)

Hr
q →֒ W

a,b
A with a = r − 1/q, b = 1, 1 ≤ q ≤ 2. (1.4)

We give a very brief history of the recent development of the sampling
recovery on these classes. We refer the reader to the books [5] and [18] for
the previous results. In this paper we study the following characteristic of
the optimal sampling recovery. Let Ω be a compact subset of Rd with the
probability measure µ on it. For a function class W ⊂ C(Ω), we define (see
[23])

̺om(W,Lp) := inf
ξ
inf
M

sup
f∈W

‖f −M(f(ξ1), . . . , f(ξm))‖p,

where M ranges over all mappings M : Cm → Lp(Ω, µ) and ξ ranges over
all subsets {ξ1, · · · , ξm} of m points in Ω. Here, we use the index o to mean
optimality. Clearly, the above characteristic is a characteristic of nonlinear
recovery. For a discussion of the sampling recovery by linear methods see
Section 6.
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The authors of [6] (see Corollary 4.16 in v3) proved the following bound
for 1 < q < 2, r > 1/q and m ≥ c(r, d, q)v(log(2v))3, v ∈ N,

̺om(W
r
q, L2(T

d)) ≤ C(r, d, q)v−r+1/q−1/2(log(2v))(d−1)(r+1−2/q)+1/2. (1.5)

The authors of [3] proved the following bound

̺om(W
r
q , L2(T

d)) ≤ C ′(r, d, q)v−r+1/q−1/2(log(2v))(d−1)(r+1−2/q) (1.6)

provided that
m ≥ c′(r, d, q)v(log(2v))3. (1.7)

In the above mentioned results the sampling recovery in the L2 norm has
been studied. The technique, which was used in the proofs of the bounds
(1.5) and (1.6) is heavily based on the fact that we approximate in the L2

norm. The following upper bound was proved in [7].

Theorem 1.1 ([7]). Let 1 < q ≤ 2 ≤ p < ∞ and r > 1/q. There exist two
constants c = c(r, d, p, q) and C = C(r, d, p, q) such that we have the bound

̺om(W
r
q, Lp(T

d)) ≤ Cv−r+1/q−1/p(log(2v))(d−1)(r+1−2/q) (1.8)

for any v ∈ N and any m satisfying

m ≥ cv(log(2v))3.

Thus, Theorem 1.1 extends the previously known upper bound for p = 2
to the case p ∈ [2,∞).

In [7] Theorem 1.1 was derived from the embedding (1.3) and the following
result for the Wa,b

A classes (see [7], Theorem 5.3, Remark 5.1, and Proposition
5.1).

Theorem 1.2 ([7]). Let p ∈ [2,∞). There exist two constants c(a, p, d) and
C(a, b, p, d) such that we have the bound

̺om(W
a,b
A , Lp(T

d)) ≤ C(a, b, p, d)v−a−1/p(log(2v))(d−1)(a+b) (1.9)

for any v ∈ N and any m satisfying

m ≥ c(a, d, p)v(log(2v))3.
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Theorem 1.2 and embedding (1.4) imply the following analog of the bound
(1.8) for the H classes. There exist two constants c = c(r, d, p, q) and C =
C(r, d, p, q) such that we have the bound for r > 1/q

̺om(H
r
q, Lp(T

d)) ≤ Cv−r+1/q−1/p(log(2v))(d−1)(r+1−1/q) (1.10)

for any v ∈ N and any m satisfying

m ≥ cv(log(2v))3.

However, we point out that the bound (1.10) is weaker than the corresponding
known bound for the linear recovery (see Section 6 for a discussion).

The following lower bound for the H classes is the main result of this
paper.

Theorem 1.3. For 1 ≤ q ≤ p <∞, p > 1, r > 1/q, we have

̺om(H
r
q, Lp) ≥ c(d)m−r+1/q−1/p(logm)(d−1)/p.

Theorem 1.3 is a direct corollary of Lemma 3.2, which is proved in Sec-
tion 3. The reader can find a discussion of this result in Sections 3 and 6.
Note that a new nontrivial feature of Theorem 1.3 is the logarithmic factor
(logm)(d−1)/p, which shows that some logarithmic in m factor is needed.

In Section 4 we derive the following lower bound from the known results
developed in numerical integration.

Proposition 1.2. We have for r > 0

̺om(H
r
∞, L1) ≫ m−r(logm)d−1.

In Section 5 we formulate the setting of the sampling recovery in the gen-
eral space Lp(Ω, µ), 1 ≤ p <∞, and instead of the trigonometric system T d

we study a general uniformly bounded system Ψ = {ψk}k∈Zd . We prove there
a lower bound for the new classes defined with respect to the trigonometric
system T d.

2 Preliminaries

We need some classical trigonometric polynomials. The univariate Fejér ker-
nel of order j − 1:

Kj(x) :=
∑

|k|≤j

(

1− |k|/j
)

eikx =
(sin(jx/2))2

j(sin(x/2))2
.
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The Fejér kernel is an even nonnegative trigonometric polynomial of order
j − 1. It satisfies the obvious relations

‖Kj‖1 = 1, ‖Kj‖∞ = j. (2.1)

Let Kj(x) :=
∏d

i=1Kji(xi) be the d-variate Fejér kernels for j = (j1, . . . , jd)
and x = (x1, . . . , xd).

The univariate de la Vallée Poussin kernels are defined as follows

Vm := 2K2m −Km.

We also need the following special trigonometric polynomials. Let s be a
nonnegative integer. We define

A0(x) := 1, A1(x) := V1(x)− 1, As(x) := V2s−1(x)− V2s−2(x), s ≥ 2,

where Vm are the de la Vallée Poussin kernels defined above. For s =
(s1, . . . , sd) ∈ Nd

0 define

As(x) :=

d
∏

j=1

Asj(xj), x = (x1, . . . , xd).

We now prove Proposition 1.1.
Proof of Proposition 1.1. First, we prove (1.3). It is well known (see,

for instance, [14], Ch.2, Theorem 2.1) that for f ∈ Wr
q one has for 1 < q <∞

‖fj‖q ≤ C(d, q, r)2−jr, j ∈ N. (2.2)

The known results (see Theorem 2.3 below) imply for 1 < q ≤ 2

‖fj‖A ≤ C(d, q)2j/qj(d−1)(1−1/q)‖fj‖q (2.3)

≤ C(d, q, r)2−(r−1/q)jj(d−1)(1−1/q). (2.4)

Therefore, class Wr
q is embedded into the class W

a,b
A with a = r − 1/q and

b = 1− 1/q.
Second, we prove (1.4). Here we need a well known result on the repre-

sentation of the H classes (see, for instance, [18], p.137).
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Theorem 2.1. Let f ∈ Hr
q,l. Then for s ≥ 0

∥

∥As(f)
∥

∥

q
≤ C(r, d, l)2−r‖s‖1, 1 ≤ q ≤ ∞, (2.5)

∥

∥δs(f)
∥

∥

q
≤ C(r, d, q, l)2−r‖s‖1, 1 < q <∞. (2.6)

Conversely, from (2.5) or (2.6) it follows that there exists a B > 0, which
does not depend on f , such that f ∈ Hr

q,lB.

By Theorem 2.1 we obtain that for f ∈ Hr
q one has for 1 ≤ q ≤ ∞

‖As(f)‖q ≤ C(d, r)2−r‖s‖1, s ∈ N
d
0. (2.7)

It is known and easy to see that for q ∈ [1, 2]

‖As(f)‖A ≤ C(d)2‖s‖1/q‖As(f)‖q ≤ C ′(d, r)2−(r−1/q)‖s‖1 . (2.8)

Therefore,
‖fj‖A ≤ C ′′(d, r)2−(r−1/q)jj(d−1), (2.9)

which completes the proof of (1.4).
We formulate some known results from harmonic analysis and from the

hyperbolic cross approximation theory, which will be used in our analysis.
We begin with the problem of estimating ‖f‖u in terms of the array

{

‖δs(f)‖v
}

. Here and below in this section u and v are scalars such that
1 ≤ u, v ≤ ∞. Let an array ε = {εs} be given, where εs ≥ 0, s = (s1, . . . , sd),
and sj are nonnegative integers, j = 1, . . . , d. We denote by G(ε, v) and
F (ε, v) the following sets of functions (1 ≤ v ≤ ∞):

G(ε, v) :=
{

f ∈ Lv :
∥

∥δs(f)
∥

∥

v
≤ εs for all s

}

,

F (ε, v) :=
{

f ∈ Lv :
∥

∥δs(f)
∥

∥

v
≥ εs for all s

}

.

The following theorem is from [14], p.29 (see also [18], p.94). For the
special case v = 2 see [13] and [14], p.86.

Theorem 2.2. The following relations hold:

sup
f∈G(ε,v)

‖f‖u ≍

(

∑

s

εus2
‖s‖1(u/v−1)

)1/u

, 1 ≤ v < u <∞; (2.10)

inf
f∈F (ε,v)

‖f‖u ≍

(

∑

s

εus2
‖s‖1(u/v−1)

)1/u

, 1 < u < v ≤ ∞, (2.11)

with constants independent of ε.
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We will need a corollary of Theorem 2.2 (see [14], Ch.1, Theorem 2.2),
which we formulate as a theorem. Let Q be a finite set of points in Zd, we
denote

T (Q) :=

{

t : t(x) =
∑

k∈Q

ake
i(k,x)

}

and
Qn :=

⋃

s:‖s‖1≤n

ρ(s).

Theorem 2.3. Let 1 < q ≤ 2. For any t ∈ T (Qn) we have

‖t‖A :=
∑

k

|t̂(k)| ≤ C(q, d)2n/qn(d−1)(1−1/q)‖t‖q.

3 The case 1 ≤ q ≤ p ≤ ∞

Let us discuss lower bounds for the nonlinear characteristic ̺om(W,Lp). De-
note for N = (N1, . . . , Nd), Nj ∈ N0, j = 1, . . . , d,

Π(N, d) := {k ∈ Z
d : |kj| ≤ Nj , j = 1, . . . , d}

and

T (N, d) :=







f =
∑

k∈Π(N,d)

cke
i(k,x)







, ϑ(N) :=

d
∏

j=1

(2Nj + 1).

In this section Ω = Td and µ is the normalized Lebesgue measure on Td. The
following Lemma 3.1 was proved in [21].

Lemma 3.1 ([21]). Let 1 ≤ q ≤ p ≤ ∞ and let T (N, d)q denote the unit
Lq-ball of the subspace T (N, d). Then we have for m ≤ ϑ(N)/2 that

̺om(T (2N, d)q, Lp) ≥ c(d)ϑ(N)1/q−1/p.

Let n be a natural number. Denote

H(Qn)q := {f : f ∈ T (Qn), ‖As(f)‖q ≤ 1} .

Theorem 2.1 implies thatH(Qn)q is embedded inHr
qC2

rn with some constant
C independent of n. Moreover, H(Qn+b)q is embedded in Hr

qC(b)2
rn with

some constant C(b) independent of n. We now prove the following analog of
Lemma 3.1.
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Lemma 3.2. Let 1 ≤ q ≤ p <∞, p > 1 and n be a natural number divisible
by 3. Denote Sn := min‖s‖1=n |ρ(s)|. Clearly, Sn ≍ 2n. Then there exists a
constant b independent of n such that we have for m ≤ Sn/2

̺om(H(Qn+b)q, Lp) ≥ c(d)2n(1/q−1/p)n(d−1)/p.

Proof. Let a set ξ ⊂ Td := [0, 2π]d of points ξ1, . . . , ξm be given. Let n be a
natural number divisible by 3 and let Yn,3 denote the set of all s ∈ Nd such
that all the coordinates of s are natural numbers divisible by 3 and ‖s‖1 = n.
Clearly, |Yn,3| ≍ nd−1. Consider the subspaces

T (ξ, s) := {f ∈ T (ρ(s)) : f(ξν) = 0, ν = 1, . . . , m}, s ∈ Yn,3.

Let gξ,s ∈ T (ξ, s) and a point x∗
s be such that |gξ,s(x

∗)| = ‖gξ,s‖∞ = 1. We
set 2s−2 := (2s1−2, . . . , 2sd−2) and

ts(x) := gξ,s(x)K2s−2(x− x∗
s), f :=

∑

s∈Yn,3

ts. (3.1)

Then f ∈ T (Qn+d), f(ξ
ν) = 0, ν = 1, . . . , m, and the bound

‖gξ,sK2s−2‖q ≤ ‖gξ,s‖∞‖K2s−2‖q ≤ C1(d)2
n(1−1/q), s ∈ Yn,3 (3.2)

implies that for all s

‖As(f)‖q ≤ C1(q, d)2
n(1−1/q). (3.3)

In (3.2) we used the known bound for the Lq norm of the Fejér kernel (see
[18], p.83, (3.2.7)). Moreover, our assumption that all the coordinates of s
are natural numbers divisible by 3 implies that

δu(f) = δu(ts)

with only one appropriate s. It is easy to derive from here that for each s

such that ‖s‖1 = n there exists u(s) such that n − 2d ≤ ‖u(s)‖1 ≤ n + d
with the property

‖δu(s)(ts)‖∞ ≥ c(d)‖ts‖∞, c(d) > 0. (3.4)

By (2.1) we get
|ts(x

∗)| ≥ C2(d)2
n. (3.5)

10



We now apply the inequality, which directly follows from (2.11) of Theorem
2.2 with u = p and v = ∞, and obtain

‖f‖p ≥ C3(d, p)2
n(1−1/p)n(d−1)/p. (3.6)

Let M be a mapping from C
m to Lp. Denote g0 := M(0). Then for

h := f(maxs ‖As(f)‖q)
−1 we have

‖h− g0‖p + ‖ − h− g0‖p ≥ 2‖h‖p. (3.7)

Inequality (3.3) and the fact that f ∈ T (Qn+d) imply

max
s

‖As(f)‖q ≤ C ′
1(d)2

n(1−1/q) and As(f) = 0, ‖s‖1 > n + 3d. (3.8)

Relations (3.7), (3.8), (3.6), and the fact that both h and −h belong to
H(Qn+d)q complete the proof of Lemma 3.2.

As a direct corollary of Lemma 3.2 we obtain Theorem 1.3 from the
Introduction.

Remark 3.1. By the Bernstein inequalities (see, for instance, [18], p.89)
one finds out that there exists a constant C(r, d) > 0 such that

C(r, d)ϑ(N)−rT (2N, d)q ⊂ Wr
q .

Then by Lemma 3.1 we obtain

̺om(W
r
q, Lp) ≥ c(d)m−r+1/q−1/p. (3.9)

It is well known (see, for instance, [5], p.42) that classes Wr
q are embedded in

the classes Hr
q. Therefore, (3.9) implies the same lower bound for the classes

Hr
q. However, it is weaker than the bound in Theorem 1.3.

4 The case 1 ≤ p ≤ q ≤ ∞

We now proceed to the case 1 ≤ p ≤ q ≤ ∞ and concentrate on the special
case, when p = 1 and q = ∞. It is clear that we have the following inequalities
for all 1 ≤ p ≤ q ≤ ∞ and for all classes Fr

q (F stands for both W and H)

̺om(F
r
∞, L1) ≤ ̺om(F

r
q, Lp).

11



The following functions were built in [15] (see also [18], pp. 264–266):
For any number n ∈ N and any set of points {ξ1, . . . , ξN}, N ≤ 2n−1, there
are functions ts ∈ T (2s−1, d) such that

ts(ξ
j) = 0, j = 1, . . . , N, ‖ts‖∞ ≤ 1

and
∫

Td

t(x)dx ≥ c(d)nd−1, t(x) :=
∑

‖s‖1=n

ts(x). (4.1)

Moreover, it was proved there that for q <∞ one has: There exists a constant
c = c(r, q, d) > 0 such that

ct2−rnn−(d−1)/2 ∈ Wr
q.

This example implies the following Proposition 4.1.

Proposition 4.1. For any q <∞ we have for r > 1/q

̺om(W
r
q, L1) ≫ m−r(logm)(d−1)/2.

We now show how the above example implies the lower bound for the H

classes – Proposition 1.2 from Introduction.
Proof of Proposition 1.2. We prove that there is a positive constant

c(d, q, r) such that
c(d, q, r)t2−rn ∈ Hr

∞.

For that we estimate ‖Au(t)‖∞ for all u and use Theorem 2.1. Obviously,
Au(t) = 0 if for some j we have 2uj−2 > 2sj−1. Therefore, it is sufficient to
analyze u such that ‖u‖1 ≤ n+ d. In the same way we see that

Au(t) =
∑

s∈Yn(u)

Au(ts), Yn(u) := {s : sj ≥ uj − 1, j = 1, . . . , d, ‖s‖1 = n}.

Denote wj := sj − uj + 1, w := (w1, . . . , wd). Then for s ∈ Yn(u) we have
wj ≥ 0, j = 1, . . . , d, and

‖w‖1 = ‖s‖1 − ‖u‖1 + d = n− ‖u‖1 + d.

The total number of such w is ≪ (n− ‖u‖1 + d)d−1. Therefore,

‖Au(t)‖∞ ≪ (n− ‖u‖1 + d)d−1 ≪ 2r(n−‖u‖1).
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By Theorem 2.1 this implies that there exists a positive constant c(d, q, r)
such that c(d, q, r)t2−rn ∈ Hr

∞. We now use (4.1) and complete the proof in
the same way as it has been done in the proof of Lemma 3.2 above.

We now make a comment in the style of Remark 3.1, which points out
that somewhat weaker than Propositions 4.1 and 1.2 results can be derived
from the known results. The following Lemma 4.1 was proved in [20].

Lemma 4.1 ([20]). Let T (N, d)∞ denote the unit L∞-ball of the subspace
T (N, d). Then we have for m ≤ ϑ(N)/2 that

̺om(T (N, d)∞, L1) ≥ c(d) > 0.

Remark 4.1. In the same way as above in Remark 3.1 by using Lemma 4.1
instead of Lemma 3.1 we obtain

̺om(H
r
∞, L1) ≫ ̺om(W

r
∞, L1) ≫ m−r.

Comment on the Gelfand width. 4.1. It is easy to see from the
construction of functions t in [15] (see also [18], pp. 264–266), mentioned
above, that the sampling linear functionals can be replaced by any linear
functionals. This means that Propositions 4.1 and 1.2 hold for the following
asymptotic characteristics as well. The Gelfand width is defined as follows

cm(F, X) := inf
ϕ1,...,ϕm

sup
f∈F:ϕj(f)=0, j=1,...,m

‖f‖X

where ϕ1, . . . , ϕm are linear functionals. Thus, we have

cm(W
r
∞, L1) ≫ m−r(logm)(d−1)/2 (4.2)

and
cm(H

r
∞, L1) ≫ m−r(logm)d−1. (4.3)

5 Sampling recovery on classes with struc-

tural condition

We formulate the setting of the sampling recovery in the general space
Lp(Ω, µ), 1 ≤ p <∞, and instead of the trigonometric system T d we study a
general uniformly bounded system Ψ = {ψk}k∈Zd. More precisely, let Ω be a
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compact subset of Rd with the probability measure µ on it. By the Lp norm,
1 ≤ p <∞, of the complex valued function defined on Ω, we understand

‖f‖p := ‖f‖Lp(Ω,µ) :=

(
∫

Ω

|f |pdµ

)1/p

and ‖f‖∞ := sup
x∈Ω

|f(x)|.

Let a uniformly bounded system Ψ := {ψk}k∈Zd be indexed by k ∈ Zd.
Consider a sequence of subsets G := {Gj}

∞
j=1, Gj ⊂ Zd, j = 1, 2, . . . , such

that

G1 ⊂ G2 ⊂ · · · ⊂ Gj ⊂ Gj+1 ⊂ · · · ,
∞
⋃

j=1

Gj = Z
d. (5.1)

Consider functions representable in the form of absolutely convergent series

f =
∑

k∈Zd

ak(f)ψk,
∑

k∈Zd

|ak(f)| <∞. (5.2)

For β ∈ (0, 1] and r > 0 consider the following class Ar
β(Ψ,G) of functions f ,

which have representations (5.2) satisfying conditions





∑

k∈Gj\Gj−1

|ak(f)|
β





1/β

≤ 2−rj, j = 1, 2, . . . , G0 := ∅. (5.3)

Probably, the first realization of the idea of the classes Ar
β(Ψ,G) was re-

alised in [17] in the special case, when Ψ is the trigonometric system T d :=
{ei(k,x)}k∈Zd (see [21] for a detailed historical discussion). The classes Ar

β(Ψ)
studied in [21] correspond to the case of Ar

β(Ψ,G) with

Gj := {k ∈ Z
d : ‖k‖∞ < 2j}, j = 1, 2, . . . . (5.4)

We now define classes W
a,b
Aβ
(Ψ), which were introduced and studied in

[12]. For

f =
∑

k

ak(f)ψk,
∑

k

|ak(f)| <∞, (5.5)

denote

δs(f,Ψ) :=
∑

k∈ρ(s)

ak(f)ψk, fj :=
∑

‖s‖1=j

δs(f,Ψ), j ∈ N0, N0 := N ∪ {0}
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and for β ∈ (0, 1]

|f |Aβ(Ψ) :=

(

∑

k

|ak(f)|
β

)1/β

.

Note, that if representations (5.5) are unique, then in the case β = 1 the
characteristic |f |Aβ(Ψ) is the norm and in the case β ∈ (0, 1) it is a quasi-

norm. For parameters a ∈ R+, b ∈ R define the class W
a,b
Aβ
(Ψ) of functions

f for which there exists a representation (5.5) satisfying

|fj|Aβ(Ψ) ≤ 2−aj(j̄)(d−1)b, j̄ := max(j, 1), j ∈ N0. (5.6)

In the case, when Ψ is the trigonometric system and β = 1, classes
W

a,b
Aβ
(Ψ) were introduced in [17]. The general definition in the case β = 1

is given in [3]. We use the notation A in place of A1. Thus, Wa,b
A (Ψ) :=

W
a,b
A1
(Ψ). Note that the W

a,b
Aβ
(Ψ) classes can be seen as the W type classes

with the structural condition on the coefficients in the quasi-norm Aβ.

We now define an analog of theWa,b
Aβ
(Ψ) classes in a style of theH classes.

For parameters a ∈ R+, b ∈ R define the class H
a,b
Aβ
(Ψ) of functions f for

which there exists a representation (5.5) satisfying

|δs(f,Ψ)|Aβ(Ψ) ≤ 2−aj(j̄)(d−1)b, j̄ := max(j, 1), j ∈ N0, ‖s‖1 = j. (5.7)

Note, that the following embedding follows directly from the definitions
of the classes

H
a,b
Aβ

→֒ W
a,b′

Aβ
with b′ = b+ 1/β. (5.8)

We will need some simple properties of the quasi-norms | · |Aβ
.

Proposition 5.1. Assume that Ψ is a uniformly bounded (‖ψk‖∞ ≤ B,
k ∈ Zd) orthonormal system. Denote for N = (N1, . . . , Nd), Nj ∈ N0,
j = 1, . . . , d,

Ψ(N, d) :=







f =
∑

k∈Π(N,d)

ckψk







, ϑ(N) :=

d
∏

j=1

(2Nj + 1).

Then for q ∈ [1, 2] we have for f ∈ Ψ(N, d)

|f |A ≤ B2/q−1ϑ(N)1/q‖f‖q.
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Proof. Denote for an array v = {vk}k∈Π(N,d), |vk| = 1, k ∈ Π(N, d),

DN,Ψ(v,x) :=
∑

k∈Π(N,d)

vkψk(x).

Let f have the representation (5.5). By the orthonormality assumption we
have

|f |A =
∑

k∈Π(N,d)

|ak(f)| =

∫

Ω

DN,Ψ(v,x)f̄dx, (5.9)

where vk := sign ak(f) := ak(f)/|ak(f)|, if ak 6= 0 and vk = 1 if ak = 0; f̄ is
the complex conjugate to f . From (5.9) we obtain

|f |A ≤ ‖DN,Ψ(v, ·)‖q′‖f̄‖q, q′ := q/(q − 1). (5.10)

Using simple relations

‖DN,Ψ(v, ·)‖2 = ϑ(N)1/2, ‖DN,Ψ(v, ·)‖∞ ≤ Bϑ(N)

and the well known inequality ‖g‖p ≤ ‖g‖
2/p
2 ‖g‖

1−2/p
∞ , p ∈ [2,∞), we get

‖DN,Ψ(v, ·)‖q′ ≤ B2/q−1ϑ(N)1/q. (5.11)

Combining (5.10) and (5.11), we complete the proof.

Let β ∈ (0, 1). Then for any set of numbers {yj}
M
j=1 we have by the Hölder

inequality
M
∑

j=1

|yj|
β ≤

(

M
∑

j=1

|yj|

)β

M1−β . (5.12)

Inequality (5.12) and Proposition 5.1 imply the following Corollary 5.1.

Corollary 5.1. Under assumptions of Proposition 5.1 for q ∈ [1, 2] and
β ∈ (0, 1] we have for f ∈ Ψ(N, d)

|f |Aβ
≤ ϑ(N)1/β−1|f |A ≤ B2/q−1ϑ(N)1/β−1+1/q‖f‖q.

We now proceed to the main result of this section – the lower bound for
ρom(H

a,b
Aβ
, Lp).
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Theorem 5.1. Let a > 0 and b ∈ R. Then for β ∈ (0, 1] and p ∈ [2,∞)

ρom(H
a,b
Aβ
(T d), Lp) ≫ m1−1/p−1/β−a(logm)(d−1)(b+1/p).

Proof. Let f be the function defined by (3.1) in the proof of Lemma 3.2.
Then by (3.2) and Corollary 5.1 we obtain

|ts|Aβ
≪ 2n/β, (5.13)

which easily implies that there exists a positive constant c independent of
n such that c2n(−a−1/β)n(d−1)bf ∈ H

a,b
Aβ
. We now use (3.6) and complete the

proof in the same way as it has been done in the proof of Lemma 3.2.

The following upper bound was proved in [12] for p ∈ [2,∞)

̺om(W
a,b
Aβ
(T d), Lp(T

d)) ≪

(

m

(logm)3

)1−1/p−1/β−a

(log(m))(d−1)(a+b). (5.14)

Note that Theorem 5.1 does not cover the case p ∈ [1, 2). We now present
the corresponding lower bound in the case p = 1. In the same way as we
derived Theorem 5.1 from the example built in the proof of Lemma 3.2 we
can derive the following lower bound from the example presented in Section 4

ρom(H
a,b
Aβ
(T d), L1) ≫ m1/2−1/β−a(logm)(d−1)(b+1). (5.15)

This bound, the upper bound (5.14) with p = 2, and the embedding (5.8)
show that the characteristics ρom(H

a,b
Aβ
(T d), Lp) have the same power decay

m1/2−1/β−a for all p ∈ [1, 2].
Comment 5.1. Similarly to Comment 4.1 we have the following analog

of the bound (5.15)

cm(H
a,b
Aβ
(T d), L1) ≫ m1/2−1/β−a(logm)(d−1)(b+1). (5.16)

6 Discussion

In this paper we focus on the study of the lower bounds for the nonlinear
characteristic ̺om(W,Lp). Most of the known results on optimal sampling
recovery deal with the linear recovery methods. Recall the setting of the
optimal linear recovery. For a fixed m and a set of points ξ := {ξj}mj=1 ⊂ Ω,
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let Φ be a linear operator from Cm into Lp(Ω, µ). Denote for a class W
(usually, centrally symmetric and compact subset of Lp(Ω, µ))

̺m(W,Lp) := inf
linearΦ; ξ

sup
f∈W

‖f − Φ(f(ξ1), . . . , f(ξm))‖p.

The characteristic ̺m(W,Lp) was introduced and studied in [16]. The reader
can find a detailed discussion of results on ̺m(W,Lp) in the books [5] and
[18]. Recently, a substantial progress in estimating ̺m(W,Lp) and ̺

o
m(W,Lp)

(mostly, the case of recovery in the L2 norm was studied) was made in the
papers [8], [9], [10], [19], [22], [6], [1], [2], [3], [4], [21], [7], [12].

We have an obvious inequality

̺om(W,Lp) ≤ ̺m(W,Lp), (6.1)

which means that the upper bounds for ̺m(W,Lp) serve as upper bounds
for ̺om(W,Lp) and the lower bounds for ̺om(W,Lp) serve as lower bounds for
̺m(W,Lp). It is an interesting problem to understand for which function
classes W the rates of decay of the characteristics ̺m(W,Lp) and ̺

o
m(W,Lp)

coincide. It is known that even in the classical case of classes Wr
q, 1 <

q < 2, the rates of ̺m(W
r
q, L2) and ̺om(W

r
q, L2) do not coincide. It was

observed in [6] that in the case 1 < q < 2 for large enough d the upper
bound for ̺om(W

r
q, L2) and the known lower bound for ̺m(W

r
q, L2) imply

that ̺om(W
r
q, L2) = o(̺m(W

r
q, L2)). This means that in those cases nonlinear

methods give better rate of decay of errors of sampling recovery than linear
methods do. We now discuss this important phenomenon in detail. We
begin with the upper bounds (1.5) and (1.6) for ̺om(W

r
q, L2) given in the

Introduction.
For instance, (1.6) and (1.7) imply

̺om(W
r
q, L2(T

d)) ≪

(

m

(logm)3

)−r+1/q−1/2

(logm)(d−1)(r+1−2/q). (6.2)

We now proceed to the lower bounds for ̺m(W
r
q, L2(T

d)). It is obvious
that

dm(W,Lp) ≤ ̺m(W,Lp), (6.3)

where dm(W,X) is the Kolmogorov width of W in a Banach space X :

dm(W,X) := inf
Y⊂X,dimY≤m

sup
f∈W

inf
y∈Y

‖f − y‖X .
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Here are the known bounds on the dm(W
r
q, L2) (see, for instance, [18], p.216):

For 1 < q ≤ 2, r > 1/q − 1/2 and 2 < q <∞, r > 0

dm(W
r
q, L2) ≍

(

(logm)d−1)

m

)r−(1/q−1/2)+

, (a)+ := max(a, 0). (6.4)

Taking into account that r+1−2/q < r+1/2−1/q for 1 < q < 2 we conclude
from (6.2), (6.3), and (6.4) that for large enough d we have ̺om(W

r
q, L2) =

o(̺m(W
r
q, L2)).

It is interesting to point out that we do not know if the above effect,
which holds for the W classes, holds for the H classes as well. The following
upper bound is known (see, for instance, [18], p.308) for the linear recovery
in the case 1 ≤ q < p <∞, r > 1/q,

̺m(H
r
q, Lp(T

d)) ≪

(

m

(logm)d−1

)−r+1/q−1/p

(logm)(d−1)/p. (6.5)

In the case p ≥ 2 the bound (6.5) is better than the bound (1.10) from
Introduction. This means that in the case 1 < q ≤ 2 ≤ p < ∞ the known
upper bounds for the linear recovery are better than those in (1.10).

Let us make some comments on the technique available for proving the
lower bounds for the optimal recovery. In the case of linear recovery we can
use the inequality (6.3) or even a stronger one with the Kolmogorov width
replaced by the linear width. This theory is well developed (see, for instance,
the books [5] and [18]). In the case of nonlinear recovery we cannot use the
above approach. It seems like the only technique, which is available now, is
based on the following simple observation.

Proposition 6.1. Let W ⊂ X be a symmetric (f ∈ W ⇒ −f ∈ W ) subset,
consisting of continuous functions. Then

̺om(W,X) ≥ inf
ξ1,...,ξm

sup
f∈W : f(ξj)=0, j=1,...,m

‖f‖X .
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