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Abstract Accuracy certificates for convex minimization problems allow for
online verification of the accuracy of approximate solutions and provide a
theoretically valid online stopping criterion. When solving the Lagrange dual
problem, accuracy certificates produce a simple way to recover an approxi-
mate primal solution and estimate its accuracy. In this paper, we generalize
accuracy certificates for the setting of inexact first-order oracle, including the
setting of primal and Lagrange dual pair of problems. We further propose an
explicit way to construct accuracy certificates for a large class of cutting plane
methods based on polytopes. As a by-product, we show that the considered
cutting plane methods can be efficiently used with a noisy oracle even thought
they were originally designed to be equipped with an exact oracle. Finally, we
illustrate the work of the proposed certificates in the numerical experiments
highlighting that our certificates provide a tight upper bound on the objective
residual.
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1 Introduction

The authors of [16] introduced the notion of accuracy certificates for convex
minimization and other problems with a convex structure. These certificates
verify the accuracy of an approximate solution at any stage of an optimization
algorithm execution. Although many algorithms have convergence rate esti-
mates, those often involve parameters unknown in practice, e.g., a constant of
Lipschitz continuity of the objective, distance from the starting point to the
closest solution, and so on. Accuracy certificates, on the contrary, verify the
accuracy of an approximate solution without additional a priori information
about the particular problem. Moreover, the accuracy can be verified online
and on the fly using the already available information generated by the algo-
rithm. Thus, the accuracy certificates provide a theoretically valid and prac-
tical stopping criterion. Furthermore, certificates allow an external recipient
to verify the accuracy guarantees, without knowing how the algorithm works.
This can be useful in some cases where privacy is a priority.

Certificates are extremely useful when an algorithm is applied to the La-
grange dual optimization problem. In this case, they can be used to convert
an ǫ-optimal dual solution into an ǫ-optimal solution to the primal problem.
Moreover, this approach allows to reuse the information already generated by
the algorithm and the approximate primal solution is reconstructed in a direct
way, without the knowledge of additional problem parameters. Remarkably,
certificate-based approach allows one to circumvent the following disadvan-
tages of the approach based on the regularization of the primal problem [8,
9].

– The regularization approach uses an upper bound on the norm of a primal
solution. In many cases, such a bound is not available or overestimated
which leads to slower convergence.

– It requires the target accuracy to be fixed in advance. This raises difficulties
when the time limit is exceeded before this accuracy is reached, or when
the user decides in the middle of the process that a higher target accuracy
is needed.

– In some cases, regularization is not enough to reconstruct the primal so-
lution. For example, one needs to impose a β-ergodicity assumption when
applying a dual approach to optimizing a constrained Markov decision pro-
cess [10].

– In some cases, the accuracy deteriorates when one converts a dual point to
a primal solution in this way. For example, accuracy ǫ of a dual solution
might result in accuracy

√
ǫ of the respective primal solution [10].

Related literature. The paper [16] provides a way to compute accuracy
certificates for the ellipsoid method. After τ iterations of the method applied
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to an n-dimensional problem, computation of certificates requires O(n3) +
O(τn2) arithmetic operations (a.o.). Moreover, the authors mention that one
can compute certificates for other cutting-plane methods in a similar fashion by
approximating localizer sets with John ellipsoids (for a notion of John ellipsoid
see, e.g., [4], Chapter 8.4). However, we didn’t find any uses of this procedure
with algorithms other than the ellipsoid method. A possible reason for this is
the high computational cost of approximating John ellipsoids [12,15,2,13,22,
7]. Fortunately, we show that there is a way to build certificates for polytope-
based cutting plane algorithms in a straightforward way by approximately
solving a single linear problem, which according to [5] takes only Õ (nω) a.o.,

where Õ hides polylog(n) factors. We also note that the certificates proposed
in [16] are constructed under the assumption that the first-order information,
i.e., subgradients, in the problem are available exactly, which may not always
happed in practice.

Contributions of this paper are as follows:

– Generalizing the work [16], we investigate the properties of accuracy cer-
tificates in the setting of minimization problems with inexact first-order

oracle;
– We develop a simple and efficient way to obtain accuracy certificates for

a large class of cutting plane methods, including Vaidya’s method [23,24],
Atkinson-Vaidya algorithm [3] and many others;

– We show that the considered methods can be efficiently used with a noisy
oracle even if they were originally designed to be used with an exact oracle;

– We consider convex problems with (possibly nonlinear) convex inequality
constraints and establish a straightforward way to obtain an approximate
primal solution based on the information obtained by a method with certifi-
cates applied to the dual problem. Generalizing [16], we consider nonlinear
constraints and allow for inexact solutions of auxiliary problems in each
iteration.

The rest of the paper is organized as follows. In Section 2, we state the min-
imization problem, and define the separation oracle and the inexact first-order
oracle that are used in the algorithms. We also formally define certificates and
prove their main property, namely, an upper bound for the objective residual
based on a certificate. Section 3 is devoted to the primal-dual setting where
we consider convex optimization problems with convex inequality constraints.
In particular, we construct separation and inexact oracles for this setting and
propose a way to reconstruct an approximate primal solution based on a cer-
tificate for the dual problem, with the same accuracy both in terms of the
primal objective and constraint violation. In Section 4, we describe a wide
class of cutting plane methods and propose a way to construct accuracy cer-
tificates for these methods. Finally, in Section 5, we illustrate the practical
efficiency of the proposed certificates.
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2 Certificates and Their Properties

2.1 Problem Formulation

Consider a convex minimization problem (CMP)

Opt = min
x∈X

F (x), (1)

where

– X ⊂ R
n is a solid (convex compact set with a nonempty interior) repre-

sented by a Separation oracle – a black box which, given on input a point
x ∈ R

n, reports whether or not x ∈ intX , and in the case of x /∈ intX ,
returns a separator – a vector e 6= 0 such that 〈e, y− x〉 ≤ 0 for all y ∈ X .

– F : X → R∪{+∞} is a convex function with Dom(F ) = {x : F (x) < ∞} ⊇
intX ; this function is represented by δ-oracle – a black box which, given on
input a point x ∈ intX , returns a value F̃ (x) such that |F̃ (x)−F (x)| < δ,
and a δ-subgradient F̃ ′(x) ∈ ∂δF (x) of F at x, i.e., a vector F̃ ′(x) satisfying

F (y) ≥ F (x) + 〈F̃ ′(x), y − x〉 − δ ∀y ∈ X. (2)

A point x ∈ intX is called a strictly feasible solution to (1). A proximity
measure for such a point x to optimality is defined by

ǫopt(x) = F (x)− inf
y∈X

F (y) = F (x)− Opt.

A strictly feasible point x is called ǫ-optimal for (1), if ǫopt(x) ≤ ǫ, that is, if
F (x) ≤ Opt + ǫ.

2.2 Certificates for Convex Minimization Problems

A computational method for solving the problem (1) within a prescribed ac-
curacy ǫ > 0 produces execution protocols Pτ = {(xt, et)}τt=1, where

– τ ∈ N is the current number of steps,
– xt ∈ R

n are the search points generated so far,
– et is either a nonzero vector, reported by the Separation oracle and sepa-

rating xt and X (this is the case at a nonproductive steps t – those with
xt /∈ intX), or is a δ-subgradient F̃ ′ (xt) of F at xt reported by the δ-oracle
(this is the case at productive steps t – those with xt ∈ intX).

The range 1 ≤ t ≤ τ of the values of t associated with an execution protocol
Pτ is split into the sets Iτ , Jτ of indices of productive, resp., nonproductive
steps, and the protocol is augmented by the approximate values F̃ (xt) of the
objective at productive search points xt – those with t ∈ Iτ . We are about to
demonstrate a natural way to certify ǫ-optimality of a strictly feasible solution
offered by certificates which are defined as follows.
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Definition 2.1 Let Pτ be an execution protocol. A certificate for this protocol
is a collection ξ = {ξt}τt=1 of weights such that

– ξt ≥ 0 for each t = 1, . . . , τ ,
–

∑
t∈Iτ

ξt = 1.

Note that certificates exist only for protocols with nonempty sets Iτ .

Definition 2.2 Given a solid B known to contain X , an execution protocol
Pτ and a certificate ξ for this protocol, we define the quantity

ǫcert (ξ | Pτ ,B) ≡ max
x∈B

τ∑

t=1

ξt 〈et, xt − x〉

which we call the residual of the certificate ξ on B. Moreover, we define the

approximate solution induced by ξ

xτ [ξ] :=
∑

t∈Iτ

ξtxt

which clearly is a strictly feasible solution to (1).

The role of the just defined quantities in certifying accuracy of approximate
solutions to (1) stems from the following

Proposition 2.1 Let Pτ be a τ-point execution protocol associated with the

CMP (1), ξ be a certificate for Pτ and B ⊃ X be a solid. Then xτ = xτ [ξ] is
a strictly feasible solution of the given CMP, with

ǫopt (x
τ ) ≤ ǫcert (ξ | Pτ ,B) + δ.

Proof can be found in Appendix A.1.

3 Recovering Approximate Primal Solution from Dual

Consider a convex optimization problem with constraints

Opt = min
u∈U

{f(u) : g(u) ≤ 0}, (3)

where g(u) = [g1(u), . . . , gn(u)]
⊤, gj(u) are convex functions, U is a closed

convex set. We assume the problem to be bounded below. A natural way to
solve it is to consider its Lagrange dual problem:

min
x≥0

F (x), F (x) = −min
u∈U

{f(u) + 〈x, g(u)〉︸ ︷︷ ︸
φ(u,x)

}. (4)

Assuming that (3) satisfies the Slater condition (so that (4) is solvable) and
that we have at our disposal an upper bound L on the norm ‖x∗‖p of an
optimal solution x∗ to (4), we can reduce the problem to solving the following
CMP:

min
x∈X

F (x), X = {x ≥ 0 : ‖x‖p ≤ L+ 1} . (5)

We further assume that φ(·, x) is bounded from below for every x ∈ X , i.e.,
X ⊆ domF ≡ {x ∈ R

n : minu∈U φ(u, x) > −∞}. This is the case, for example,
if U is compact or if f(u) is strongly convex.
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3.1 Separation and δ-oracles

Separation oracle for X is easily constructed in the following way: let x′ /∈
intX . If x′

i ≤ 0, then the vector −ei (having −1 is position i and 0 in others)
is a separator since for any x ∈ X it holds −e⊤i x ≤ 0 ≤ −x′

i = −e⊤i x
′. If

‖x′‖p ≥ L+ 1, then let a ∈ R
n be the vector satisfying

signai = signx′
i, |ai|q = |x′

i|
p

‖x′‖p
p
, i = 1, . . . , n,

so that Hölder’s inequality for a and x becomes an equality: a⊤x′ = ‖a‖q‖x′‖p ≥
L + 1 since ‖a‖q = 1. Thus, a is a separator since for any x ∈ X it holds
a⊤x ≤ ‖a‖q‖x′‖p ≤ L+ 1 ≤ a⊤x′.

Let us now show that it is easy to equip F with a δ-oracle provided that
the aforementioned assumptions hold and that an efficient first-order method
for solving the convex problem minu∈U φ(u, x) up to a prescribed accuracy δ is
available. Let ux be the point returned by such method, i.e., φ(ux, x)−F (x) ≤ δ
(we also write: ux ∈ argmin

u∈U

δφ(u, x)). It follows from the argument on page

132 of [20] that −g(ux) ∈ ∂δF (x). We provide this argument below:

∀x′ ∈ X, F (x′) = −min
u∈U

φ(u, x′) ≥ −φ(ux, x
′) = −φ(ux, x)− 〈g(ux), x

′ − x〉

≥ F (x)− 〈g(ux), x
′ − x〉 − δ.

3.2 Reconstructing Primal Solution

With separation and δ-oracles at hand, we can solve the dual problem (5).
It turns out that accuracy certificates allow us to recover nearly feasible and
nearly optimal solution for (3). The following statement generalizes Proposi-
tion 5.1 from [16].

Proposition 3.1 Let (5) be solved by a black-box-oriented method, Pτ =
{Iτ , Jτ , {xt, et}τt=1} be the execution protocol upon termination, with

et = −g(ut), ut ∈ argmin
u∈U

δφ(u, xt), t ∈ Iτ .

Let also ξ be an accuracy certificate for this protocol. Set û =
∑

t∈Iτ
ξtut, then

û ∈ U and

‖[g(û)]+‖q ≤ ǫcert (ξ | Pτ , X) + δ, (6)

f(û)−Opt ≤ ǫcert (ξ | Pτ , X) + δ, (7)

where [g(û)]+ is the “vector of constraint violations” obtained from g(û) by

replacing the negative components with 0, and q = p/(p+ 1).

Proof can be found in Appendix A.2.
Proposition 3.1 shows that the vector û =

∑
t∈Iτ

ξtut is nearly feasible and
nearly optimal for (3), provided that ǫcert (ξ | Pτ ,B) is small.
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4 Accuracy Certificates for Cutting Plane Methods

4.1 Generic Cutting Plane Algorithm with δ-Oracle

A generic cutting plane algorithm with δ-oracle, as applied to a CMP (1),
builds a sequence of search points xt ∈ R

n along with a sequence of localizers
Qt – solids such that xt ∈ intQt, t = 1, 2, . . .. The algorithm is as follows:

Initialization: Choose a solid Q1 ⊃ X and a point x1 ∈ intQ1.
Step t = 1, 2, . . .: given xt, Qt,

1. Call Separation oracle, xt being the input. If the oracle reports that xt ∈
intX (productive step), go to 2. Otherwise (nonproductive step) the oracle
reports a separator et 6= 0 such that 〈et, x− xt〉 ≤ 0 for all x ∈ X . Go to
3.

2. Call δ-oracle to compute et = F̃ ′(xt) ∈ ∂δF (xt). If et = 0, terminate,
otherwise go to 3.

3. Set

Q̂t+1 = {x ∈ Qt : 〈et, x− xt〉 ≤ 0} .
Choose as Qt+1, a solid which contains the solid Q̂t+1. Choose xt+1 ∈
intQt+1 and loop to step t+ 1.

For a solid B ⊂ R
n, let ρ(B) be the radius of Euclidean ball in R

n with
the same n-dimensional volume as the one of B. A cutting plane algorithm
with δ-oracle applied to the problem (1) is called converging if for the associ-
ated localizers Qt one has ρ (Qt) → 0, t → ∞. Some examples of converging
cutting plane algorithms are the center of gravity method [14,18], the ellip-
soid method [26,21], the inscribed ellipsoid algorithm [11], the circumscribed
simplex algorithm [6,25], Vaidya’s algorithm [23,24].

4.2 Polytope-Based Cutting Plane Algorithms

Recall that a full-dimensional polytope is a bounded set with nonempty inte-
rior of the form

Q(A, b) = {x ∈ R
n : a⊤i x ≤ bi, i = 1, . . . ,m} = {x ∈ R

n : Ax ≤ b}

for given

A =



a⊤1
...

a⊤m


 , a1, . . . , am ∈ R

n, b ∈ R
m.

In what follows, we consider implementations of a generic cutting plane al-
gorithm with δ-oracle where localizers are full-dimensional polytopes, i.e.,
Qt = Q(At, bt). In what follows, we omit the subscript t for brevity when
it doesn’t cause ambiguity, i.e., we write Qt = Q(A, b) and implicitly assume
that m,A and b depend on t.
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Moreover, we assume that if the constraint a⊤i x ≤ bi was added at the
step t(i), then ai = et(i). Note that item 3 in the description of the generic

cutting plane algorithm with δ-oracle implies that a⊤i xt(i) ≤ bi, i.e., when a
new constraint is added, the current iterate satisfies it. We will refer to the
group of methods described above as polytope-based cutting plane algorithms

with δ-oracle.

4.3 Building Accuracy Certificates

Consider a nonterminal step τ (i.e., the one with eτ 6= 0) of a polytope-based
cutting plane algorithms with δ-oracle. The respective localizer Qτ+1 is formed
by the set of constraints a⊤i x ≤ bi, i = 1, . . . ,m which can be divided into three
disjoint sets: {1, . . . ,m} = Iτ ∪ Pτ ∪ Nτ , where

– Iτ (not to be confused with Iτ ) corresponds to Initial constraints that were
present in Q1,

– Pτ (not to be confused with Pτ ) corresponds to constraints added during
Productive steps of the algorithm,

– Nτ corresponds to constraints added during Nonproductive steps.

Note that if a constraint was removed during execution of the algorithm, it
does not appear in any of the sets Iτ ,Pτ ,Nτ .

The following LP problem will play a crucial role in building certificates:

max
λ∈Rm

Dτ (λ) :=
∑

i∈Pτ

λi‖ai‖2, (8)

s.t. λ ≥ 0,

A⊤λ = 0,

b⊤λ ∈ [0, 2].

Lemma 4.1 The LP problem (8) is feasible and bounded.

Proof can be found in Appendix A.3.

Definition 4.1 If λ is a feasible point in the LP problem (8) and dτ :=∑
i∈Pτ

λi > 0, define ξ = {ξt}τ1 as follows:

1. For every i ∈ Pτ ∪ Nτ , set ξt(i) := λi

dτ
, where t(i) is the step when the

constraint a⊤i x ≤ bi was added,
2. For all other steps t, set ξt := 0

Observe that this definition implies

Dτ (λ) =
∑

i∈Pτ

λi‖ai‖2 = dτ
∑

i∈Pτ

ξt(i)‖et(i)‖2 = dτ
∑

t∈Iτ

ξt‖et‖2. (9)

In what follows, we sometimes write Dτ in place of Dτ (λ) for brevity.
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Lemma 4.2 If λ is a feasible point for the LP problem (8) with dτ > 0, then
ξ from Definition 4.1 is a certificate. If ǫτ := 2

Dτ
< r, then

ǫcert (ξ | Pτ , Q1) ≤
ǫτ

r − ǫτ
Wτ , (10)

where

Wτ := max
t∈Iτ

max
x∈X

〈et, x− xt〉 , (11)

and r = r(X) is the largest of the radii of Euclidean balls contained in X.

Proof can be found in Appendix A.4.

Remark 4.1 Informally speaking, inequality (10) shows that the larger Dτ

is, the more accurate the estimate ǫcert (ξ | Pτ , Q1) is, provided that Wτ is
bounded.

Theorem 4.1 An optimal solution λ∗ for the LP problem (8) satisfies

Dτ (λ
∗) ≥ D−1 (Q1)

(
r

2nρ (Qτ+1)
− 1

)
, (12)

where D (Q1) is the Euclidean diameter of Q1.

Proof can be found in Appendix B.

Remark 4.2 Since the quantity Dτ is always nonnegative, the inequality (12)
can only be useful when ρ (Qτ+1) <

r
2n .

Before we move on to the most important corollary, let us mention that the
convergence rate of a cutting plane method is basically described by how fast
ρ (Qτ+1) is decreasing as τ grows. For example, for Vaidya’s method

ρ (Qτ+1) ≤ C1 · ρ (Q1) e
−C2τ/n

for some C1, C2 > 0. It can be shown that this estimate implies ǫopt (x
τ ) =

O
(
e−C2τ/n

)
, where xτ is a point returned by Vaidya’s method after τ itera-

tions.

Corollary 4.1 Let α ∈ [0, 1) be the relative accuracy in the LP problem (8).
If τ is a nonterminal iteration number of a polytope-based cutting plane algo-

rithms with δ-oracle such that

ρ (Qτ+1) ≤
(1− α)r2

16nD (Q1)
,

and λ is a feasible point for the LP problem (8) with Dτ (λ) ≥ (1− α)Dτ (λ
∗),

then the respective certificate ξ is well defined, and

ǫcert (ξ | Pτ , Q1) ≤
16nD (Q1)Wτ

(1 − α)r2
ρ (Qτ+1) .

In particular, if supx,y∈X (F (x) − F (y)) ≤ C < ∞, then Wτ ≤ C + δ and

ǫcert (ξ | Pτ , Q1) ≤
16nD (Q1) (C + δ)

(1 − α)r2
ρ (Qτ+1) .
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Proof can be found in Appendix B.4.

Remark 4.3 Parameter α ∈ (0, 1] provides a trade-off between the number of
iterations performed by a cutting plane method and the accuracy of solving
the LP problem (8).

Remark 4.4 Complexity of constructing certificates is, in essence, the complex-
ity of solving LP (8) up to a chosen relative accuracy α (say, α = 1/2). When

a method uses polytopes formed by Õ(n) of constraints (which is the case, for

example, for Vaidya’s method), the LP (8) can be solved in Õ (nω log(n/α))

arithmetic operations [5]. Here Õ hides polylog(n) factors, O (nω) is the time
required to multiply two n× n matrices.

Remark 4.5 Corollary 4.1 implies that all polytope-based cutting plane algo-
rithms can be used with a δ-oracle, δ ∈ [0, ε), to achieve an ε-optimal solution
provided that their localizers’ volumes converge to zero.

5 Numerical Experiments

We present the results of numerical experiments which aim to showcase the
performance of certificates described in the previous section and compare it
to that of the certificates from the paper [16]. Vaidya’s cutting plane method
[23,24] is chosen to demonstrate the certificates from Definition 4.1 in action.
Such a choice is made because it fulfills requirements of Subsection 4.2, in
particular, its localizers are polytopes. Moreover, it is the first optimal cutting
plane method in terms of the number of oracle calls. The ellipsoid method is
used to show the performance of the certificates based on Algorithm 4.2 from
[16] which was designed for this method. Although authors mention that it
is possible to adapt the certificate computation procedure to other methods,
details are omitted. Furthermore, we didn’t find any uses of this procedure
with algorithms other than the ellipsoid method.

Consider the following nonsmooth convex optimization problem taken from
the book [17] (subsection 3.2.1):

min
x∈Rn

{
F (x) := max

i=1,...,n
xi +

µ

2
‖x‖22

}
. (13)

As proposed in the book, we take the initial point to be x0 = 0 and let the
first-order oracle called at a point x return (apart from the function value) a
subgradient f ′(x) = ei∗ + µx, where i∗ := min{j |xj = max

i=1,...,n
xi}. Note that

the problem has a closed-form solution x∗ = − 1
µn1 (see [17]), which makes it

possible to compute the quantities ǫopt(x
τ ) in the experiment. We turn (13)

into a problem on a solid by setting X to be a Euclidean ball of radius 10·‖x∗‖2
centered at the origin.

Figure 5 presents the results of the experiments. The rows represent dif-
ferent dimensions of the problem (13) (n = 10, 20, 30). The left and right
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Vaidya, εopt Vaidya, εcert Ellipsoids, εopt Ellipsoids, εcert

Fig. 1 Performance of Vaidya’s and the ellipsoid methods for problem (13). The rows
correspond to different dimensions of the problem (n = 10, 20, 30). The left and right columns
present the results with small (µ = 0.01) and medium (µ = 0.1) regularization, respectively.
X-axis represents number of oracle calls. Solid and dashed lines depict ǫopt for Vaidya’s and
the ellipsoid methods, respectively. Dotted and dash-dotted lines depict ǫcert for Vaidya’s
and the ellipsoid methods, respectively.

columns correspond to small (µ = 0.01) and medium (µ = 0.1) regulariza-
tion, respectively. X-axis depicts the number of oracle calls. Solid and dashed
lines represent ǫopt for Vaidya’s and the ellipsoid methods, respectively. Dot-
ted and dash-dotted lines depict ǫcert for Vaidya’s and the ellipsoid methods,
respectively.

As we see from Figure 5, the certificates from Definition 4.1 for Vaidya’s
method provide an upper bound ǫcert on the optimality gap ǫopt which becomes
tight after a few hundred iterations. The certificates based on Algorithm 4.2
from [16] for the ellipsoid method yield a less tight bound. We refer the reader
to Section 6 for discussion of this phenomenon. Moreover, the figure illustrate
the fact that Vaidya’s method scales much better with the dimension n.
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5.1 Implementation Details

We use the version of Vaidya’s cutting plane method from the paper [1] since
it is more practical than the original version. The parameters used are ε =
5 · 10−3, τ = 1, see the aforementioned paper for details. Certificates and
their residuals were computed after each iteration for illustration purposes.
The experiments were conducted using programming language Python 3.11.5
with packages numpy v1.26.0 and scipy v1.11.3. The source code is available
at https://github.com/egorgladin/vaidya-with-certificates.

6 Conclusions

The present paper generalizes the notion of accuracy certificates to the case of
convex optimization problems with inexact oracle and establishes properties
of such certificates. In particular, we show how they provide a simple way to
recover primal solutions when solving a wide class of Lagrange dual problems.
Additionally, we develop a new recipe to construct certificates suitable for cut-
ting plane methods which use polytopes as localizers. A prominent example
is Vaidya’s method which is asymptotically optimal in terms of the number
of oracle calls. Arithmetic complexity of our recipe is equivalent to that of
approximately solving an LP problem. Notably, the requirements for the ac-
curacy of such approximate solutions are very mild. As of this writing, this can
be done in current matrix multiplication time. As an important by-product
of our analysis, we conclude that all polytope-based cutting plane algorithms
can be used with an inexact oracle to achieve a near-optimal solution provided
that their localizers’ volumes converge to zero.

Numerical experiments show that the proposed procedure for computing
certificates may be superior to the existing approach which we build on. A pos-
sible reason for this phenomenon is that we look for certificates that directly
maximize a function used to bound the residual. The previous approach, in
contrast, simply produces a point with a sufficiently large value of that func-
tion. Although we use such a point in the analysis to bound the optimal value
from below, the maximum may turn out to be considerably larger, which leads
to better residuals.

A possible way to improve the presented approach for computing certifi-
cates is to introduce warm starts. Namely, one could solve the LP problem
once, and then update the solution after each iteration as the problem is
slightly modified between two consecutive iterations. This may further reduce
the complexity of the approach. Another important direction of future re-
search is the exploration of accuracy certificates for variational inequalities
with inexact oracle.
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A Proofs of Propositions and Lemmas

A.1 Proof of Proposition 2.1

Since the points xt with t ∈ It belong to intX and X is convex, xτ (which is a convex
combination of these points) belongs to intX and thus is a strictly feasible solution.

Define

F∗ (ξ | Pτ ,B) ≡ min
x∈B




∑

t∈Iτ

ξt [F (xt) + 〈et, x− xt〉] +
∑

t∈Jτ

ξt 〈et, x− xt〉





=
∑

t∈Iτ

ξtF (xt)− ǫcert (ξ | Pτ ,B) . (14)

We will first show that

F∗ (ξ | Pτ ,B) ≤ Opt + δ. (15)

Let x ∈ X. Then, due to the origin of vectors et, we have 〈et, x− xt〉 ≤ 0 for t ∈ Jτ and
F (xt) + 〈et, x− xt〉 ≤ F (x) + δ for t ∈ Iτ . Taking weighted sum of these inequalities with
the weights determined by a certificate ξ, we get

∑

t∈Iτ

ξt [F (xt) + 〈et, x− xt〉] +
∑

t∈Jτ

ξt 〈et, x− xt〉 ≤ F (x) + δ.

Hence, taking the infimum of both sides over x ∈ X ∩DomF ,

min
x∈X




∑

t∈Iτ

ξt [F (xt) + 〈et, x− xt〉] +
∑

t∈Jτ

ξt 〈et, x− xt〉



 ≤ Opt + δ.

It remains to note that the left hand side in this inequality is ≥ F∗ (ξ | Pτ ,B) due to X ⊆ B.

Now, observe that

ǫopt (x
τ ) = F (xτ )−Opt

convexity
≤

∑

t∈Iτ

ξtF (xt)−Opt

(15)

≤
∑

t∈Iτ

ξtF (xt)− F∗ (ξ | Pτ ,B) + δ

(14)
= ǫcert (ξ | Pτ ,B) + δ.
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A.2 Proof of Proposition 3.1

First, let us provide a lower bound on the certificate residual.

ǫcert (ξ | Pτ ,X) >

>max
x∈X

τ∑

t=1

ξt 〈et, xt − x〉

>max
x∈X

∑

Iτ

ξt 〈et, xt − x〉
∣
∣
∣ 〈et, x− xt〉 ≤ 0 ∀t ∈ Jτ , x ∈ X

=−
∑

Iτ

ξt 〈g (ut) , xt〉 +max
x∈X

〈∑

Iτ

ξtg (ut) , x
〉 ∣

∣
∣ et = −g (ut) ∀t ∈ Iτ

>−
∑

Iτ

ξt 〈g (ut) , xt〉 +max
x∈X

〈g(û), x〉
∣
∣
∣ gi(

∑

Iτ
ξtut

︸ ︷︷ ︸

û

)
conv.
6

∑

Iτ

ξtgi (ut)

=−
∑

Iτ

ξt 〈g (ut) , xt〉 + (L+ 1) ‖[g(û)]+‖q .
∣
∣
∣ max

x∈X
〈g(û), x〉

Hölder
= (L+ 1) ‖[g(û)]+‖q

Since ut ∈ arg min
u∈U

δφ(u, xt), t ∈ Iτ , it holds

φ(ut, xt) = f (ut) + 〈g (ut) , xt〉 ≤ f(u) + 〈g(u), xt〉+ δ, ∀t ∈ Iτ , u ∈ U.

Summing over t ∈ Iτ and using the inequality f(û) ≤
∑

Iτ
ξtf (ut), we get

f(û)− f(u) − 〈g(u), x̄〉 6 −
∑

Iτ

ξt 〈g (ut) , xt〉 + δ ∀u ∈ U, (16)

where x̄ :=
∑

Iτ
ξtxt. Combining the lower bound on the certificate residual and (16) where

u = u∗ (an optimal solution to (3)), we arrive at

ǫcert (ξ | Pτ ,X) + δ > (L + 1) ‖[g(u)]+‖q + f(û)− f (u∗)− 〈g (u∗) , x̄〉 (17)

> f(û)− f (u∗) .

Thus, (7) is established.
Due to Slater’s theorem,

f(u∗) = −F (x∗) = min
u∈U

{f(u) + 〈g(u), x∗〉} ≤ f(û) + 〈g(û), x∗〉

≤ f(û) + L ‖[g(û)]+‖q .

Combining this inequality with (17), we arrive at (6).

A.3 Proof of Lemma 4.1

Feasibility is evident since the zero vector satisfies all constraints. Suppose that the feasible
set is unbounded, then we will show that there exist a vector ν ∈ R

m such that

ν ≥ 0, A⊤ν = 0, b⊤ν = 0, ‖ν‖2 = 1. (18)

Indeed, let {λk}
∞
1 be an unbounded sequence of feasible points. Specifically,

λk ≥ 0, A⊤λk = 0, b⊤λk ∈ [0, 2], ‖λk‖2 ≥ k ∀k ∈ N.
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Define νk := λk
‖λk‖2

, then

νk ≥ 0, A⊤νk = 0, b⊤νk ∈
[
0, 2

k

]
, ‖νk‖2 = 1 ∀k ∈ N.

Let νkj
be a convergent subsequence, then its limit ν satisfies (18).

Now, let Qτ+1 = {x ∈ R
n : Ax ≤ b} be the current localizer. Since it has nonempty

interior, there exist x+ ∈ Qτ+1 such that b−Ax+ > 0. At the same time,

ν⊤(b− Ax+) = b⊤ν − x⊤
+A⊤ν = 0. (19)

Thus, ν = 0 which contradicts ‖ν‖2 = 1. Therefore, the feasible set is bounded.

A.4 Proof of Lemma 4.2

The fact that ξ is a certificate follows from its construction. Let us first show that ǫcert (ξ | Pτ , Q1) ≤
2
dτ

. For any x ∈ Q1, it holds a⊤i x ≤ bi, ∀i ∈ Iτ . Therefore,

λ⊤(b− Ax) =
∑

i∈Iτ∪Pτ∪Nτ

λi(bi − a⊤i x) ≥
∑

i∈Pτ∪Nτ

λi(bi − a⊤i x).

On the other hand, λ⊤(b − Ax) = λ⊤b ≤ 2 since λ is a feasible point for LP problem (8).
Thus,

τ∑

t=1

ξt〈et, xt − x〉 = d−1
τ

∑

i∈Pτ∪Nτ

λia
⊤
i (xt(i) − x)

≤ d−1
τ

∑

i∈Pτ∪Nτ

λi(bi − a⊤i x) ≤
2

dτ
, (20)

where we used a⊤i xt(i) ≤ bi, i ∈ Pτ ∪ Nτ , see the end of subsection 4.2. We maximize the

left-hand side of the last equation w.r.t. x ∈ Q1 to obtain ǫcert (ξ | Pτ , Q1) ≤
2
dτ

.

To prove (10), let τ be such that ǫ := ǫτ < r, and let x̄ be the center of Euclidean ball
B of the radius r which is contained in X. Observe that the definition (11) of Wτ implies

t ∈ Iτ ⇒ 〈et, x− xt〉 ≤ Wτ ∀x ∈ B,

hence 〈et, x̄− xt〉 ≤ Wτ − r ‖et‖2. Recalling what et is for t ∈ Jτ ≡ {1, . . . , τ}\Iτ , we get
the relations

〈et, x̄− xt〉 ≤

{

Wτ − r ‖et‖2 , t ∈ Iτ

0, t ∈ Jτ
.

In particular,

〈ai, x̄− xt(i)〉 ≤

{

Wτ − r ‖ai‖2 , i ∈ Pτ

0, t ∈ Nτ
. (21)

Now let x ∈ Q1, and let y =
(r−ǫ)x+ǫx̄

r
, so that y ∈ Q1. By (20) we have

∑

i∈Pτ∪Nτ

λi〈ai, xt(i) − y〉 ≤ 2.

Multiplying this inequality by r and adding weighted sum of inequalities (21), the weights
being λiǫ, we get

∑

i∈Pτ∪Nτ

λi〈ai, rxt(i) − ry + ǫx̄− ǫxt(i)
︸ ︷︷ ︸

(r−ǫ)(xt(i)−x)

〉 ≤ 2r + ǫWτdτ − rǫDτ .
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The right hand side in this inequality, by the definition of ǫ, is ǫWτdτ , and we arrive at the
relation

(r − ǫ) ·
∑

i∈Pτ∪Nτ

λi

〈
ai, xt(i) − x

〉
≤ ǫWτdτ ⇐⇒

τ∑

t=1

ξt 〈et, xt − x〉 ≤
ǫWτ

r − ǫ
.

This relation holds true for every x ∈ Q1, and (10) follows.

B Proof of Theorem 4.1 and Corollary 4.1

The proof of Theorem 4.1 is divided into three parts. First, we “lift” the original space R
n,

treating it as a hyperplane E = {(x, s) ∈ Rn+1 | s = 1}, and introduce a set Q+
τ+1. In the

second part, we describe the polar of this set. Both Q+
τ+1 and its polar play an important

role in the third part of the proof, where we provide a lower bound on the optimal value.

B.1 “Lifting” the Original Space

Let us treat the original space R
n as a hyperplane in R

n+1, that is, E = {(x, s) ∈ R
n+1 |

s = 1}. Define the set Q+
τ+1 ⊂ Rn+1 as a convex hull of the origin 0 ∈ Rn+1 and Qτ+1

(treated as a subset of a hyperplane E ⊂ Rn+1). Let Ā :=
[
A −b

]
represent the constraints

that form Qτ+1. We will now show that

Q+
τ+1 =

{
z ∈ R

n+1 : Āz ≤ 0
}
∩
{
z ∈ R

n+1 :
〈[

0

1

]
, z

〉
≤ 1

}
. (22)

First note that since Qτ+1 is a bounded polytope, the system of inequalities Ay ≤ 0
only has a trivial solution. Indeed, if we had a nonzero solution y, then for any x ∈ Qτ+1,
the ray x+αy, α ≥ 0 would belong to Qτ+1: A(x+αy) = Ax+αAy ≤ b, which contradicts
the boundedness of Qτ+1.

Let M be the right-hand side of (22). Let us show that if [ xs ] ∈ M , then s ≥ 0. Indeed,
if s < 0, then

Ax ≤ sb ⇒ A
x

|s|
≤ −b.

Since Qτ+1 has a nonempty interior, there exists a point y ∈ Rn with Ay < b, therefore,
A(y + x

|s|
) < b− b = 0, which is impossible.

It is evident that M is convex and contains both 0 and Qτ+1 (treated as a subset of
a hyperplane E ⊂ R

n+1). What is left to prove is that any point [ xs ] ∈ M is a convex
combination of a point in Qτ+1 and 0. If s = 0, then Ax ≤ 0 and we conclude that x = 0.
In the opposite case, we have s ∈ (0, 1]. The vector y := s−1x satisfies Ay = s−1Ax ≤ b
since Ax ≤ sb, i.e.,

[ y
1

]
∈ Qτ+1. Thus,

[ xs ] = s
[ y
1

]
+ (1− s)0,

which concludes the proof of (22).

B.2 Polar of a Set

The polar of a set P ⊆ Rn+1 is defined as

PolarP :=
{
z ∈ R

n+1 | 〈z, p〉 ≤ 1 ∀p ∈ P
}
.

We will now show that PolarQ+
τ+1 has the form

PolarQ+
τ+1 =

{[ x
g

]
∈ R

n+1 | x = A⊤λ, g = −b⊤λ+ s, λ ∈ R
m
+ , s ∈ [0, 1]

}

. (23)

To do so, we will use the following
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Lemma B.1 ([16], Lemma 6.3) Let P,Q be two closed convex sets in Rn+1 containing

the origin and such that P is a cone, and let intP ∩ intQ 6= ∅. Then Polar(P ∩ Q) =
PolarQ + P∗, where

P∗ =
{
z ∈ R

n+1 : 〈z, u〉 ≤ 0 ∀u ∈ P
}
.

Observe that P :=
{
z ∈ R

n+1 : Āz ≤ 0
}

and Q :=
{
z ∈ R

n+1 :
〈[

0

1

]
, z

〉
≤ 1

}
are closed

convex sets containing the origin, P is a cone, and intP ∩ intQ 6= ∅. Thus, the lemma
applies. Polar of a polyhedral cone P is a finitely generated cone (see, for example, Lemma
1.12 (4) in [19]), i.e.,

P∗ =
{

z = Ā⊤α : α ∈ R
m
+

}

. (24)

Let us show that
PolarQ =

{
s
[
0

1

]
: s ∈ [0, 1]

}
. (25)

Denote the right hand side of (25) by Q̃. Let y ∈ Q̃, i.e., y = s
[
0

1

]
, s ∈ [0, 1], then for

any z ∈ Q, we have 〈y, z〉 = s〈
[
0

1

]
, z〉 ≤ s ≤ 1 ⇒ y ∈ PolarQ. Now let y = [ xs ] /∈ Q̃, i.e.,

s /∈ [0, 1] or x 6= 0.

– If s < 0, then for z =
[

0

s−1−1

]

it holds z ∈ Q and 〈y, z〉 = 1− s > 1 ⇒ y /∈ PolarQ.

– If s > 1, then for z =
[
0

1

]
it holds z ∈ Q and 〈y, z〉 = s > 1 ⇒ y /∈ PolarQ.

– If x 6= 0, then for z =
[
2x/‖x‖22

0

]

it holds z ∈ Q and 〈y, z〉 = 2 > 1 ⇒ y /∈ PolarQ.

Thus, PolarQ = Q̃ and the formula (23) follows from (24), (25) and Lemma B.1.

B.3 Lower Bound on an Optimal Value

Consider the ellipsoid E of maximal volume contained in Qτ+1. It is called John ellipsoid
and it has a property that

E ⊂ Qτ+1 ⊂ Ê := {nx | x ∈ E}, (26)

see, e.g., [4], Chapter 8.4. As it was shown in [16] (subsection 4.3), for an ellispoid Ê there
exists a vector h′ ∈ R

n with ‖h′‖2 ≥ 1
2ρ(Ê)

such that

max
x∈Ê

〈h′, x〉 −min
x∈Ê

〈h′, x〉 ≤ 1.

As it follows from (26), ‖h′‖2 ≥ 1
2nρ(E)

≥ 1
2nρ(Qτ+1)

and

max
x∈Qτ+1

〈h′, x〉 − min
x∈Qτ+1

〈h′, x〉 ≤ 1. (27)

The last formula implies that both vectors

h+ =
[

h′

−〈h′,xτ+1〉

]

, h− = −h+

belong to Polar
(

Q+
τ+1

)

since for any z ∈ Q+
τ+1 it holds

z = [ sxs ] for some x ∈ Qτ+1, s ∈ [0, 1],

therefore,

〈h+, z〉 = 〈h′, sx〉 − 〈h′, xτ+1〉 · s ≤ max
x∈Qτ+1

〈h′, x〉 − min
x∈Qτ+1

〈h′, x〉
(27)

≤ 1,
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and similarly for h−. According to (23), there exist µ, η ∈ Rm
+ and u, v,∈ [0, 1] such that

h+ =
[

A⊤µ

−b⊤µ+u

]

, h− =
[

A⊤η

−b⊤η+v

]

. (28)

Observe that

0 = h+ + h− =

[
A⊤(µ+η)

−b⊤(µ+η)+u+v

]

, u+ v ∈ [0, 2],

i.e., λ := µ+ η is a feasible point for the LP problem (8).
Let x̄ be the center of Euclidean ball B of radius r which is contained in X. Consider first

the case when 〈h′, x̄− xτ+1〉 ≥ 0. Multiplying h+ by x+ = [x̄+re; 1] with e ∈ R
n, ‖e‖2 ≤ 1,

we get
〈h+, x+〉 = 〈h′, re〉+ 〈h′, x̄− xτ+1〉 ≥ 〈h′, re〉. (29)

At the same time,

〈h+, x+〉
(28)
=

〈 m∑

i=1

µiai, x̄+ re
〉

−
m∑

i=1

µibi + u

≤
∑

i∈Pτ∪Nτ

µi〈ai, x̄+ re− xt(i)〉+
∑

i∈Iτ

µi

(

a⊤i (x̄+ re)− bi
)

+ u,

(30)

where we used a⊤i xt(i) ≤ bi, i ∈ Pτ ∪ Nτ (see the end of subsection 4.2). Further, since

u ≤ 1 and x̄+ re ∈ Q1 ⇒ a⊤i (x̄+ re) ≤ bi, i ∈ Iτ , it holds

〈h+, x+〉
(30)

≤
∑

i∈Pτ∪Nτ

µi〈ai, x̄+ re− xt(i)〉+ 1,

≤
∑

i∈Pτ

µi〈ai, x̄+ re− xt(i)〉+ 1,

(31)

where the last inequality is due to the fact that ai separates xt(i) and X for i ∈ Nτ which

means a⊤i x ≤ a⊤i xt(i) for all x ∈ X. Note that xt(i) ∈ intX ⊆ Q1 for all i ∈ Pτ . Thus,
combining (29) and (31), we obtain

〈h′, re〉 ≤ 1 +
∑

i∈Pτ

µi ‖ai‖2 D (Q1) ≤ 1 +DτD (Q1) .

The resulting inequality holds true for all unit vectors e; maximizing the left hand side over

these e, we get Dτ ≥ r‖h′‖2−1
D(Q1)

. Recalling that ‖h′‖2 ≥ 1
2nρ(Qτ+1)

, we arrive at (12). We

have established it in the case of 〈h′, x̄− xτ+1〉 ≥ 0; in the opposite case we can use the
same reasoning with h− in the role of h+.

B.4 Proof of Corollary 4.1

The certificate is well-defined since

ρ (Qτ+1) ≤
(1 − α)r2

16nD (Q1)
<

r

2n
(32)

implies

Dτ (λ) ≥ (1 − α)Dτ (λ
∗)

Thm4.1
≥ (1 − α)D−1 (Q1)

(
r

2nρ (Qτ+1)
− 1

)
(32)
> 0,

therefore, λi > 0 for some i ∈ Pτ ⇒ dτ > 0.
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Let us now show that ǫτ := 2
Dτ

< r.

ρ (Qτ+1) ≤
(1− α)r2

16nD (Q1)
=

r

2n

(
8D (Q1)

(1− α)r

)−1

<
r

2n

(
2D (Q1)

(1 − α)r
+ 1

)−1

⇒ (1− α)D−1 (Q1)

(
r

2nρ (Qτ+1)
− 1

)

>
2

r

⇒ Dτ (λ) ≥ (1− α)Dτ (λ
∗)

Thm4.1
≥ (1 − α)D−1 (Q1)

(
r

2nρ (Qτ+1)
− 1

)

>
2

r
.

Applying Lemma 4.2, we get

ǫcert (ξ | Pτ , Q1) ≤
ǫτ

r − ǫτ
Wτ =

(
rDτ

2
− 1

)−1

Wτ

Thm4.1
≤

(
(1− α)r

2D (Q1)

(
r

2nρ (Qτ+1)
− 1

)

− 1

)−1

Wτ

≤

(
(1− α)r2

8nρ (Qτ+1)D (Q1)
− 1

)−1

Wτ ,

where the last inequality follows from

ρ (Qτ+1) ≤
r

4n
⇒

r

2nρ (Qτ+1)
− 1 ≥

r

4nρ (Qτ+1)
.

Finally, using

ρ (Qτ+1) ≤
(1− α)r2

16nD (Q1)
⇒

(1− α)r2

8nρ (Qτ+1)D (Q1)
− 1 ≥

(1 − α)r2

16nρ (Qτ+1)
,

we arrive at the first result. The second result now follows directly from the definition of
δ-subgradient (2).
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