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Preface

This volume contains the refereed proceedings of the 21st International Conference
on Mathematical Optimization Theory and Operations Research (MOTOR 2022)1 held
during July 2–6, 2022, in the Karelia region, near Petrozavodsk, Russia.

MOTOR 2022 was the forth joint scientific event unifying a number of well-known
that have been held in Ural, Siberia, and the Far East of Russia for a long time:

– The Baikal International Triennial School Seminar on Methods of Optimization
and Their Applications (BITSS MOPT) established in 1969 by academician N. N.
Moiseev, with 17 events held up to 2017,

– The All-Russian Conference onMathematical Programming and Applications (MPA)
established in 1972 by academician I. I. Eremin, with 15 events held up to 2015,

– The International Conference on Discrete Optimization and Operations Research
(DOOR), which was organized nine times between 1996 and 2016,

– The International Conference on Optimization Problems and Their Applications
(OPTA), which was organized seven time in Omsk between 1997 and 2018.

First three events of this series,MOTOR 20192,MOTOR 20203, andMOTOR 20214

were held in Ekaterinburg, Novosibirsk, and Irkutsk, Russia, respectively.
As per tradition, the main conference scope included, but was not limited to,

mathematical programming, bi-level and global optimization, integer programming and
combinatorial optimization, approximation algorithms with theoretical guarantees and
approximation schemes, heuristics and meta-heuristics, game theory, optimal control,
optimization in machine learning and data analysis, and their valuable applications in
operations research and economics.

In response to the call for papers, MOTOR 2022 received 161 submissions. Out
of 88 full papers considered for review (73 abstracts and short communications were
excluded for formal reasons) only 21 papers were selected by the Program Committee
(PC) for publication in this volume. Each submission was reviewed by at least three
PC members or invited reviewers, experts in their fields, in order to supply detailed and
helpful comments. In addition, the PC recommended the inclusion of 22 papers in the
supplementary volume after their presentation and discussion during the conference and
subsequent revision with respect to the reviewers’ comments.

1 http://motor2022.krc.karelia.ru/en/section/1.
2 http://motor2019.uran.ru.
3 http://math.nsc.ru/conference/motor/2020/.
4 https://conference.icc.ru/event/3/.

http://motor2022.krc.karelia.ru/en/section/1
http://motor2019.uran.ru
http://math.nsc.ru/conference/motor/2020/
https://conference.icc.ru/event/3/


vi Preface

The conference featured six invited lectures:

– Rentsen Enkhbat (Institute of Mathematics and Digital Technology, Mongolia),
“Recent Advances in Sphere Packing Problem”

– Vladimir Marianov (Instituto Sistemas Complejos de Ingeneria, Universidad Católica
de Chile, Chile), “Store Location and Aglomeration in Competitive and Non-
Competitive Retail”

– Alexander S. Nesterov (HSE, St. Petersburg, Russia), “Matching Market Design
Theory and Applications”

– Yaroslav D. Sergeev (University of Calabria, Italy), “Numerical Infinities and
Infinitesimals in Optimization”

– Sergey Sevastyanov (Sobolev Institute ofMathematics, SB RAS, Russia) “Three Effi-
cient Methods of Finding Near-Optimal Solution for NP-hard Discrete Optimization
Problems (Illustrated by Their Application to Scheduling Problems)”

– Georges Zaccour (GERAD, HEC Montréal, Canada) “Coordination in Closed-Loop
Supply Chains: a Dynamic Games Perspective”

The following two tutorials were given by outstanding scientists:

– Alexander Gasnikov (Moscow Institute of Physics and Technology, Russia), “Markov
Decision Process and Convex Optimization”

– Evgenii Sopov (A.N. Antamoshkin Siberian Institute of Applied System Analysis,
Russia), “Hyperheuristics for Automated Synthesis and Control of Evolutionary
Optimization Algorithms”

We thank the authors for their submissions, members of the ProgramCommittee, and
all the external reviewers for their efforts in providing exhaustive reviews. We thank our
sponsors and partners: the Institute of Applied Mathematical Research (IAMR) of the
Karelian Research Centre, the Sobolev Institute of Mathematics, the Krasovsky Institute
of Mathematics and Mechanics, the Ural Mathematical Center, the Center for Research
and Education in Mathematics, the Higher School of Economics (Nizhny Novgorod),
and the Matrosov Institute for System Dynamics and Control Theory. We are grateful
to the colleagues from the Springer LNCS and CCIS editorial boards for their kind and
helpful support.

July 2022 Panos Pardalos
Michael Khachay
Vladimir Mazalov
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On the Design of Matheuristics that make Use of Learning

Rentsen Enkhbat

Institute of Mathematics and Digital Technology, Mongolia, Ulaanbaatar
renkhbat46@yahoo.com

Abstract. We consider a general sphere packing problem which is to
pack non-overlapping spheres with the maximum volume into a convex
set. This problem has important applications in science and technology
and belongs to a class of global optimization.

In two dimensional case, the sphere packing problem is a classical
circle packing problem. It has been shown that 200 years old Malfatti’s
problem [3] is a particular case of the circle packing problem [1, 2].

We survey existing theories and algorithms on general sphere packing
problems. We also discuss their applications in economics and a mining
industry.

Keywords: 2D packing · Global optimization · Malfatti’s problem

References

1. Enhbat, R.: Global optimization approach to malfatti’s problem. J. Glob. Optim. 65,
33–39 (2016). https://doi.org/10.1007/s10898-015-0372-6

2. Enkhbat, R.: ConvexMaximization Formulation of General Sphere Packing Problem,
the Bulletin of Irkutsk State University’. Series ‘Mathematics’, vol. 31, pp.142–149
(2020)

3. Malfatti, G.: “Memoria sopra un problema stereotomico.” Memorie di matematica e
fisica della Societé Italiana delle Scienze 10(1), 235–244 (1803)

https://orcid.org/0000-0003-0999-1069
https://link.springer.com/article/10.1007/s10898-015-0372-6


Store Location and Agglomeration in Competitive
and non-Competitive Retail

Vladimir Marianov

Pontificia Universidad Católica de Chile, Santiago, Chile
marianov@ing.puc.cl

Abstract. Agglomeration or clustering of stores can be observed in
practice in the location of both competitive and non-competitive stores.
What makes several shoe stores locate beside each other, or a shoe store
locate close to a pants store? Hotelling in 1929 proposed an explanation;
however, it only works under very special circumstances. Economists,
transport and market researchers have found better explanations to this
phenomenon: agglomeration is due to the savings obtained in multiple-
stop shopping trips. Amazingly, these trips were only recently included
into optimization models for optimal location, and their inclusion indeed
changes the prescribed locations.

We study the effect ofmultiple-stop trips, bothmultipurpose shopping
(MPS) and comparison shopping (CS), on location of retail stores. We
analyze follower and (bi-level) leader-follower models for MPS and CS,
in which customers use a binary, deterministic choice rule to decide to
which store to go to make a purchase, and a MPS follower problem in
which customers behave according to a random utility model.

Extensions are discussed.

Keywords: Bi-level programming · Facility location · Leader-follower
model

https://orcid.org/0000-0002-5343-0106


Matching Market Design: Theory and Applications

Alexander S. Nesterov

National Research University Higher School of Economics, St.Petersburg, Russia
nesterovu@gmail.com

Abstract. How do we match supply and demand when standard price
mechanisms are not available? Examples include school choice, college
admissions, organ allocation, social housing. In these cases, we use
matching mechanisms that elicit the agents’ preferences and then
determine who gets what, so that the outcome is desirable by various
standards. In this talk, I introduce the matching theory and present the
results addressing the recent methodological difficulty: how to compare
different matching mechanisms according to various desirable properties
when the standard axiomatic approach is not applicable? I also present a
practical case in point: the Russian college admissions system.

Keywords: Price machanism · Agent’s preference · Matching market
design

https://orcid.org/0000-0002-9143-2938


Numerical Infinities and Infinitesimals in Optimization

Yaroslav D. Sergeyev

University of Calabria, Rende, Italy
yaro@dimes.unical.it

Abstract. In this talk, a recent computationalmethodology is described. It
has been introduced with the intention to allow one to work with infinities
and infinitesimals numerically in a unique computational framework. It
is based on the principle ‘The part is less than the whole’ applied to all
quantities (finite, infinite, and infinitesimal) and to all sets and processes
(finite and infinite).The methodology uses as a computational device
the Infinity Computer (a new kind of supercomputer patented in several
countries) working numerically with infinite and infinitesimal numbers
that can be written in a positional system with an infinite radix. On a
number of examples (numerical differentiation, divergent series, ordinary
differential equations, fractals, set theory, etc.) it is shown that the new
approach can be useful from both theoretical and computational points
of view. The main attention is dedicated to applications in optimization
(local, global, andmulti-objective). The accuracy of the obtained results is
continuously compared with results obtained by traditional tools used to
workwithmathematical objects involving infinity.The Infinity Calculator
workingwith infinities and infinitesimals numerically is shown during the
lecture.

Keywords: Finite · Infinite · Infinitesimal

https://orcid.org/0000-0002-1429-069X


Three Efficient Methods of Finding Near-Optimal
Solution for NP-Hard Discrete Optimization Problems.
Illustrated by their Application to Scheduling Problems

Sergey Sevastyanov

Sobolev Institute of Mathematics, Novosibirsk, Russia
seva@math.nsc.ru

Abstract. Three fairly universal and efficient methods of finding near-
optimal solutions for NP-hard problems will be discussed in our talk
and illustrated by examples of their application to scheduling problems
(although, they are surely applicable to a much wider area of Discrete
Optimization problems):

1. Methods of ‘compact’ vector summation in a ball (of any norm) of
minimum radius, and methods of non-strict summation of vectors in
a given area of d-dimensional space. These methods are applicable to
problems of finding uniform distributions ofmulticomponent objects.

2. Application of themaximumflow and theminimum cut algorithms to
problems of finding uniform distributions of one-component objects
with prescribed constraints on the distribution areas of objects.

3. The method of a gradual reduction of the feasible solutions domain.

Keywords: Compact vector summation · Method of a gradual
reduction · Scheduling

https://orcid.org/0000-0003-0347-1396


Coordination in Closed-Loop Supply Chains: A Dynamic
Games Perspective

Georges Zaccour

GERAD, HEC Montreal, Canada
georges.zaccour@hec.ca

Abstract. Lack of coordination between the parties involved in a supply
chain typically leads to lower outcomes for manufacturers and retailers,
and to lower consumer surplus. Further, the collection of past-purchased
products at the end of their useful life, for remanufacturing or recycling
purposes, is a crucial activity in optimizing operations management and
achieving a better environmental performance.

In this talk, I will discuss some coordination mechanisms that could
be implemented to improve the efficiency of a closed-loop supply chain,
in a context of long-term strategic interactions between the agents and in
the presence of demand uncertainties.

Keywords: Coordination mechanism · Closed-loop supply chain ·
Uncertainty

https://orcid.org/0000-0003-4505-0477
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Markov Decision Process and Convex Optimization

Alexander Gasnikov

Moscow Institute of Physics and Technology, Russia
gasnikov@yandex.ru

Abstract. The problem of constrained Markov decision process is
considered. An agent aims to maximize the expected accumulated
discounted reward subject to multiple constraints on its costs (the number
of constraints is small enough). A new dual approach is proposed with
an integration of two ingredients: entropy regularized policy optimizer
and Vayda’s dual optimizer, all of which are critical to achieve a faster
convergence. The finite-time error bound of the proposed approach is
characterized. Despite the challenge of the nonconcave objective subject
to nonconcave constraints, the proposed approach is shown to converge
(with linear rate) to the global optimum with a complexity of in terms
of the optimality gap and the constraint violation, which significantly
improves the complexity of the existing primal-dual approach.

Keywords: Dual approach · Entropy regularized policy · Vayda’s dual
optimizer

https://orcid.org/0000-0002-7386-039X


Hyperheuristics for Automated Synthesis and Control
of Evolutionary Optimization Algorithms

Evgenii Sopov

Siberian Federal University, Krasnoyarsk, Russia
ESopov@sfu-kras.ru

Abstract. Evolutionary algorithms and other nature-inspired techniques
have proved their efficiency in solving different hard optimization
problems. At the same time, the number of different heuristics and
meta-heuristics is still growing, and one must deal with the problem
of selecting, fine-tuning, and combining simple heuristics to design an
optimization algorithm for each specific task. In this tutorial, we will
present a promising approach to automated synthesis and control of
evolutionary algorithms using hyperheuristics. We will discuss novel
evolutionary hyperheuristics and the experimental results for some
classes of hard global “black-box” optimization problems, including
multimodal, non-stationary and large-scale optimization.

Keywords: Metaheuristic · Evolutionary approach · Adaptive control

https://orcid.org/0000-0003-4410-7996
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Multiple Project Scheduling for a Network Roll-Out Problem: MIP
Formulation and Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Igor Vasilyev, Dmitry Rybin, Sergey Kudria, Jie Ren, and Dong Zhang



xxiv Contents

Applications

On a Nonconvex Distance-Based Clustering Problem . . . . . . . . . . . . . . . . . . . . . . . 139
Tatiana V. Gruzdeva and Anton V. Ushakov

On Solving One Spectral Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Vladimir Zubov and Alla Albu

Mathematical Economy

Optimal Arrivals to Preemptive Queueing System . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Julia V. Chirkova and Vladimir V. Mazalov

Multistage Inventory Model with Probabilistic and Quantile Criteria . . . . . . . . . . 182
Sergey V. Ivanov and Aleksandra V. Mamchur

Pricing in Two-Sided Markets on the Plain with Different Agent Types . . . . . . . . 194
Elena Konovalchikova and Anna Ivashko

On the Existence of a Fuzzy Core in an Exchange Economy . . . . . . . . . . . . . . . . . 210
Valeriy Marakulin

Game Theory

Value of Cooperation in a Differential Game of Pollution Control . . . . . . . . . . . . 221
Angelina Chebotareva, Shimai Su, Elizaveta Voronina,
and Ekaterina Gromova

A Cooperation Scheme in Multistage Game of Renewable Resource
Extraction with Asymmetric Players . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Denis Kuzyutin, Yulia Skorodumova, and Nadezhda Smirnova

Two Level Cooperation in Dynamic Network Games with Partner Sets . . . . . . . . 250
Leon Petrosyan and Yaroslavna Pankratova

Multicriteria Dynamic Games with Asymmetric Horizons . . . . . . . . . . . . . . . . . . . 264
Anna Rettieva

A Novel Payoff Distribution Procedure for Sustainable Cooperation
in an Extensive Game with Payoffs at All Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Denis Kuzyutin and Nadezhda Smirnova



Contents xxv

The Core of Cooperative Differential Games on Networks . . . . . . . . . . . . . . . . . . . 295
Anna Tur and Leon Petrosyan

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315



Mathematical Programming



On the Convergence Analysis
of Aggregated Heavy-Ball Method

Marina Danilova1,2(B)

1 Institute of Control Sciences of RAS, Moscow, Russia
danilovamarina15@gmail.com

2 Moscow Institute of Physics and Technology, Moscow, Russia

Abstract. Momentum first-order optimization methods are the
workhorses in various optimization tasks, e.g., in the training of deep
neural networks. Recently, Lucas et al. (2019) [7] proposed a method
called Aggregated Heavy-Ball (AggHB) that uses multiple momentum
vectors corresponding to different momentum parameters and averages
these vectors to compute the update direction at each iteration. Lucas et
al. (2019) [7] show that AggHB is more stable than the classical Heavy-
Ball method even with large momentum parameters and performs well
in practice. However, the method was analyzed only for quadratic objec-
tives and for online optimization tasks under uniformly bounded gradi-
ents assumption, which is not satisfied for many practically important
problems. In this work, we address this issue and propose the first anal-
ysis of AggHB for smooth objective functions in non-convex, convex,
and strongly convex cases without additional restrictive assumptions.
Our complexity results match the best-known ones for the Heavy-Ball
method. We also illustrate the efficiency of AggHB numerically on several
non-convex and convex problems.

Keywords: First-order methods · Momentum methods · Smooth
optimization

1 Introduction

Momentum [14] and acceleration [10] are popular techniques for speeding up
first-order optimization methods both from practical and theoretical perspec-
tives. Historically, one of the first examples of such methods is Heavy-Ball (HB)
method proposed by B. Polyak in 1964 [14]. This method received a lot of atten-
tion from various research communities due to its efficiency in different convex
and, more importantly, non-convex problems [2]. In particular, during the last
few years, a lot of variants of HB were proposed and analyzed by machine learning
(ML) researchers, especially due to its efficiency in computer vision tasks [15].

The research was supported by Russian Foundation for Basic Research (Theorem 1,
project No. 20-31-90073) and by Russian Science Foundation (Theorem2, project No.
21-71-30005).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pardalos et al. (Eds.): MOTOR 2022, LNCS 13367, pp. 3–17, 2022.
https://doi.org/10.1007/978-3-031-09607-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09607-5_1&domain=pdf
http://orcid.org/0000-0002-2063-3353
https://doi.org/10.1007/978-3-031-09607-5_1


4 M. Danilova

Fig. 1. Trajectories of HB (left) and AggHB (right) with different momentum parame-
ters β applied to minimize Rosenbrock function. Stepsize γ was tuned for each method.
We use the package from [12] for the visualization.

Recently, another modification of HB called Aggregated Heavy-Ball (AggHB)
method was proposed in [7]. In contrast to HB, AggHB has m ≥ 1 different
momentum parameters and m corresponding momentum vectors. An average of
these vectors is used as an update direction at each iteration. Such an averaging
helps to make the method more stable via reducing the oscillations of the iterates,
as the authors of [7] illustrated empirically. Moreover, the numerical results from
[7] show the superiority of AggHB to HB at training several ML models.

1.1 Motivational Example

In this section, we consider the behavior of AggHB on Rosenbrock function,
which is well-known non-convex test function. The set of momentum parameters
for AggHB were chosen as [0.9, 0.95, 0.99, 0.999] (see Algorithm 2) and for HB a
standard momentum parameter β = 0.95 was taken (see Algorithm 1). Stepsize
γ was tuned for each method. The results are presented in Fig. 1. We observe
much smaller oscillations for AggHB than for HB. Moreover, the trajectory of
AggHB achieves better accuracy. This example motivates the detailed study of
AggHB and, in particular, the theoretical study of its convergence.

1.2 Our Contributions

However, little is known about theoretical convergence guarantees for AggHB. In
particular, the authors of [7] analyzed AggHB for quadratic optimization prob-
lems, which is a very small class of problems, and for convex online optimization
problems such that the gradients of the objective function are bounded on the
whole domain. The former assumption is not satisfied for many practically impor-
tant tasks. In this paper, we remove this limitation and derive new convergence
results for AggHB for smooth non-convex and (strongly) convex problems.

Our main contributions can be summarized as follows.
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� First analysis of AggHB for non-convex problems. For the problems with
smooth but not necessary convex objective function f , we prove that AggHB
finds an ε-stationary point (point x such that ‖∇f(x)‖ ≤ ε) after O(1/ε2)
iterations neglecting the dependence on momentum parameters, smoothness
constant, and initial functional suboptimality. When m = 1 we recover the
complexity of HB and when m > 1 our rate is better than the corresponding
rate of HB with maximal momentum parameter (see Theorem 1 and Corol-
lary 1 for the details).

� First analysis of AggHB without bounded gradient assumption. In the
smooth (strongly) convex case, we derive the first complexity upper bounds
for AggHB without assuming that the gradients are uniformly bounded. As
in the non-convex case, we recover the complexity of HB when m = 1 and our
rate is better than the corresponding rate of HB with maximal momentum
parameter when m > 1 (see Theorem 2 and Corollary 2).

� Numerical experiments. We compare the performance of AggHB and HB
on the logistic regression problem with �2-regularization and special non-
convex regularization. In our experiments, AggHB converges faster than HB.

1.3 Technical Preliminaries

We consider an unconstrained minimization problem

min
x∈Rn

f(x), (1)

where function f : Rn → R is L-smooth, i.e., for all x, y ∈ R
n

‖∇f(x) − ∇f(y)‖2 ≤ L‖x − y‖2. (2)

Next, we assume that f(x) is either bounded from below finf = infx∈Rn f(x) >
−∞ or μ-strongly convex

f(y) ≥ f(x) + 〈∇f(x), y − x〉 +
μ

2
‖y − x‖22. (3)

The notation we use is standard for optimization literature [11,13], e.g., by x∗
we denote the solution of (1), the distance from the starting point to the solution
is denoted by R0 = ‖x0 − x∗‖2.

1.4 Related Work

Theoretical convergence guarantees for HB. The first convergence analysis of
Heavy-Ball method (HB, Algorithm 1) was given in the original work by B.
Polyak in 1964 [14], where local O(

√
L/μ log(1/ε)) convergence rate was shown

for twice continuously differentiable L-smooth and μ-strongly convex functions.
After 50 years Ghadimi et al. (2015) [5] derived the first global convergence rates
for HB (and its version with averaging). In particular, they shown O(L/μ log(1/ε))
and O (

LR2
0/ε

)
complexity bounds for L-smooth μ-strongly convex and convex
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Algorithm 1. Heavy-Ball method (HB)
Input: starting points x0, x1 (by default x0 = x1), number of iterations N , stepsize

γ > 0, momentum parameter β ∈ [0, 1]
1: for k = 0, . . . , N − 1 do
2: Vk = βVk−1 + ∇f(xk)
3: xk+1 = xk − γVk

4: end for
Output: xN

functions respectively. In contrast to the local convergence guarantees, these
rates are not accelerated [9,10]. Although one can improve the analysis of HB
for quadratic functions and get an asymptotically accelerated rate [6], it is still
unclear whether this result can be generalized to the general non-quadratic func-
tions. The non-triviality of this question is supported by the negative result from
[16] showing that one cannot derive an accelerated rate of HB for the standard
choice of parameters using quadratic potentials in the analysis.

HB with aggregation and averaging. As we already mentioned, Aggregated
Heavy-Ball method (AggHB, Algorithm 2) was proposed in [7], where authors
have empirically shown that aggregation helps to stabilize the behavior of the
methods, speeds up the method in practice, and they also derive some conver-
gence guarantees under uniformly bounded gradients assumption in the stochas-
tic case. Recently, in [3], another approach for stabilizing HB was considered.
In particular, the authors of [3] considered several averaging techniques for HB
and showed that they help to reduce the maximal deviation of the method and
improve the performance of the method in practice.

2 Analysis of Aggregated Heavy-Ball Method

In this section we propose a new convergence analysis for Aggregated Heavy-
Ball method (AggHB, Algorithm 2). The key difference between HB and AggHB
is that instead of one direction determined by parameter β the method uses to
the vector of momentum parameters β = [β1, . . . , βm] and takes and average
over m corresponding directions. When m = 1 AggHB recovers HB. Moreover,
we consider a slight generalization of the method proposed in [7], since we allow
to use different stepsizes for different momentum parameters.

Following [8,17] we consider perturbed/virtual iterates:

x̃k = xk − 1
m

m∑

i=1

βiγi

1 − βi
V

(i)
k−1, k ≥ 0. (4)

This representation is used for the analysis only and there is no need to compute
this sequence when running the method. Virtual iterates satisfy the following
useful recursion: for all k ≥ 0
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Algorithm 2. Aggregated Heavy-Ball method (AggHB)
Input: number of iterations N , stepsize γi > 0, momentum parameters {βi}m

i=1 ∈
[0, 1], starting points x0, x1 (by default x1 = x0 − α∇f(x0))

1: for k = 1, . . . , N − 1 do
2: V

(i)
k = βiV

(i)
k−1 + ∇f(xk) for i = 1, . . . , m

3: xk+1 = xk − 1
m

m∑

i=1

γiV
(i)

k

4: end for
Output: xN

x̃k+1 = xk+1 − 1
m

m∑

i=1

βiγi

1 − βi
V

(i)
k = xk − 1

m

m∑

i=1

γiV
(i)
k − 1

m

m∑

i=1

βiγi

1 − βi
V

(i)
k

= xk − 1
m

m∑

i=1

γiV
(i)
k

1 − βi
= xk − 1

m

m∑

i=1

βiγi

1 − βi
V

(i)
k−1 − 1

m

m∑

i=1

γi

1 − βi
∇f(xk)

= x̃k − 1
m

m∑

i=1

γi

1 − βi
∇f(xk). (5)

2.1 Non-convex Case

Below we present our main convergence result1 for non-convex problems.

Theorem 1. Let be f is L-smooth and possibly non-convex function with values
lower bounded by finf . Assume that

− A

2

(
1 − CDEL2

2m2
− LA

)
< 0, (6)

where

A =
1
m

m∑

i=1

βiγi

1 − βi
, C =

m∑

i=1

γi

(1 − βi)2
, D = max

i=1,m

γi

1 − βi
, E =

m∑

i=1

1
1 − βi

. (7)

Then, for all K ≥ 1 we have

min
k=1,K

‖∇f(xk)‖22 ≤ 2
K

f(x0) − finf

A
(
1 − CDEL2

m2 − LA
) . (8)

The above result provides a convergence guarantee in the general non-convex
case and allows to use different γi such that (6) holds. To illustrate this result
and, in particular, condition (6) we derive the following corollary2 of Theorem 1.

1 We defer all the proofs to the Appendix.
2 Due to the space limitation, we omit the proofs of Corollaries 1 and 2 that can be

verified via simple computations. We provide them in the arXiv version of our paper.
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Corollary 1. Let the assumptions of Theorem1 hold. Assume that the stepsize
is constant γi ≡ γ for i = 1, . . . , m and consider new constants β̃ and β̂ satisfying
the following conditions: 1

m

∑m
i=1

βi

(1−βi)2
=

˜β

(1−˜β)2
, 1

m

∑m
i=1

1
1−βi

= 1
1−β̂

. Let

γ =
1

L

⎛

⎝ 2β̂

1−β̂
+

√
2
(

˜β

(1−˜β)2
+ 1

1−β̂

)
1

(

1− max
i=1,m

βi

)

(1−β̂)

⎞

⎠

.

Then, to achieve min
k=1,K

‖∇f(xk)‖22 ≤ ε2 for ε > 0 AggHB requires

O

⎛

⎜⎜⎜⎜
⎝

L(f(x0) − finf)
ε2

+

L(f(x0) − finf)
√(

˜β(1−β̂)

(1−˜β)2
+ 1

)
1

(

1− max
i=1,m

βi

)

β̂2

ε2

⎞

⎟⎟⎟⎟
⎠

. (9)

First of all, when m = 1, we have β = β̃ = β̂ = maxi=1,m βi and the above
convergence rate can be simplified to

O
(

L(f(x0) − finf)
ε2

+
L(f(x0) − finf)

ε2β(1 − β)

)

that matches the rate of HB in the non-convex case (e.g., see [4]). Next, constants
β̃ and β̂ can be viewed as special “averaged” momentum parameters. Indeed, we
know that

mini=1,m βi

(1 − mini=1,m βi)2
≤ 1

m

m∑

i=1

βi

(1−βi)2
≤ maxi=1,m βi

(1 − maxi=1,m βi)2
,

1
1 − mini=1,m βi

≤ 1
m

m∑

i=1

1
1−βi

≤ 1
1 − maxi=1,m βi

,

since x
(1−x)2 and 1

1−x are increasing functions for x ∈ (0, 1), i.e., β̃, β̂ lie in
[mini=1,m βi,maxi=1,m βi]. This allows to use larger stepsize than maximal pos-
sible stepsize for HB with β = maxi=1,m βi, i.e., the rate of AggHB is better than
the one of HB with β = maxi=1,m βi.

2.2 Convex and Strongly-Convex Cases

Lemma 1. Let be f is L-smooth and μ-strongly convex. Let γi and βi satisfy
γi > 0, βi ∈ [0, 1), and

F =
1
m

m∑

i=1

γi

1 − βi
≤ 1

4L
. (10)

Then, for all k ≥ 0

F

2
(f(xk)−f(x∗)) ≤

(
1− Fμ

2

)
‖x̃k−x∗‖22 −‖x̃k+1−x∗‖22 +3LF‖xk−x̃k‖22. (11)
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Next, it is sufficient to sum up (11) for k = 0, 1, . . . K with weights wk =
(1 − μF/2)−(k+1), Wk =

∑K
k=0 wk to get the bound on f(xK) − f(x∗), where

xK = 1
WK

∑K
i=1 wk(f(xk)−f(x∗)). To get final result one needs to upper bound

the sum 3LF
∑K

k=0 wk‖xk − x̃k‖22. For this we consider the following lemma.

Lemma 2. Assume that f is L-smooth and μ-strongly convex. Let γi and βi

satisfy

0 < γi ≤ (1 − maxi=1,m βi) (1 − βi)
2μ

, βi ∈ [0, 1), (12)

F =
1
m

m∑

i=1

γi

1 − βi
≤ 1

4L
, BF ≤ 1 − maxi=1,m βi

48L2
, (13)

where B = 1
m

∑m
i=1

βiγi(1−βK+1
i )

(1−βi)2
. Then, for all k ≥ 0 and wk = (1 − μF/2)−(k+1)

3LF
K∑

k=0

wk‖xk − x̃k‖22 ≤ F

4

K∑

k=0

wk (f(xk) − f(x∗)) (14)

Combining these lemmas, we get the main result in (strongly) convex case.

Theorem 2. Assume that f is L-smooth and μ-strongly convex. Let γi and βi

satisfy conditions from (12) and (13). Then, after K ≥ 0 iterations of AggHB
we have

f(xK) − f(x∗) ≤ 4‖x0 − x∗‖22
FWK

, xK =
1

WK

∑
i = 1Kwk(f(xk) − f(x∗)) (15)

where wk = (1 − μF/2)−(k+1), Wk =
∑K

k=0 wk, i.e.,

f(xK) − f(x∗) ≤
(

1 − μF

2

)K 4‖x0 − x∗‖22
F

, if μ > 0, (16)

f(xK) − f(x∗) ≤ 4‖x0 − x∗‖22
FK

, if μ = 0. (17)

As in the non-convex case, the above result gives convergence guarantees in
the general convex and strongly convex cases and allows to use different γi such
that (12) and (13) hold. To illustrate this result and, in particular, conditions
(12) and (13) we derive the following corollary of Theorem2.

Corollary 2. Let the assumptions of Theorem2 hold. Assume that the stepsize
is constant γi ≡ γ for i = 1, . . . , m and consider constants β̃ and β̂ satisfying
the following conditions: 1

m

∑m
i=1

βi

(1−βi)2
=

˜β

(1−˜β)2
, 1

m

∑m
i=1

1
1−βi

= 1

1−β̂
. Let

γ = min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
1 − max

i=1,m
βi

)2

2μ
,
1 − β̂

4L
,

(1 − β̃)

√

(1 − β̂)
(

1 − max
i=1,m

βi

)

4
√

3L

√
β̃

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.
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Then, to achieve f(xK) − f(x∗) ≤ ε for ε > 0 AggHB requires

O
((

L

μ
+

1 − β̂
(

1 − max
i=1,m

βi

)2 +
L

√
β̃(1 − β̂)

μ(1 − β̃)
√

1 − max
i=1,m

βi

)

· ln
(

R2
0

ε
·
(

L +
1 − β̂

(1 − max
i=1,m

βi)2
+

L

√
β̃(1 − β̂)

(1 − β̃)
√

1 − max
i=1,m

βi

)))

(18)

iterations when μ > 0, and

O

⎛

⎜
⎝

LR2
0

ε
+

LR2
0

√
β̃(1 − β̂)

ε(1 − β̃)
√

1 − max
i=1,m

βi

⎞

⎟
⎠ (19)

iterations when μ = 0, where R0 = ‖x0 − x∗‖2.
First of all, when m = 1, we have β = β̃ = β̂ = maxi=1,m βi and the above

convergence rates can be simplified to

O
((

L

μ
+

L
√

β

μ(1 − β)

)
log

(
R2

0

ε
·
(

L +
L

√
β

1 − β

)))
, when μ > 0,

O
(

LR2
0

ε
+

LR2
0

√
β

ε(1 − β)

)
, when μ = 0

that matches the rate of HB in the strongly convex and convex cases (e.g., see
[5]). Next, as we already mentioned before, constants β̃ and β̂ can be viewed
as special “averaged” momentum parameters. This allows to use larger stepsize
than maximal possible stepsize for HB with β = maxi=1,m βi, i.e., the rate of
AggHB is better than the one of HB with β = maxi=1,m βi.

3 Numerical Experiments

We compare the behavior of HB and AggHB on solving logistic regression problem
with �2-regularization and with special non-convex regularization:

min
x∈Rn

{

f(x) =
1
M

M∑

i=1

log (1 + exp (−yi · [Ax]i)) +
l2
2

‖x‖22
}

, (20)

min
x∈Rn

⎧
⎨

⎩
f(x) =

1
M

M∑

i=1

log (1 + exp (−yi · [Ax]i)) + λ
n∑

j=1

x2
j

1 + x2
j

⎫
⎬

⎭
, (21)

where M denotes the number of samples in the dataset, A ∈ R
M×n is a “feature

matrix”, y1, . . . , yM ∈ {−1, 1} are labels, and l2, λ ≥ 0 are the regularization
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Fig. 2. Trajectories of HB and AHB with different momentum parameters β applied
to solve logistic regression problem with �2-regularization (the first two rows) and
non-convex regularization (the third row) for a9a, madelon, and australian datasets.
Stepsize γ was tuned for each method.

parameters. One can show that f(x) is L-smooth and μ-strongly convex with L =
1

4M λmax(A�A) + l2 and μ = l2 in the first case, and L-smooth and non-convex
with L = 1

4M λmax(A�A) + 2λ. To construct the problems we use the following
datasets from LIBSVM [1]: a9a (M = 32561, n = 123), madelon (M = 2000,
n = 500), and australian (M = 690, n = 14). Regularization parameter l2 is
either 0 (convex problem) or L

100000 (strongly convex problem) and λ is chosen
as λ = L

1000 . We run HB with standard momentum parameters β = 0.9, 0.95 for
both problems. AggHB was tested with m = 3, β1 = 0.9, β2 = 0.95, β3 = 0.99,
and γ1 = γ2 = γ3 = γ for �2-regularized problem and with m = 2, β1 = 0.9,
β2 = 0.95, and γ1 = γ2 = γ. For each method we tune stepsize parameter γ
as follows: we choose γ = a

L with the best a ∈ {2−6, 2−5, 2−4, . . . , 28}, i.e., the
method achieves the best accuracy with the chosen a from the considered set.

The results are shown in the Fig. 2. We observe that AggHB outperforms
HB in all cases. In particular, for �2-regularized problem the large value of β3

does not slow down the convergence of AggHB. In contrast, we observed that HB
performs relatively bad with β = 0.99. Next, in the experiments with non-convex
regularization, AggHB takes the best from two choices of momentum parameters.
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4 Conclusion

In this paper, we obtain the first convergence guarantees for AggHB without
assuming that the gradients of the objective function are uniformly bounded. In
the special case when m = 1, our results recover the known ones for HB and
outperform the corresponding guarantees for HB with β = maxi=1,m βi when
m > 1. Our numerical results show the superiority of AggHB to HB. Together
with the results from [7] they indicate high practical potential of AggHB.

A Missing Proofs from Section 2

A.1 Proof of Theorem1

From L-smoothness of f we have

f(x̃k+1) ≤ f(x̃k) − A 〈∇f(x̃k),∇f(xk)〉 +
LA2

2
‖∇f(xk)‖22, (22)

where A = 1
m

m∑

i=1

βi

1−βi
γi. Next, we estimate a second term −A 〈∇f(x̃k),∇f(xk)〉

in the previous expression:

− A 〈∇f(x̃k), ∇f(xk)〉 = A
1

2

(‖∇f(x̃k) − ∇f(xk)‖22 − ‖∇f(x̃k)‖22 − ‖∇f(xk)‖22
)

(22)

≤ A

2
(L2‖x̃k − xk‖22 − ‖∇f(xk)‖22)

(4)
=

AL2

2m2

∥

∥

∥

∥

∥

m
∑

i=1

βiγi

1 − βi
V

(i)
k−1

∥

∥

∥

∥

∥

2

2

− A

2
‖∇f(xk)‖22. (23)

From AggHB update rule we know that V
(i)
k is linear combination of gradients:

V
(i)
k =

∑k
l=0(βi)l∇f(xk−l). Applying this to (23) we have

AL2

2m2

∥∥∥
∥∥

m∑

i=1

βiγi

1 − βi
V

(i)
k−1

∥∥∥
∥∥

2

2

≤ AL2B

2m2

k−1∑

l=0

‖∇f(xk−1−l)‖22
m∑

i=1

(βi)lγi

1 − βi
, (24)

where B =
∑k−1

l=0

∑m
i=1

(βi)
lγi

1−βi
≤ ∑m

i=1
γi

(1−βi)2
. Combining (23), (24), we con-

tinue the derivation from (22):

f(x̃k+1) ≤ f(x̃k) − A

2
(1 − LA)‖∇f(xk)‖22 +

AL2B

2m2

k−1
∑

l=0

‖∇f(xk−1−l)‖22
m

∑

i=1

(βi)
lγi

1 − βi

≤ f(x̃k) − A

2
(1 − LA)‖∇f(xk)‖22

+
AL2

2m2

(

m
∑

i=1

γi

(1 − βi)2

)

k−1
∑

l=0

‖∇f(xl)‖22
m

∑

i=1

(βi)
k−1−lγi

1 − βi

≤ f(x̃k) − A

2
(1 − LA)‖∇f(xk)‖22

+
AL2

2m2

(

m
∑

i=1

γi

(1 − βi)2

)

(

max
i=1,m

γi

1 − βi

)k−1
∑

l=0

m
∑

i=1

(βi)
k−1−l‖∇f(xl)‖22. (25)
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Summing up (25) for k = 0, 1, . . . ,K we get

f(x̃k+1) ≤ f(x̃0) +

K
∑

k=1

(

LA2 − A

2

)

‖∇f(xk)‖22

+
K

∑

k=1

⎛

⎝

AL2

2m2

(

m
∑

i=1

γi

(1−βi)2

)

(

max
i=1,m

γi

1−βi

) m
∑

i=1

K−1
∑

l=k+1

βl−1−k
i

⎞

⎠‖∇f(xk)‖22

≤ f(x̃0) +

K
∑

k=1

(

LA2 − A

2

)

‖∇f(xk)‖22

+

K
∑

k=1

(

AL2

2m2

(

m
∑

i=1

γi

(1 − βi)2

)

(

max
i=1,m

γi

1 − βi

) m
∑

i=1

1

1 − βi

)

‖∇f(xk)‖22

= f(x̃0) +

K
∑

k=1

((

LA2 − A

2

)

− ACDEL2

2m2

)

‖∇f(xk)‖22,

where A = 1
m

m∑

i=1

βiγi

1−βi
, C =

m∑

i=1

γi

(1−βi)2
, D = max

i=1,m

γi

1−βi
, E =

m∑

i=1

1
1−βi

. Finally,

by choosing sufficiently small γi one can ensure that −A
2

(
1 − CDEL2

2m2 − LA
)

≤ 0
and get (8)

A.2 Proof of Lemma 1

Applying the virtual iterates determined in (4), we obtain

‖x̃k+1 − x∗‖22 = ‖x̃k − x∗‖22 − 2F 〈x̃k − x∗,∇f(xk)〉 + F 2‖∇f(xk)‖22
= ‖x̃k − x∗‖22 − 2F 〈xk − x∗,∇f(xk)〉 − 2F 〈x̃k − xk,∇f(xk)〉

+F 2‖∇f(xk)‖22. (26)

From μ-strong convexity and L-smoothness of f we have (e.g., see [11])

〈xk − x∗,∇f(xk)〉 ≥ f(xk) − f(x∗) +
μ

2
‖xk − x∗‖2

‖∇f(xk)‖2 ≤ 2L (f(xk) − f(x∗)) . (27)

Using these inequalities for (26) we get

‖x̃k+1 − x∗‖22 ≤ ‖x̃k − x∗‖22 − μF‖xk − x∗‖22 − 2F (f(xk) − f(x∗))
−2F 〈x̃k − xk,∇f(xk)〉 + F 2‖∇f(xk)‖22.

Firstly, we evaluate the second term −μF‖xk − x∗‖22 using that ‖a + b‖22 ≤
2‖a‖22 + 2‖b‖22 for all a, b ∈ R

n as follows

−μF‖xk − x∗‖22 ≤ −μF

2
‖x̃k − x∗‖22 + μF‖xk − x̃k‖22.
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Secondly, we estimate the fourth term −2F 〈x̃k−xk,∇f(xk) using Fenchel-Young
inequality3 and get

−2F 〈x̃k − xk,∇f(xk) ≤ −2LF‖x̃k − xk‖22 +
F

2L
‖∇f(xk)‖22

(27)

≤ −2LF‖x̃k − xk‖22 + F‖ (f(xk) − f(x∗)) .

Combining the results above, we finish the proof

‖x̃k+1 − x∗‖2
(4),(11)

≤
(

1 − μF

2

)

‖x̃k − x∗‖22 − F

2
(f(xk) − f(x∗)) + 3LF‖xk − x̃k‖22.

A.3 Proof of Lemma 2

From AggHB update rule we know that V
(i)
k is linear combination of gradients:

V
(i)
k =

∑k
t=0 βt

i∇f(xk−t). Next, by the definition of x̃k we have

‖xk+1 − x̃k+1‖22 =

∥∥
∥∥∥

1
m

m∑

i=1

βiγi

1 − βi
V

(i)
k

∥∥
∥∥∥

2

2

=

∥∥
∥∥∥

1
m

m∑

i=1

βiγi

1 − βi

k∑

t=0

βt
i∇f(xk−t)

∥∥
∥∥∥

2

2

=

∥
∥∥∥∥

k∑

t=0

(
1
m

m∑

i=1

βt+1
i γi

1 − βi

)

∇f(xk−t)

∥
∥∥∥∥

2

2

=

∥
∥∥∥∥

k∑

t=0

(
1
m

m∑

i=1

βk−t+1
i γi

1 − βi

)

∇f(xt)

∥
∥∥∥∥

2

2

. (28)

Define constant Bk as following

Bk =
k∑

t=0

1
m

m∑

i=1

βk−t+1
i γi

1 − βi
=

1
m

m∑

i=1

βiγi

1 − βi

k∑

t=0

βk−t
i =

1
m

m∑

i=1

βiγi(1 − βk+1
i )

(1 − βi)2
.

Using this, we continue the derivation from (28)

‖xk+1 − x̃k+1‖22 = B2
k ·

∥
∥∥∥∥

k∑

t=0

1
B

(
1
m

m∑

i=1

βk−t+1
i γi

1 − βi

)

∇f(xt)

∥
∥∥∥∥

2

2

Jensen’s inequality

≤ B2
k ·

k∑

t=0

1
B

(
1
m

m∑

i=1

βk−t+1
i γi

1 − βi

)

‖∇f(xt)‖22

= Bk ·
k∑

t=0

(
1
m

m∑

i=1

βk−t+1
i γi

1 − βi

)

‖∇f(xt)‖22

(13), Bk≤Bk+1≤ BKF ·
k∑

t=0

max
i=1,m

βk−t+1
i ‖∇f(xt)‖22. (29)

3 |〈a, b〉| ≤ ‖a‖2
2

2λ
+

λ‖b‖2
2

2
for all a, b ∈ R

n and λ > 0.
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For simplicity, we denote BK ≡ B. Summing up these inequalities for k =

0, 1, . . . ,K with weights wk =
(
1 − μF

2

)−(k+1)

, we get

3LF

K∑

k=0

wk‖xk − x̃k‖22 ≤ 3LBF 2 ·
K∑

k=0

k−1∑

t=0

wk max
i=1,m

βk−t
i ‖∇f(xt)‖22

≤ 3LBF 2 ·
K∑

k=0

k∑

t=0

wk max
i=1,m

βk−t
i ‖∇f(xt)‖22. (30)

Next, we estimate wk using that (1 − q/2)−1 ≤ 1 + q for any q ∈ (0, 1]: for all
t = 0, 1, . . . , k

wk =
(

1− μF

2

)−(k−t)

wt ≤ (1+μF )k−t
wt

(12)

≤
⎛

⎝1+
1− max

i=1,m
βi

2

⎞

⎠

k−t

wt.

Using an inequality above and (1 + q/2) (1− q) ≤ 1− q/2 for q = 1−maxi=1,m βi,
we continue the previous derivation (30)

3LF
K

∑

k=0

wk‖xk−x̃k‖22 ≤ 3LBF 2
K

∑

k=0

k
∑

t=0

wt‖∇f(xt)‖22

⎛

⎝1+

1 − max
i=1,m

βi

2

⎞

⎠

k−t

max
i=1,m

βk−t
i

≤ 3LBF 2
K

∑

k=0

k
∑

t=0

wt‖∇f(xt)‖22

⎛

⎝1−
1− max

i=1,m
βi

2

⎞

⎠

k−t

≤ 3LBF 2

(

K
∑

k=0

wk‖∇f(xk)‖22
)

⎛

⎜

⎝

∞
∑

k=0

⎛

⎝1−
1− max

i=1,m
βi

2

⎞

⎠

k
⎞

⎟

⎠

=
6LBF 2

1 − max
i=1,m

βi

K
∑

k=0

wk‖∇f(xk)‖22

≤ 12L2BF 2

1 − max
i=1,m

βi

K
∑

k=0

wk(f(xk) − f(x∗)). (31)

We take parameters γi, βi (12) implying (13). Combining this with the last result
(31), we obtain (14).

A.4 Proof of Theorem2

Using Lemma 1 we get

F

2
(f(xk) − f(x∗)) ≤

(
1 − μF

2

)
‖x̃k − x∗‖22 − ‖x̃k+1 − x∗‖22 + 3LF‖xk − x̃k‖22.
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Summing up these inequalities for k = 0, 1, . . . ,K with weights wk =
(
1 − μF

2

)−(k+1)

, we have

F

2

K
∑

k=0

wk (f(xk) − f(x∗)) ≤
K

∑

k=0

(

wk

(

1 − μF

2

)

‖x̃k − x∗‖22 − wk‖x̃k+1 − x∗‖22
)

+3LF
K

∑

k=0

wk‖xk − x̃k‖22

(14)

≤
K

∑

k=0

(

wk−1‖x̃k − x∗‖22 − wk‖x̃k+1 − x∗‖22
)

+
F

4

K
∑

k=0

wk (f(xk) − f(x∗))

≤ ‖x0 − x∗‖22 +
F

4

K
∑

k=0

wk (f(xk) − f(x∗)) .

Rearranging and multiplying by 1
WK

= 1
∑K

k=0 wk
this inequality, we have

1
WK

K∑

k=0

wk (f(xk) − f(x∗)) ≤ 4‖x0 − x∗‖22
FWK

.

Next, we obtain (15) by using Jensen’s inequality:

f(xK) ≤ 1
WK

K∑

k=0

wkf(xk).

In strongly convex case (μ > 0), we have WK ≥ wK−1 =
(
1 − μF

2

)−K

, hence
(16) holds. In convex case (μ = 0), WK = K + 1 > K that implies (17).
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Abstract. This paper investigates zeroth-order methods for non-
smooth convex-concave saddle point problems (with r-growth condition
for duality gap). We assume that a black-box gradient-free oracle returns
an inexact function value corrupted by an adversarial noise. In this work
we prove that the standard zeroth-order version of the mirror descent
method is optimal in terms of the oracle calls complexity and the maxi-
mum admissible noise.

Keywords: stochastic optimization · non-smooth optimization ·
saddle point problems · gradient-free optimization

1 Introduction

In this paper, we consider a stochastic non-smooth saddle point problem of the
form

min
x∈X

max
y∈Y

f(x, y), (1)

where f(x, y) � Eξ [f(x, y, ξ)] is the expectation, w.r.t. ξ ∈ Ξ, f : X × Y → R

is convex-concave and Lipschitz continuous, and X ⊆ R
dx , Y ⊆ R

dy are convex
compact sets. The standard interpretation of such min-max problems is the
antagonistic game between a learner and an adversary, where the equilibria are
the saddle points [20]. Now the interest in saddle point problems is renewed due
to the popularity of generative adversarial networks (GANs), whose training
involves solving min-max problems [6,14].

Motivated by many applications in the field of reinforcement learning [7,
17] and statistics, where only a black-box access to the function values of the
objective is available, we consider zeroth-order oracle (also known as gradient-
free oracle). Particularly, we mention the classical problem of adversarial multi-
armed bandit [1,5,10], where a learner receives a feedback given by the function
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evaluations from an adversary. Thus, zeroth-order methods [8] are the workhorse
technique when the gradient information is prohibitively expensive or even not
available and optimization is performed based only on the function evaluations.

Related Work and Contribution. Zeroth-order methods in the non-smooth
setup were developed in a wide range of works [4,8,9,11,12,19,21,23,24,26]. Par-
ticularly, in [24], an optimal algorithm was provided as an improvement to the
work [9] for a non-smooth case but Lipschitz continuous in stochastic convex opti-
mization problems. However, this algorithm uses the exact function evaluations
that can be infeasible in some applications. Indeed, the objective f(z, ξ) can be
not directly observed but instead, its noisy approximation ϕ(z, ξ) � f(z, ξ)+δ(z)
can be queried, where δ(z) is some adversarial noise. This noisy-corrupted setup
was considered in many works, however, such an algorithm that is optimal in
terms of the number of oracle calls complexity and the maximum value of adver-
sarial noise has not been proposed. For instance, in [2,4], optimal algorithms in
terms of oracle calls complexity were proposed, however, they are not optimal in
terms of the maximum value of the noise. In papers [22,27], algorithms are opti-
mal in terms of the maximum value of the noise, however, they are not optimal in
terms of the oracle calls complexity. In this paper, we provide an accurate analy-
sis of a gradient-free version of the mirror descent method with an inexact oracle
that shows that the method is optimal both in terms of the inexact oracle calls
complexity and the maximum admissible noise. We consider two possible sce-
narios for the nature of the adversarial noise arising in different applications: the
noise is bounded by a small value or is Lipschitz. Table 1 demonstrates our con-
tribution by comparing our results with the existing optimal bounds. Finally, we
consider the case when the objective satisfies the r-growth condition and restate
the results.

Paper Organization. This paper is organized as follows. In Sect. 2, we begin
with background material, notation, and assumptions. In Sect. 3, we present the
main results of the paper: the algorithm and the analysis of its convergence. In
Sect. 4, we consider an additional assumption of r-growth condition and restate
the results. In Sect. 5, we comment on the unboundedness of the second moment
of the stochastic gradient.

2 Preliminaries

Notation. We use 〈x, y〉 �
∑d

i=1 xiyi to define the inner product of x, y ∈ R
d,

where xi is the i-th component of x. By norm ‖ · ‖p we mean the �p-norm. Then
the dual norm of the norm ‖ · ‖p is ‖λ‖q � max{〈x, λ〉 | ‖x‖p ≤ 1}. Operator E[·]
is the full expectation and operator Eξ[·] is the conditional expectation, w.r.t. ξ.
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Table 1. Summary of the contribution

Paper Problem(a) Is the Noise Number of Maximum Noise

Lipschitz? Oracle Calls

[2] convex ✗ d/ε2 ε2/d3/2

[4] saddle point ✗ d/ε2 ε2/d

[27] convex ✗ Poly (d, 1/ε) ε2/
√

d

[22] convex ✗ Poly (d, 1/ε) max
{

ε2/
√

d, ε/d
}
(b)

This work saddle point ✗ d/ε2 ε2/
√

d

This work saddle point ✓ d/ε2 ε/
√

d
(c)

(a) The results obtained for saddle point problems are also valid for convex prob-

lems.
(b) Notice, that this bound (up to a logarithmic factor) is also an upper bound

for maximum possible value of noise. It is important to note, that ε/d � ε2/
√

d,

when ε−2 � d. That is in the large-dimension regime, when subgradient method

is better than center of gravity types methods [18], the upper bound on the value

of admissible noise (that allows one to solve the problem with accuracy ε) will be

ε2/
√

d.
(c) This estimate is for the Lipschitz constant of the noise and it possibly is tight.

However, we prove that the upper bound (possibly not tight) for the Lipschitz-noise

constant is ε

Setup. Let us introduce the embedding space Z � X × Y, and then z ∈ Z
means z � (x, y), where x ∈ X , y ∈ Y. On this embedding space, we introduce
the �p-norm and a prox-function ω(z) compatible with this norm. Then we define
the Bregman divergence associated with ω(z) as

Vz(v) � ω(z) − ω(v) − 〈∇ω(v), z − v〉 ≥ ‖z − v‖2p/2, for all z, v ∈ Z.

We also introduce a prox-operator as follows

Proxz(ξ) � arg min
v∈Z

(Vz(v) + 〈ξ, v〉) , for all z ∈ Z.

Finally, we denote ω-diameter of Z by D � max
z,v∈Z

√
2Vz(v) =

Õ
(

max
z,v∈Z

‖z − v‖p

)

. Here Õ (·) is O (·) up to a
√

log d-factor.

Assumption 1 (Lischitz continuity of the objective). Function f(z, ξ) is
M2-Lipschitz continuous in z ∈ Z w.r.t. the �2-norm, i.e., for all z1, z2 ∈ Z and
ξ ∈ Ξ,

|f(z1, ξ) − f(z2, ξ)| ≤ M2(ξ)‖z1 − z2‖2.
Moreover, there exists a positive constant M2 such that E

[
M2

2 (ξ)
] ≤ M2

2 .

Assumption 2. For all z ∈ Z, it holds |δ(z)| ≤ Δ.
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Assumption 3 (Lischitz continuity of the noise). Function δ(z) is
M2,δ-Lipschitz continuous in z ∈ Z w.r.t. the �2-norm, i.e., for all z1, z2 ∈ Z,

|δ(z1) − δ(z2)| ≤ M2,δ‖z1 − z2‖2.

3 Main Results

In this section, we present the main results of the paper (Theorem 1 and Corol-
lary 1). For problem (1), we present a numerical algorithm (Algorithm 1) which
is optimal in terms of the number of inexact zeroth-order oracle calls and the
maximum adversarial noise. The algorithm is based on a gradient-free version of
the stochastic mirror descent (SMD) [3].

Black-Box Oracle. We assume that we can query zeroth-order oracle corrupted
by some adversarial noise δ(z)

ϕ(z, ξ) � f(z, ξ) + δ(z). (2)

Gradient Approximation. The gradient of ϕ(z, ξ) from (2), w.r.t. z, can be
approximated by function evaluations in two random points closed to z. To do
so, we define vector e picked uniformly at random from the Euclidean unit sphere
{e : ‖e‖2 = 1}. Let e � (e�

x ,−e�
y )�, where dim(ex) � dx, dim(ey) � dy and

dim(e) � d = dx + dy. Then the gradient of ϕ(z, ξ) can be estimated by the
following approximation with a small variance [24]:

g(z, ξ,e) =
d

2τ
(ϕ(z + τe, ξ) − ϕ(z − τe, ξ))

(
ex

−ey

)

, (3)

where τ > 0 is a small parameter.

Input: iteration number N
z1 ← arg minz∈Z d(z) for
k = 1, . . . , N do

Sample ek, ξk independently
Initialize γk

Calculate g(zk, ξk,ek) via (3)
zk+1 ← Proxzk

(
γkg(zk, ξk,ek)

)

end
Output:

ẑN ←
(∑N

k=1 γk

)−1 ∑N
k=1 γkzk

Algorithm 1: Zeroth-order SMD

Randomized Smoothing. For
a non-smooth objective f(z), we
define the following function

fτ (z) � Eẽf(z + τ ẽ), (4)

where τ > 0 and ẽ is a vec-
tor picked uniformly at random
from the Euclidean unit ball: {ẽ :
‖ẽ‖2 ≤ 1}. Function fτ (z) can be
referred as a smooth approxima-
tion of f(z). Here f(z) � Ef(z, ξ).

The next theorem presents the rate of convergence of Algorithm 1.

Theorem 1. Let function f(x, y, ξ) satisfy the Assumption 1. Then the follow-
ing holds for εsad � maxy∈Y f(x̂N , y) − minx∈X f(x, ŷN ), where ẑN � (x̂N , ŷN )
is the output of Algorithm1:
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1. under Assumption 2 and learning rate γk = D
Mcase1

√
2
N with

M2
case1 � O (

da2
qM

2
2 + d2a2

qΔ
2τ−2

)

E [εsad] ≤ Mcase1D
√

2/N +
√

dΔDτ−1 + 2τM2. (5)

2. under Assumption 3 and learning rate γk = D
Mcase2

√
2
N with

M2
case2 � O

(
da2

q

(
M2

2 + M2
2,δ

))

E [εsad] ≤ Mcase2D
√

2/N + M2,δ

√
dD + 2τM2, (6)

where
√
E

[‖e‖4q
]

= O (
min{q, log d}d2/q−1

)
= a2

q [15].

The next corollary presents our contribution.

Corollary 1. Let function f(x, y, ξ) satisfy the Assumption 1, and let τ in ran-
domized smoothing (4) be chosen as τ = O (ε/M2), where ε is the desired accu-
racy to solve problem (1). If one of the two following statement is true

1. Assumption 2 holds and Δ = O
(

ε2

DM2
√

d

)

2. Assumption 3 holds and M2,δ = O
(

ε
D√

d

)

then for the output ẑN � (x̂N , ŷN ) of Algorithm1, it holds E
[
εsad(ẑN )

]
= ε after

N = O (
da2

qM
2
2D2/ε2

)

iterations (zeroth-order oracle calls), where
√

E
[‖e‖4q

]
= O(

min{q, log d}
d2/q−1

)
= a2

q [15].

Next we clarify the Corollary 1 in the two following special setups: the �2-norm
and the �1-norm in the two following examples.

Example 1. Let p = 2, then q = 2 and
√
Ee [‖e‖42] = 1. Thus, a2

2 = 1 and D2 =
maxz,v∈Z ‖z−v‖22. Consequently, the number of iterations in the Corollary 1 can
be rewritten as follows

N = O
(

dM2
2 ε−2 max

z,v∈Z
‖z − v‖22

)

.

Example 2 [24, Lemma 4]. Let p = 1 then, q = ∞ and
√
Ee [‖e‖4∞] = O

(
log d

d

)
.

Thus, a2
∞ = O

(
log d

d

)
and D2 = O (

log d maxz,v∈Z ‖z − v‖21
)
. Consequently, the

number of iterations in the Corollary 1 can be rewritten as follows

N = O
(

M2
2 log2 dε−2 max

z,v∈Z
‖z − v‖21

)

.
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Proof of Theorem 1. By the definition zk+1 = Proxzk

(
γkg(zk,ek, ξk)

)
from Algo-

rithm1 we get [3], for all u ∈ Z

γk〈g(zk,ek, ξk), zk − u〉 ≤ Vzk(u) − Vzk+1(u) + γ2
k‖g(zk,ek, ξk)‖2q/2.

Taking the conditional expectation w.r.t. ξ,e and summing for k = 1, . . . , N we
obtain, for all u ∈ Z

N∑

k=1

γkEek,ξk

[〈g(zk,ek, ξk), zk − u〉] ≤ Vz1(u) +
N∑

k=1

γ2
k

2
Eek,ξk

[‖g(zk,ek, ξk)‖2q
]
.

(7)

Step 1
For the second term in the r.h.s of inequality (7) we use Lemma 6 and obtain

1. under Assumption 2:

Eek,ξk

[‖g(zk, ξk,ek)‖2q
] ≤ ca2

qdM2
2 + d2a2

qΔ
2τ−2, (8)

2. under Assumption 3:

Eek,ξk

[‖g(zk, ξk,ek)‖2q
] ≤ ca2

qd(M2
2 + M2

2,δ), (9)

where c is some constant and
√
E

[‖e‖4q
]

= O (
min{q, log d}d2/q−1

)
= a2

q [15].
Step 2
For the l.h.s. of inequality (7), we use Lemma 4

1. under Assumption 2

N∑

k=1

γkEek,ξk

[〈g(zk,ek, ξk), zk − u〉] ≥
N∑

k=1

γk〈∇fτ (zk), zk − u〉

−
N∑

k=1

γkEek

[∣
∣〈dΔτ−1ek, zk − u〉∣∣] . (10)

2. under Assumption 3

N∑

k=1

γkEek,ξk

[〈g(zk,ek, ξk), zk − u〉] ≥
N∑

k=1

γk〈∇fτ (zk), zk − u〉

−
N∑

k=1

γkEek

[∣
∣〈dM2,δe

k, zk − u〉∣∣] . (11)
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For the first term in the r.h.s. of inequalities (10) and (11), we have

N∑

k=1

γk〈∇fτ (zk), zk − u〉 =
N∑

k=1

γk

〈( ∇xfτ (xk, yk)
−∇yfτ (xk, yk)

)

,

(
xk − x
yk − y

)〉

=
N∑

k=1

γk

(〈∇xfτ (xk, yk), xk − x〉 − 〈∇yfτ (xk, yk), yk − y〉)

≥
N∑

k=1

γk(fτ (xk, yk) − fτ (x, yk)) − (fτ (xk, yk) − fτ (xk, y))

=
N∑

k=1

γk(fτ (xk, y) − fτ (x, yk)), (12)

where u � (x�, y�)�. Then we use the fact function fτ (x, y) is convex in x and
concave in y and obtain

(
N∑

i=1

γk

)−1 N∑

k=1

γk(fτ (xk, y) − fτ (x, yk)) ≤ fτ
(
x̂N , y

) − fτ
(
x, ŷN

)
, (13)

where (x̂N , ŷN ) is the output of Algorithm1. Using (13) for (12) we get

N∑

k=1

γk〈∇fτ (zk), zk − u〉 ≥
N∑

k=1

γkfτ
(
x̂N , y

) − fτ
(
x, ŷN

)
. (14)

Next we estimate the term Eek

[|〈ek, zk − u〉|] in (10) and (11), by Lemma 1

Eek

[∣
∣〈ek, zk − u〉∣∣] ≤ ‖zk − u‖2/

√
d. (15)

Now we substitute (14) and (15) to (10) and (11), and get

1. under Assumption 2

N∑

k=1

γkEek,ξk

[〈g(zk,ek, ξk), zk − u〉] ≥
N∑

k=1

γkfτ
(
x̂N , y

) − fτ
(
x, ŷN

)

−
N∑

k=1

γk

√
dΔ‖zk − u‖2τ−1. (16)

2. under Assumption 3

N∑

k=1

γkEek,ξk

[〈g(zk,ek, ξk), zk − u〉] ≥
N∑

k=1

γkfτ
(
x̂N , y

) − fτ
(
x, ŷN

)

−
N∑

k=1

γk

√
dM2,δ‖zk − u‖2. (17)
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Step 3 (under Assumption 2)
Now we combine Eq. (16) with Eq. (8) for Eq. (7) and obtain under Assumption 2
the following

N∑

k=1

γkfτ
(
x̂N , y

) − fτ
(
x, ŷN

) −
N∑

k=1

γk

√
dΔ‖zk − u‖2τ−1 ≤ Vz1(u)

+
N∑

k=1

γ2
k

2
(
ca2

qdM2
2 + d2a2

qΔ
2τ−2

)
. (18)

Using Lemma 2 we obtain

fτ
(
x̂N , y

) − fτ
(
x, ŷN

) ≥ f
(
x̂N , y

) − f
(
x, ŷN

) − 2τM2.

Using this we can rewrite (18) as follows

f
(
x̂N , y

) − f
(
x, ŷN

) ≤ Vz1(u)
∑N

k=1 γk

+
ca2

qdM2
2 + d2a2

qΔ
2τ−2

∑N
k=1 γk

N∑

k=1

γ2
k

2

+
√

dΔ max
k

‖zk − u‖2τ−1 + 2τM2. (19)

For the r.h.s. of (19) we use the definition of the ω-diameter of Z:
D � maxz,v∈Z

√
2Vz(v) and estimate ‖zk − u‖2 ≤ D for all z1, . . . , Zk and all

u ∈ Z. Using this for (19) and taking the maximum in (x, y) ∈ (X ,Y), we obtain

max
y∈Y

f
(
x̂N , y

) − min
x∈X

f
(
x, ŷN

) ≤ D2 + (ca2
qdM2

2 + d2a2
qΔ

2τ−2)
∑N

k=1 γ2
k/2

∑N
k=1 γk

+
√

dΔDτ−1 + 2τM2. (20)

Then we use the definition of the ω-diameter of Z: D � maxz,v∈Z
√

2Vz(v) and
estimate ‖zk − u‖2 ≤ D for all z1, . . . , Zk and all u ∈ Z. Thus, taking the

expectation of (20) and choosing learning rate γk = D
Mcase1

√
2
N with M2

case1 �
cda2

qM
2
2 + d2a2

qΔ
2τ−2 in Eq. (20) we get

E

[

max
y∈Y

f
(
x̂N , y

) − min
x∈X

f
(
x, ŷN

)
]

≤ Mcase1D
√

2/N +
ΔD√

d

τ
+ 2τM2.

Step 4 (under Assumption 3)
Now we combine Eq. (17) with Eq. (9) for Eq. (7) and obtain under Assumption 3

N∑

k=1

γkfτ
(
x̂N , y

) − fτ
(
x, ŷN

) −
N∑

k=1

γk

√
dM2,δ‖zk − u‖2 ≤ Vz1(u)

+
N∑

k=1

γ2
k

2
ca2

qd(M2
2 + M2

2,δ). (21)
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Using Lemma 2 we obtain

fτ
(
x̂N , y

) − fτ
(
x, ŷN

) ≥ f
(
x̂N , y

) − f
(
x, ŷN

) − 2τM2.

Using this we can rewrite (21) as follows

f
(
x̂N , y

) − f
(
x, ŷN

) ≤ Vz1(u)
∑N

k=1 γk

+
ca2

qd(M2
2 + M2

2,δ)
∑N

k=1 γk

N∑

k=1

γ2
k

2

+
√

dM2,δ max
k

‖zk − u‖2 + 2τM2. (22)

For the r.h.s. of (22) we use the definition of the ω-diameter of Z:
D � maxz,v∈Z

√
2Vz(v) and estimate ‖zk − u‖2 ≤ D for all z1, . . . , Zk and all

u ∈ Z. Using this for (22) and taking the maximum in (x, y) ∈ (X ,Y), we obtain

max
y∈Y

f
(
x̂N , y

) − min
x∈X

f
(
x, ŷN

) ≤ D2 + ca2
qd(M2

2 + M2
2,δ)

∑N
k=1 γ2

k/2
∑N

k=1 γk

+ M2,δ

√
dD + 2τM2. (23)

Then we use the definition of the ω-diameter of Z: D � maxz,v∈Z
√

2Vz(v) and
estimate ‖zk − u‖2 ≤ D for all z1, . . . , Zk and all u ∈ Z. Thus, taking the

expectation of (20) and choosing learning rate γk = D
Mcase2

√
2
N with M2

case2 �
cda2

q(M
2
2 + M2

2,δ) in Eq. (23) we get

E

[

max
y∈Y

f
(
x̂N , y

) − min
x∈X

f
(
x, ŷN

)
]

≤ Mcase2D
√

2/N + M2,δD
√

d + 2τM2.

��

4 Restarts

In this section, we assume that we additionally have the r−growth condition
for duality gap (see, [25] for convex optimization problems). For such a case, we
apply the restart technique [16] to Algorithm 1

Assumption 4 ( r−growth condition). There is r ≥ 2 and μr > 0 such that
for all z = (x, y) ∈ Z � X × Y

μr

2
‖z − z�‖r

p ≤ f (x, y�) − f (x�, y) ,

where (x∗, y∗) is a solution of problem (1).

Next we restate the Theorem 1 under this Assumption 4 together with
restarts technique.

Theorem 2. Let f(x, y, ξ) satisfy Assumption 1. Then the following holds for
εsad � f(x̂N , y�) − f(x�, ŷN ), where ẑN � (x̂N , ŷN ) is the output of Algorithm1
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1. under Assumption 2 and learning rate γk =
√

E[Vz1 (z�)]

Mcase1

√
2
N with

M2
case1 � O (

da2
qM

2
2 + d2a2

qΔ
2τ−2

)

E [εsad] ≤
√

2
N

Mcase1

√
E[Vz1(z�)] + ΔD

√
dτ−1 + 2τM2. (24)

2. under Assumption 3 and learning rate γk =
√

E[Vz1 (z�)]

Mcase2

√
2
N with

M2
case2 � O

(
da2

q

(
M2

2 + M2
2,δ

))

E [εsad] ≤
√

2
N

Mcase2

√
E[Vz1(z�)] + M2,δD

√
d + 2τM2, (25)

where
√
Ee

[‖e‖4q
] ≤ a2

q.
Moreover, let τ be chosen as τ = O (ε/M2) in randomized smoothing (4), where
ε is the desired accuracy to solve problem (1). If the Assumption 4 and one of
the two following statement are satisfied

1. Assumption 2 holds and Δ = O
(

ε2

DM2
√

d

)

2. Assumption 3 holds and M2,δ = O
(

ε
D√

d

)

then for the output ẑN � (x̂N , ŷN ) of Algorithm1, we can apply the restart
technique to achieve E[εsad] ≤ ε in Nacc iterations, where Nacc is given by

Nacc = Õ
(

a2
qM

2
2 d

μ
2/r
r ε2(r−1)/r

)

. (26)

Proof of Theorem 2. We repeat the proof of Theorem1, except that now z1 can
be chosen in a stochastic way. Moreover, now we use a rougher inequality instead
of (15)

Eek

[∣
∣〈ek, zk − u〉∣∣] ≤ D/

√
d. (27)

Step 1 (under Assumption 2)
Taking the expectation in (19), choosing (x, y) = (x�, y�), and learning rate

γk =
√

E[Vz1 (z�)]

Mcase1

√
2
N with M2

case1 � cda2
qM

2
2 + d2a2

qΔ
2τ−2 we get

E
[
f

(
x̂N , y�

) − f
(
x�, ŷN

)] ≤
√

2
N

Mcase1

√
E[Vz1(z�)] +

√
dΔD
τ

+ 2τM2. (28)

Step 2 (under Assumption 3)
Taking the expectation in (22), choosing (x, y) = (x�, y�), and learning rate

γk =
√

E[Vz1 (z�)]

Mcase2

√
2
N with M2

case2 � cda2
q(M

2
2 + M2

2,δ) we obtain

E
[
f

(
x̂N , y�

) − f
(
x�, ŷN

)] ≤
√

2
N

Mcase2

√
E[Vz1(z�)] + M2,δ

√
dD + 2τM2.

(29)
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Step 3 (Restarts)
Now let τ be chosen as τ = O (ε/M2), where ε is the desired accuracy to solve
problem (1). If one of the two following statement holds

1. Assumption 2 holds and Δ = O
(

ε2

DM2
√

d

)

2. Assumption 3 holds and M2,δ = O
(

ε
D√

d

)

then using (28) we obtain the convergence rate of the following form

E
[
f

(
x̂N1 , y�

) − f
(
x�, ŷN1

)]
= Õ

(
aqM2

√
d√

N1

√
E[Vz1(z�)]

)

. (30)

In this step we will employ the restart technique that is a generalization of the
technique proposed in [16].

For the l.h.s. of Eq. (30) we use the Assumption 4. For the r.h.s. of Eq. (30)
we use Vz1(z�) = Õ(‖z1 − z�‖2p) from [13, Remark 3]

μr

2
E

[‖zN1 − z�‖r
p

] ≤ E
[
f

(
x̂N1 , y�

) − f
(
x�, ŷN1

)]

= Õ
(

aqM2

√
d√

N1

√
E

[‖z1 − z�‖2p
]
)

. (31)

Then the l.h.s of Eq. (31) we use the Jensen inequality and get the following
μr

2
(
E

[‖zN1 − z�‖2p
])r/2 ≤ μr

2
E

[‖zN1 − z�‖r
p

] ≤ E
[
f

(
x̂N1 , y�

) − f
(
x�, ŷN1

)]

= Õ
(

aqM2

√
d√

N1

√
E

[‖z1 − z�‖2p
]
)

. (32)

Finally, let us introduce Rk �
√
E

[‖zNk − z�‖2p
]

and R0 �
√
E

[‖z1 − z�‖2p
]
.

Then we take N1 so as to halve the distance to the solution and get

N1 = Õ
(

a2
qM

2
2 d

μ2
rR

2(r−1)
1

)

.

Next, after N1 iterations, we restart the original method and set z1 = zN1 . We
determine N2 similarly: we halve the distance R1 to the solution, and so on.
Thus, after k restarts, the total number of iterations will be

Nacc = N1 + · · · + Nk = Õ
(

22(r−1)a2
qM

2
2 d

μ2
rR

2(r−1)
0

(
1 + 22(r−1) + · · · + 22(k−1)(r−1)

)
)

.

(33)

Now we need to determine the number of restarts. To do this, we fix the desired
accuracy and using the inequality (31) we obtain

E[εsad] = Õ
(

μrR
r
k

2

)

= Õ
(

aqM2

√
d√

Nk

Rk−1

)

= Õ
(

μrR
r
0

2kr

)

≤ ε. (34)
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Then to fulfill this condition, one can choose k = log2(Õ (μrR
r
0/ε))/r and using

Eq. (33) we get the total number of iterations

Nacc = Õ
(

22k(r−1)a2
qM

2
2 d

μ2
rR

2(r−1)
0

)

= Õ
(

a2
qM

2
2 d

μ
2/r
r ε2(r−1)/r

)

.

��
Remark 1. If in Theorem 2, we use a tighter inequality (15) instead of (27) (as in
Theorem 1), then the estimations on the Δ and M2,δ can be improved. Choosing
u = (x∗, y∗) we can provide exponentially decreasing sequence of Dk = E‖zk −
u‖2 in Eq. (30) and get

1. under Assumption 2 Δ � μ1/r
r ε2−1/r

M2
√

d

2. under Assumption 3 M2,δ � μ1/r
r ε1−1/r

√
d

.

5 Infinite Noise Variance

When the second moment of the stochastic gradient ∇f(z, ξ) is unbounded the
rate of convergence may changes dramatically, see the next section. For such
a case, we consider a more general inequality for Assumptions 1. We suppose
that there exists a positive constant M̃2 such that for M2(ξ) Assumptions 1 the
following holds

E
[
M2(ξ)1+κ

] ≤ M̃1+κ
2 ,

where κ ∈ (0, 1]. From [24, Lemmas 9–11] the following can be obtained

1. under Assumption 2:

E
[‖g(z, ξ,e)‖1+κ

q

] ≤ c̃a2
qd

(1+κ)/2M̃1+κ
2 + 21+κd1+κa2

qΔ
2τ−2 = M̃1+κ

case1,

2. under Assumption 3:

E
[‖g(z, ξ,e)‖1+κ

q

] ≤ c̃a2
qd

(1+κ)/2(M̃1+κ
2 + M1+κ

2,δ ) = M̃1+κ
case2,

where c̃ is some numerical constant and
√
Ee

[‖e‖2+2κ
q

] ≤ ã2
q. As a particular

case: ã2
2 = 1, ã2

∞ = O
(

log(1+κ)/2 d
d(1+κ)/2

)
.

Let us assume that q ∈ [1 + κ,∞), 1/p + 1/q = 1 and is prox-function
determined by

ω(x) = K1/κ
q

κ

1 + κ
‖x‖

1+κ
κ

p with Kq = 10max
{

1, (q − 1)(1+κ)/2
}

.

Based on [28] one can prove the first part of Theorem2 with M2 replaced by
M̃2, and the following stepsize

γk =
((1 + κ)Vz1(z�)/κ)

1
1+κ

M̃case

N− 1
1+κ .
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The first terms in the r.h.s. of (24), (25) will be determined as follows

M̃case

(
1 + κ

κ
Vz1(z�)

) κ
1+κ

N− κ
1+κ .

These results can be further generalized to the r−growth condition (r ≥ 2) for
duality gap.

6 Conclusion

In this paper, we demonstrate how to solve non-smooth stochastic convex-
concave saddle point problems with two-point gradient-free oracle. In the
Euclidean proximal setup, we obtain oracle complexity bound proportional to
d/ε2 that is optimal. We also generalize this result for an arbitrary proximal
setup and obtain a tight upper bound on maximal level of additive adversary
noise in oracle calls proportional to ε2/

√
d. We generalize this result for the class

of saddle point problems satisfying the r-growth condition for duality gap and
get a bound which is proportional to d/ε2(r−1)/r for the oracle complexity in the
Euclidean proximal setup with ∼ ε2/

√
d maximal level of additive adversarial

noise in oracle calls. For more details, see the arXiv version https://arxiv.org/
pdf/2202.06114.pdf with complete proofs of all statements. The obtained results
can be probably generalized to infinite noise variance [28]. We plan to develop
this idea in a separate paper.

A Auxiliary Results

This appendix presents auxiliary results to prove Theorem1 from Sect. 3.

Lemma 1. Let vector e be a random unit vector from the Euclidean unit sphere
{e : ‖e‖2 = 1}. Then it holds for all r ∈ R

d

Ee [|〈e, r〉|] ≤ ‖r‖2/
√

d.

Lemma 2. Let f(z) be M2-Lipschitz continuous. Then for fτ (z) from (4), it
holds

sup
z∈Z

|fτ (z) − f(z)| ≤ τM2.

Lemma 3. Function fτ (z) is differentiable with the following gradient

∇fτ (z) = Ee

[
d

τ
f(z + τe)e

]

.

Lemma 4. For g(z, ξ,e) from (3) and fτ (z) from (4), the following holds

1. under Assumption 2

Eξ,e [〈g(z, ξ,e), r〉] ≥ 〈∇fτ (z), r〉 − dΔτ−1
Ee [|〈e, r〉|] ,

https://arxiv.org/pdf/2202.06114.pdf
https://arxiv.org/pdf/2202.06114.pdf
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2. under Assumption 3

Eξ,e [〈g(z, ξ,e), r〉] ≥ 〈∇fτ (z), r〉 − dM2,δEe [|〈e, r〉|] ,

Lemma 5 [24, Lemma 9]. For any function f(e) which is M -Lipschitz w.r.t.
the �2-norm, it holds that if e is uniformly distributed on the Euclidean unit
sphere, then √

E [(f(e) − Ef(e))4] ≤ cM2
2 /d

for some numerical constant c.

Lemma 6. For g(z, ξ,e) from (3), the following holds under Assumption 1

1. and Assumption 2

Eξ,e

[‖g(z, ξ,e)‖2q
] ≤ ca2

qdM2
2 + d2a2

qΔ
2/τ2,

2. and Assumption 3

Eξ,e

[‖g(z, ξ,e)‖2q
] ≤ ca2

qd(M2
2 + M2

2,δ),

where c is some numerical constant and
√
E

[‖e‖4q
] ≤ a2

q.
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Abstract. The paper considers a classical problem of calculus of vari-
ations with a nonsmooth integrand of the minimized functional. The
integrand is assumed to be only subdifferentiable. Under some natural
conditions the subdifferentiability of the functional considered is proved.
The steepest (subdifferential) descent is found. Then the subdifferential
descent method is applied to solve the initial problem. Some numerical
examples demonstrate the algorithm implementation.
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1 Introduction

Despite the fact that there are many deep theoretical results regarding nons-
mooth problems of calculus of variations (see, e.g., [1–4]), the practical side of
solving nondifferentiable variational problems remains rather underdeveloped.
There are some numerical methods constructed for such problems (see, e.g.,
[5,6]), but they usually consider only some particular cases of the problem or
use some kind of smoothing technique (and the disadvantages of smoothing non-
differentiable functions are known).

This paper aims at solving the classical variational problem with a non-
differentiable (but only subdifferentiable) integrand. The method is based on
reduction the initial problem to minimization of a functional of a special form.
This work developed the apparatus of V. F. Demyanov scientific school (see, e.g.,
[7–12]).

2 Statement of the Problem

Let us give some notations of the paper. Cn[0, T ] is a space of n-dimensional
continuous on [0, T ] vector-functions, which are supposed to be piecewise con-
tinuously differentiable with bounded on its domain derivative; Pn[0, T ] denotes
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a space of piecewise continuous and bounded on [0, T ] n-dimensional vector-
functions. Denote Ln

p (M), 1 ≤ p < ∞, the space of measurable on M n-
dimensional vector-functions which are p-summable and Ln

∞(M)—the space
of measurable on M and almost everywhere bounded n-dimensional vector-
functions, where M is a measurable subset of the interval [0, T ]. Use coP to
denote the convex hull of the set P . Let Br(c) (Dr(c)) denote a closed (open)
ball in corresponding space with the radius r and the center c; for some set C
in this space Br(C) (Dr(C)) denotes the union of all closed (open) balls with
the radius r and the centers from the set C. Denote 〈a, b〉 the scalar product of
the vectors a, b ∈ Rd. Let X be some normed space, then || · ||X denotes norm
of the introduced space and X∗—the space conjugate to the space X. For some
positive number α ∈ R let o(α) denote such a value that we have o(α)/α → 0 if
α → 0.

Consider a classical variational problem: one has to minimize the following
functional

J(x) =
∫ T

0

f(x(t), ẋ(t), t)dt (1)

with the boundary constraints

x(0) = x0, x(T ) = xT . (2)

In expression (1) f(x, ẋ, t), t ∈ [0, T ], is a known function, T ∈ R is a positive
known moment of time, x(t) is an n-dimensional continuous vector-function,
which is supposed to be continuously differentiable at each t ∈ [0, T ] with the
exception of only the finite number of points, and we assume that its derivative
is bounded on its domain. The function f(x, ẋ, t) is continuous in (x, ẋ, t) and
locally Lipschitz continuous in (x, ẋ) at each fixed time moment t ∈ [0, T ]. In
formula (2) x0, xT ∈ Rn are known vectors.

In the paper we use definitions of both subdifferentials of functions in a finite-
dimensional space and subdifferentials of functionals in a functional space. For
convenience of presentation we separately introduce these definitions below.

Consider the space Rn × Rn with its standard norm. Let g = [g1, g2] be
an arbitrary vector from the space Rn × Rn. Assume that at each moment
t ∈ [0, T ] of time at the point (x, ẋ) ∈ Rn × Rn there exists such a convex
compact ∂f(x, ẋ, t) ⊂ Rn × Rn that

∂f(x, ẋ, t)
∂g

= lim
α↓0

1
α

(
f(x + αg1, ẋ + αg2, t) − f(x, ẋ, t)

)
= max

v∈∂f(x,ẋ,t)
〈v, g〉. (3)

In this case the function f(x, ẋ, t) is called subdifferentiable at the point
(x, ẋ) and the set ∂f(x, ẋ, t) is called the subdifferential of the function f(x, ẋ, t)
at the point (x, ẋ).

From expression (3) it is easy to see that at each t ∈ [0, T ] we have the
formula

f(x + αg1, ẋ + αg2, t) = f(x, ẋ, t) + α
∂f(x, ẋ, t)

∂g
+ o(α, x, ẋ, g, t), (4)
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o(α, x, ẋ, g, t)
α

→ 0, α ↓ 0.

Let for each positive number ε there exist such positive numbers δ and α0

that at g ∈ Bδ(g) and α ∈ (0, α0) we have |o(α, x, ẋ, g, t)| < αε, then the function
f(x, ẋ, t) is called uniformly subdifferentiable at the point (x, ẋ). Recall [13] that
if at each t ∈ [0, T ] the function f(x, ẋ, t) is subdifferentiable at the point (x, ẋ)
and locally Lipschitz continuous in some vicinity of the point (x, ẋ), then it
will be uniformly subdifferentiable at the point (x, ẋ). Let for the uniformly

subdifferentiable function f(x, ẋ, t) in formula (4) one has
o(α, x, ẋ, g, t)

α
→ 0,

α ↓ 0, uniformly in t ∈ [0, T ], then such a function is called absolutely uniformly
subdifferentiable.

Consider the space Cn[0, T ]×Pn[0, T ] with the norm Ln
2 [0, T ]×Ln

2 [0, T ]. Let
g = [g1, g2] be an arbitrary vector-function from the space Cn[0, T ] × Pn[0, T ].
Assume that at the point (x, z) ∈ Cn[0, T ] × Pn[0, T ] there exists such a
convex weakly* compact set ∂I(x, z) from the space

(
Cn[0, T ] × Pn[0, T ], || ·

||Ln
2 [0,T ]×Ln

2 [0,T ]

)∗ that

∂I(x, z)
∂g

= lim
α↓0

1
α

(
I(x + αg1, z + αg2) − I(x, z)

)
= max

v∈∂I(x,z)
v(g). (5)

Then the functional I(x, z) is called subdifferentiable at the point (x, z), and
the set ∂I(x, z) is called the subdifferential of the functional I(x, z) at this point
(x, z).

From formula (5) it is easy to check that we have the following expression

I(x + αg1, z + αg2) = I(x, z) + α
∂I(x, z)

∂g
+ o(α, x, z, g), (6)

o(α, x, z, g)
α

→ 0, α ↓ 0.

Thus, one has to obtain such a vector-function x∗ ∈ Cn[0, T ], which minimizes
functional (1) and fullfills boundary restrictions (2). Suppose that there exists
a required solution. Note that in classical problems of variational calculus the
integrand is smooth and in the problem under consideration it is supposed to be
only subdifferentiable.

3 Reduction to an Unconstrained Minimization Problem

Consider the following functional which takes into account all the restrictions
in the formulation of the original problem. Let z(t) = ẋ(t) (as we have noted,
z ∈ Pn[0, T ]), then by the first equality in formula (2) we obtain

x(t) = x0 +
∫ t

0

z(τ)dτ . (7)
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The idea of this paper is to “forcibly” consider the points z and x as the
“independent” variables. Of course, in fact, there is obvious relationship (7)
between these variables, so let us take this into account by using the last in the
following functional (on the space Cn[0, T ] × Pn[0, T ])

I(x, z) = J(x, z) + λψ(z) + λϕ(x, z) (8)

=
∫ T

0

f(x(t), z(t), t)dt

+λ
1
2

(
x0 +

∫ T

0

z(t)dt − xT

)2

+ λ
1
2

∫ T

0

(
x(t) − x0 −

∫ t

0

z(τ)dτ
)2

dt.

We see that the dimension of this functional arguments is n more the dimen-
sion of the initial problem, but the structure of its subdifferential (in the space
Cn[0, T ]×Pn[0, T ] as a normed space with the norm Ln

2 [0, T ]×Ln
2 [0, T ]), as will

be seen below, is rather simple. This fact will allow us to develop a numerical
method for solving the original problem (and there will be effective well-known
methods for solving the arising subproblems).

As is well-known [14], if the value λ is sufficiently large, then the solution of
problem (1), (2) is arbitrarily close (with regard to the used metric Ln

2 [0, T ]) to
the trajectory x(t) where (x, z) is a point of the global minimum of functional (8)
with some fixed value λ. So, we have reduced the original problem to minimizing
functional (8) on the space Cn[0, T ] × Pn[0, T ]. In practice, first, one has to
solve this problem for some fixed number λ. If the solution obtained (at λ = λ)
satisfies the restrictions in the form of differential relation (7) and right endpoint
constraint from (2) with the required accuracy (i.e. the value of the functional
ψ + ϕ on the solution obtained is rather small), then we finish the process;
otherwise, one should increase the value λ and restart the process with this new
number.

So, now our aim is to solve the unconditional minimization problem for the
functional I(x, z) (for some rather large value λ) on the space

X =
(
Cn[0, T ] × Pn[0, T ], || · ||Ln

2 [0,T ]×Ln
2 [0,T ]

)
. (9)

Remark 1. Recall that the space
(
Cn[0, T ], || · ||Ln

2 [0,T ]

)
is everywhere dense in

the space Ln
2 [0, T ] and also the space

(
Pn[0, T ], || · ||Ln

2 [0,T ]

)
is everywhere dense

in the space Ln
2 [0, T ], so as is known [15] the space X∗ conjugate to the space

X (see (9)) is isometrically isomorphic to the space Ln
2 [0, T ] × Ln

2 [0, T ]; hence,
below in the paper these spaces (X∗ and Ln

2 [0, T ] × Ln
2 [0, T ]) are identified.

4 Minimum Conditions for the Functional I(x, z)

In order to obtain the minimum condition, useful for constructing numerical
methods for the original, at first, let us investigate the differential properties of
the functional I(x, z).
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With the help of classical variation one can easily check Gateaux differentia-
bility of the functional ψ(z):

∇ψ(z) = x0 +
∫ T

0

z(t)dt − xT .

With the help of classical variation and integration by parts one can also
easily check Gateaux differentiability of the functional ϕ(x, z):

∇ϕ(x, z, t) =

⎛
⎜⎜⎝

x(t) − x0 −
∫ t

0

z(τ)dτ

−
∫ T

t

(
x(τ) − x0 −

∫ τ

0

z(s)ds
)
dτ

⎞
⎟⎟⎠ .

Turn to the differential properties of the functional
∫ T

0

f(x(t), z(t), t)dt.

Recall that the variables x and z are considered in this functional as independent
ones, so put ξ(t) = (x(t), z(t)) for brevity and prove the following theorem (we
retain the previous notation for the functional J(x, z) for convenience).

Theorem 2. There is a functional

J(ξ) =
∫ T

0

f(ξ(t), t)dt,

where ξ ∈ Cn[0, T ] × Pn[0, T ], the function f(ξ, t) is continuous in (ξ, t) and is
absolutely uniformly subdifferentiable and its subdifferential is ∂f(ξ, t). Assume
also the mapping t → ∂f(ξ(t), t) to be upper semicontinuous.

Then the functional J(ξ) is subdifferentiable, i.e.

∂J(ξ)
∂g

= lim
α↓0

1
α

(
J(ξ + αg) − J(ξ)

)
= max

v∈∂J(ξ)

∫ T

0

〈v(t), g(t)〉dt, (10)

where g ∈ Cn[0, T ] × Pn[0, T ] and the set ∂J(ξ) is defined as follows:

∂J(ξ) =
{

v(t) ∈ L2n
∞ [0, T ]

∣∣ v(t) ∈ ∂f(ξ(t), t) ∀t ∈ [0, T ]
}

. (11)

Proof. Let us give just the scheme of proof for brevity:

1) With the use of the expansion (6), the absolutely uniformly quasidifferentia-
bility definition and Filippov lemma we first show that the direction derivative
of the functional J(ξ) is of form (10).

2) Now our aim is to show that the set ∂J(ξ) in formula (11) is convex and
weakly* compact in the space X∗:
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a) this set is convex due to the convexity of the function f(ξ, t) quasidifferential;
b) we show that the set ∂J(ξ) is bounded in L2n

2 [0, T ]-norm via quasidiffer-
entiability of the function f(ξ, t) and upper-semicontinuity of the mapping
t → ∂f(ξ(t), t);

c) recall the following known fact from functional analysis: if vn is the sequence
of functions from the set ∂J(ξ) converging to the function v∗ in the strong
topology of the space L2n

2 [0, T ], then this sequence has the subsequence vnk

converging pointwise to v∗ almost everywhere on [0, T ]; using this fact and
the function f(ξ, t) quasidifferential definition we show that the set ∂J(ξ) is
weakly closed in the space L2n

2 [0, T ];
d) finally, we use Remark 1, the fact that weak compactness is equivalent to

weak* compactness in the space L2n
2 [0, T ] and the fact that weak compact-

ness is equivalent to boundedness in norm and weak closedness in the space
L2n
2 [0, T ] in order to finish the proof.

As is seen from Theorem 2, the subdifferential of the functional J(ξ) is defined
by the subdifferential of its integrand (at each time moment t ∈ [0, T ]). Hence, in
order to obtain the subdifferential of the functional J(x, z), one has to calculate
the set ∂f(x, ẋ, t) for each time moment t ∈ [0, T ] with the use of subdifferential
calculus [13]. In book [13] one can find the required rules for calculating the
subdifferential for a wide range of functions.

Using formula (11) and the noted subdifferential calculus rules, we finally
obtain the expression for calculating the functional I(x, z) subdifferential (at
the point (x, z))

∂I(x, z) =
3∑

k=1

∂Ik(x, z), (12)

(we have formally put I1(x, z) = J(x, z), I2(x, z) = λψ(z), I3(x, z) = λϕ(x, z)).
Recall the well-known necessary minimum condition of the subdifferentiable

functional I(x, z) at the point (x, z) [4]

02n ∈ ∂I(x, z),

where 02n is a zero element of the space L2n
2 [0, T ]. Finally we obtain the theorem.

Theorem 3. For the point (x, z) to minimize functional (8), it is necessary for
the inclusion

02n ∈ ∂I(x(t), z(t)) (13)

to be satisfied for almost every t ∈ [0, T ], where 02n is a zero element of the
space R2n, and the subdifferential ∂I(x, z) is calculated by formula (12).

Remark 2. Inclusion (13) is a minimum condition in constructive form, since it
is possible to develop a numerical method on its basis (the simple version of pos-
sible numerical methods is described in the next section). The idea of this paper
is to apply the well-known algorithm to the specially constructed functional
I(x, z) in formula (8) (recall that its variables are considered as “independent”
ones). As it will be seen in the next section, in this case it is possible to solve
the arising subproblems of the method via known effective algorithms.
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5 The Subdifferential Descent Method

Recall the known subdifferential descent algorithm for minimization the func-
tional I(x, z).

Fix some arbitrary initial point (x(1), z(1)) ∈ Cn[0, T ] × Pn[0, T ]. Let the
point (x(k), z(k)) ∈ Cn[0, T ] × Pn[0, T ] be already constructed. If minimum con-
dition (13) is satisfied (in practice with some fixed accuracy ε), then the point
(x(k), z(k)) is a stationary point of the functional I(x, z) and the process ends.
Otherwise, put

(x(k+1), z(k+1)) = (x(k), z(k)) + γ(k)G
(
x(k), z(k)

)
,

where the vector-function G
(
x(k), z(k)

)
is the steepest (subdifferential) descent

direction of the functional I(x, z) at the point (x(k), z(k)), and the value γ(k) is
a solution of the following one-dimensional minimization problem

min
γ≥0

I
(
(x(k), z(k)) + γG

(
x(k), z(k)

))
= I

(
(x(k), z(k)) + γ(k)G

(
x(k), z(k)

))
. (14)

Then, as one can easily check, we obtain

I
(
x(k+1), z(k+1)

)
< I

(
x(k), z(k)

)

(and the vector-function G
(
x(k), z(k)

)
is indeed the steepest descent direction).

As is seen from the algorithm description, one has to solve three subproblems
on each iteration. The first one is obtaining the subdifferential of the functional
I(x, z) at the point (x(k), z(k)). The solution of this problem is given by formula
(12). The second problem is finding the steepest descent direction G

(
x(k), z(k)

)
;

two next paragraphs are devoted to solving this subproblem. The third problem
is one-dimensional minimization (14); and there exist many known methods [14]
which solve this problem effectively.

In order to find the vector-function G
(
x(k), z(k)

)
, consider the problem

min
v∈∂I(x(k),z(k))

||v||2Ln
2 [0,T ]×Ln

2 [0,T ] = min
v∈∂I(x(k),z(k))

∫ T

0

v2(t)dt. (15)

Denote v(k) its solution. The vector-function v(k)(t) depends on the point
(x(k), z(k)), but we omit this dependence in the paper for convenience. The
vector-function

G
(
x(k)(t), z(k)(t), t

)
= −v(k)

(
x(k)(t), z(k)(t), t

)
is called a subdifferential descent direction of the functional I(x, z) at the point
(x(k), z(k)).

One can easily check that the solution of this problem is such selector of the
multivalued mapping t → ∂I

(
x(k)(t), z(k)(t), t

)
that minimizes the distance from

zero point to the set ∂I
(
x(k)(t), z(k)(t), t) at each time moment t ∈ [0, T ]. So, in

order to solve problem (15) one has to solve the following problem

min
v(t)∈∂I(x(k)(t),z(k)(t),t)

v2(t) (16)
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for each t ∈ [0, T ]. Actually, for every t ∈ [0, T ] we have the obvious inequality

min
v∈∂I(x(k)(t),z(k)(t),t)

v2(t) ≤ v2(t),

where v(t) is a measurable selector of the mapping t → ∂I
(
x(k)(t), z(k)(t), t

)
(by virtue of the noted in the Theorem2 proof scheme property of the set
∂I

(
x(k)(t), z(k)(t), t

)
boundedness uniformly in t ∈ [0, T ] we have v ∈ L2n

∞ [0, T ]),
then we obtain the inequality

∫ T

0

min
v∈∂I(x(k)(t),z(k)(t),t)

v2(t)dt ≤ min
v∈∂I(x(k),z(k))

∫ T

0

v2(t)dt.

Insofar as for every t ∈ [0, T ] we have

min
v∈∂I(x(k)(t),z(k)(t),t)

v2(t) ∈
{

v2(t)
∣∣ v(t) ∈ ∂I(x(k)(t), z(k)(t), t)

}

and the set ∂I
(
x(k)(t), z(k)(t), t

)
is closed and bounded at every fixed t by defi-

nition of the subdifferential and the mapping t → ∂I
(
x(k)(t), z(k)(t), t

)
is upper

semicontinuous by assumption and besides, the norm is continuous in its argu-
ment, then due to Filippov lemma [16] there exists such a measurable selector
vk(t) of the mapping t → ∂I

(
x(k)(t), z(k)(t), t

)
that for every t ∈ [0, T ] one

obtains
min

v∈∂I(x(k)(t),z(k)(t),t)
v2(t) = v2k(t),

so we have found the element vk of the set ∂I
(
x(k), z(k)

)
which brings the equality

to the previous inequality. Hence, finally we obtain

∫ T

0

min
v∈∂I(x(k)(t),z(k)(t),t)

v2(t)dt = min
v∈∂I(x(k),z(k))

∫ T

0

v2(t)dt.

Problem (16) at each fixed time moment t ∈ [0, T ] is the finite-dimensional
problem of finding the distance from zero point to a convex compact (the subd-
ifferential) ∂I(x(t), z(t)). In order to solve this problem in practice one makes a
(uniform) partition of the interval [0, T ], and solves this problem for every point
of the partition, i.e. one has to calculate G

(
x(k)(ti), z(k)(ti), ti

)
where ti ∈ [0, T ],

i = 1, N , are the points of discretization (see notation in Lemma 1 below).
Under some natural assumption this lemma guarantees that the vector-function
obtained with the help of piecewise linear interpolation of the subdifferential
descent directions evaluated at every point of such partition of the interval
[0, T ], converges to the sought vector-function G

(
x(k)(t), z(k)(t), t

)
in the space

L2n
2 [0, T ] when the discretization rank tends to infinity. Note that in most prac-

tical cases the subdifferential ∂I(x(t), z(t)) at each moment of time t ∈ [0, T ]
has a rather simple structure [13]. If, for example, the integrand is a maximum
of the finite number of continuously differentiable functions (as in Example 1 of
the next section), then the subdifferential ∂I(x(t), z(t)) is a convex polyhedron
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at each t ∈ [0, T ]. This problem of finding the Euclidean distance from a point
to a convex polyhedron can be effectively solved by various methods (see, e.g.,
[17,18]). In a more general case the subdifferential at each moment t ∈ [0, T ] of
time may be a convex compact set (for example, if the integrand depends on the
norm of some coordinates of the vector-functions x(t), z(t) (as in Example 2 of
the next section), then the subdifferential at some points t ∈ [0, T ] may be an
ellipsoid (with its interior points), lying in some subspace of the space R2n). In
this case it is required to solve the problem of finding the Euclidean distance from
a point to a convex compact set, and if (for example) ellipsoids are considered,
then some methods for solving this problem can be found in [19].

Prove the following lemma with a simple natural condition which holds
true for applications and at the same time guarantees that the function L(t)
obtained with the help of piecewise linear interpolation of the sought function
p ∈ L1

∞[0, T ], converges to this function in the space L1
2[0, T ] while the rank of

a (uniform) partition of the interval [0, T ] tends to infinity.

Lemma 1. Let the function p ∈ L1
∞[0, T ] satisfy the following condition: for

every δ > 0 the function p(t) is piecewise continuous on the set [0, T ] with
the exception of only the finite number of the intervals

(
t1(δ), t2(δ)

)
, . . . ,(

tr(δ), tr+1(δ)
)

whose union length does not exceed the number δ.

Choose the (uniform) finite splitting t1 = 0, t2, . . . , tN−1, tN = T of the interval
[0, T ] and calculate the values p(ti), i = 1, N , at these points. Let L(t) be the
function obtained with the help of piecewise linear interpolation with the nodes
(ti, p(ti)), i = 1, N . Then for every ε > 0 there exists such number N(ε) that for
every N > N(ε) one has ||L − p||2

L1
2[0,T ]

≤ ε.

Proof. Let us give just the scheme of proof for brevity:

1) We denote M(δ) :=
r⋃

k=1

(
tk(δ), tk+1(δ)

)
and divide the interval [0, T ] into two

parts: M(δ) and [0, T ] \ M(δ).
2) We use the property of the set M(δ) and boundedness of the functions p(t)

and L(t) for all (uniform) finite partitions of the interval [0, T ] in order to
show that the value ||L − p||2

L1
2

(
M(δ)

) can be made arbitrarily small.

3) We use the property of the set M(δ) and the fact that the piecewise continuous
function p(t) can be arbitrarily closely approximated by the function L(t) on
the set [0, T ]\M(δ) in order to show that the value ||L−p||2

L1
2

(
[0,T ]\M(δ)

) can

be made arbitrarily small.

6 Numerical Examples

Let us give some examples of the subdifferential descent method implementation.
The stopping criteria of the method is the inequality ||v(k)||2Ln

2 [0,T ]×Ln
2 [0,T ] ≤ ε

(see problem (15)). The value ε was taken equal to 5 × 10−2–9 × 10−2. Such a
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choice of accuracy is explained by the compromise between the permissible for
practical needs accuracy and a not very large number of iterations to realize. As
it will be seen, the error of the minimized functional and the restrictions on the
right endpoint in the examples of this section did not exceed the value 5× 10−3.

Example 1. Consider a minimization of the functional

J(x) =
∫ 1

0

|x(t) − max {t − 0.5, 0}| dt

=
∫ 1

0

max {x(t) − max {t − 0.5, 0} ,−x(t) + max {t − 0.5, 0}} dt,

x(0) = 0,

with the only obvious solution x∗(t) = max{t−0.5, 0} ∀t ∈ [0, 1] and J(x∗) = 0.
As the considered functional is independent of the derivative ẋ(t) and the right
endpoint is free, the functionals ψ(z) and ϕ(x, z) are absent in functional (8),
so we can put I(x) := I(x, z). (Note that the solution x∗(t) satisfies the initial
condition.) Take x(1) = 2t−1 as the initial approximation, then I(x(1)) = 0.375.
As the iteration number increased, the discretization rank also increased during
the solution of the subproblem of finding the direction of the steepest descent
described in the algorithm developed, and in the end the discretization step was
equal to 10−1. At the 28-th iteration the point

x(17) = 23.594853t6 − 70.788855t5 + 77.166539t4 − 36.346867t3

+7.447309t2 − 0.573011t + 0.009928

was obtained, herewith J(x(17)) = I(x(17)) ≈ 0.00448, so the error does not
exceed the value 5×10−3. For the convenience, the Lagrange interpolation poly-
nomial has been presented which sufficiently accurately approximates the result-
ing trajectory. This means that the interpolation error does not affect the value of
the functional given with a set accuracy but (insignificantly) affects the presented
value of the smallest in norm subgradient. Herewith, ||v(17)||L1

2
[0, T ] ≈ 0.083.

Example 2. Consider the minimization problem of the functional

J(x) =
∫ 5

0

√
(ẋ1(t) − 1)2 + x2

2(t) + (x1(t) − x3(t) − sin(t))2dt,

x1(0) = 0, x2(0) = 0, x3(0) = 0,

with the only obvious solution x∗
1(t) = t, x∗

2(t) = 0, x∗
3(t) = t − sin(t), t ∈ [0, 5],

and J(x∗) = 0. As the endpoint is free here, the functional ψ(z) is absent. So, it
is required to minimize the functional

I(x, z) =
∫ 5

0

√
(ẋ1(t) − 1)2 + x2

2(t) + (x1(t) − x3(t) − sin(t))2dt
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+
∫ 5

0

(
x(t) −

∫ t

0

z(τ)dτ
)2

dt,

where the value λ = 2 is taken. It is obvious that z∗
1(t) = 1, z∗

2(t) = 0, z∗
3(t) =

1 − cos(t), t ∈ [0, 5], I(x∗, z∗) = 0.

Take (x(1), z(1)) = (0, 0, 0, 1, 0, 0)′ as the first approximation, then I(x(1), z(1)) =
44.30267. As the iteration number increased, the discretization rank also
increased during the solution of the subproblem of finding the direction of the
steepest descent described in the algorithm developed and in the end of the pro-
cess the discretization step was equal to 5 × 10−2. At the 121-st iteration the
point

x(121) = (−0.000709t5 + 0.005769t4 − 0.009043t3 − 0.015847t2 + 1.019026t,

0, 0.003552t5 − 0.067694t4 + 0.335731t3 − 0.214808t2 + 0.098457t)′,

z(121) = (−0.000028t4 + 0.000284t3 − 0.001009t2 + 0.001565t + 0.999079,

0, 0.017760t4 − 0.270776t3 + 1.007193t2 − 0.429616t + 0.098457)′

was constructed and the functional value obtained is I(x(121), z(121)) = 0.00353.
For the convenience, the Lagrange interpolation polynomial has been presented
which sufficiently accurately approximates the resulting trajectory. This means
that the interpolation error does not affect the value of the functional given with
a set accuracy but (insignificantly) affects the presented value of the smallest in
norm subgradient. Herewith, we have ||v(121)||L3

2[0,T ]×L3
2[0,T ] ≈ 0.0474.

Since in fact we know that z(t) = ẋ(t), t ∈ [0, 5], then one may put

x(121) = (−0.000006t5 + 0.000071t4 − 0.000336t3 + 0.000783t2 + 0.999079t,

0, 0.003552t5 − 0.067694t4 + 0.335731t3 − 0.214808t2 + 0.098457t)′,

z(121) = (−0.000028t4 + 0.000284t3 − 0.001009t2 + 0.001565t + 0.999079,

0, 0.017760t4 − 0.270776t3 + 1.007193t2 − 0.429616t + 0.098457)′,

and then J(x(121)) = I(x(121), z(121)) ≈ 0.00553, i.e. the error of the functional
value does not exceed the value 6 × 10−3.

Remark 3. In practice rather large values of λ lead to additional computational
difficulties. So in the future research it is interesting to consider the functional

ϕ(x, z) =
∫ T

0

∣∣∣x(t) − x0 −
∫ t

0

z(τ)dτ
∣∣∣dt

instead of the functional ϕ(x, z) (see formula (8)). Unlike the functional ϕ(x, z)
the functional ϕ(x, z) is nonsmooth. However, with the use of Hölder’s inequal-
ity one can make sure that its structure allows us to improve the accuracy of
fulfillment of the corresponding constraint and significantly decrease the value λ.
So it makes sense to compare the use of these functionals in practice.
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Abstract. We propose a modified primal-dual method for general con-
vex optimization problems with changing constraints. We obtain prop-
erties of Lagrangian saddle points for these problems which enable us
to establish convergence of the proposed method. We describe special-
izations of the proposed approach to multi-agent optimization problems
under changing communication topology and to feasibility problems.

Keywords: Convex optimization · changing constraints · primal-dual
method · constrained multi-agent optimization · feasibility problem

1 Introduction

It is well known that the general optimization problem consists in finding the
minimal value of some goal function f̃ on a feasible set D̃. For brevity, we write
this problem as

min
v∈D̃

→ f̃(v).

In many cases, only some approximations are known instead of the exact values
of the goal function and the feasible set. This situation is caused by various
circumstances. On the one hand, this is due to inevitable calculation errors
of values of cost and constraint functions. On the other hand, this is due to
incompleteness of information about these functions since their parameters may
be specialized during the computational process. Such problems are called non
stationary; see e.g. [1] and [2, Chapter VI, §3]. Besides, some perturbations
can be inserted for attaining better properties in comparison with the initial
one as in various regularization methods; see e.g. [3]. In these problems, only
some sequences of approximations {D̃k} and {f̃k} are known, which however
must converge in some sense to the exact values of D̃ and f̃ . The case where
the convergence is not obligatory seems more difficult, but it also appears in
many applied problems. For instance, large-scale models may contain superfluous
constraints and variables together with the necessary ones, but only some of them
can be utilized at a given iterate. Various decentralized multi-agent optimization
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P. Pardalos et al. (Eds.): MOTOR 2022, LNCS 13367, pp. 46–61, 2022.
https://doi.org/10.1007/978-3-031-09607-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09607-5_4&domain=pdf
https://doi.org/10.1007/978-3-031-09607-5_4


Optimization Problems with Changing Constraints 47

problems can serve as examples of such systems; see e.g. [4–6] and the references
therein.

In this paper we investigate just general convex optimization problems with
changing constraints. This means that the set of constraints may vary from
iteration to iteration. First we obtain properties of Lagrangian saddle points for
these problems. They enable us to propose a modification of the primal-dual
method from [7] for finding their solutions. We establish different convergence
properties of the proposed method under rather weak assumptions. We describe
specializations of the proposed approach to multi-agent optimization problems
under changing communication topology and to feasibility problems.

2 The General Problem with Changing Constraints
and Its Properties

Let us consider first a general optimization problem of the form

min
x∈D

→ f(x) (1)

for some function f : E → R and set D ⊆ E in a finite-dimensional space E. The
set of its solutions is denoted by D∗, and the optimal function value by f∗, i.e.

f∗ = inf
x∈D

f(x).

It will be suitable for us to specialize this problem as follows. For each x ∈ E,
let x = (xi)i=1,...,m, i.e. x� = (x�

1 , . . . , x�
m), where xi = (xi1, . . . , xin)� for

i = 1, . . . , m, hence E = R
mn. This means that each vector x is divided into m

subvectors xi ∈ R
n. In case n = 1 we obtain the custom coordinates of x. Next,

we suppose that
D = {x ∈ X | Ax = b} , (2)

where X is a subset of R
mn, the matrix A has ln rows and mn columns, so that

b = (bi)i=1,...,l, bi ∈ R
n for i = 1, . . . , l, and b ∈ R

ln.
In what follows, we will use the following basic assumptions.

(A1) The set D∗ is nonempty, X is a convex and closed set in R
mn.

(A2) f : R
mn → R is a convex function.

For brevity, we set M = {1, . . . , m} and L = {1, . . . , l}. It is clear that the
matrix A is represented as follows:

A =

⎛
⎜⎜⎝

A1

A2

. . .
Al

⎞
⎟⎟⎠ ,

where Ai is the corresponding n × mn sub-matrix of A for i ∈ L. We will write
this briefly

A =
({A�

i }i∈L

)�
.
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Similarly, we can determine some other submatrices

AI =
({A�

i }i∈I

)�

for any I ⊆ L, hence A = AL. Setting

FI = {x ∈ R
mn | AIx = bI} and DI = {x ∈ X | AIx = bI} = X

⋂
FI , (3)

where bI = (bi)i∈I , we obtain a family of optimization problems

min
x∈DI

→ f(x). (4)

As above, we denote the solution set of problem (3)–(4) by D∗
I , and the optimal

function value by f∗
I , so that D∗

L = D∗ and f∗
L = f∗. Clearly, if I ⊂ J , then f∗

I ≤
f∗
J . We intend to establish some properties related to superfluous constraints.

We will denote by F ∗ the solution set of the optimization problem

min
x∈X

→ f(x),

and its optimal function value by f∗∗.

Lemma 1. Suppose the set F ∗⋂FI is nonempty for some I ⊆ L. Then f∗∗ =
f∗
I and F ∗⋂FI = D∗

I .

Proof. If x∗ ∈ F ∗⋂FI , then clearly x∗ ∈ D∗
I , hence f∗∗ = f∗

I . It follows that
F ∗⋂FI = D∗

I . ��
Definition 1. We say that I ⊆ J is a basic index set with respect to J if

AIx = bI =⇒ AJx = bJ .

We say that I ⊆ L is a basic index set if it is a basic index set with respect to L.

From the definitions we obtain immediately the simple but useful properties.

Lemma 2.

(i) If I ⊂ J is a basic index set with respect to J , then f∗
I = f∗

J , DI = DJ , and
D∗

I = D∗
J .

(ii) If I is a basic index set, then f∗
I = f∗, DI = D, and D∗

I = D∗.

For each problem (3)–(4) associated with an index set I ⊆ L we can define
its Lagrange function

LI(x, y) = f(x) + 〈yI , AIx − bI〉
and the corresponding saddle point problem. It appears more suitable to utilize
the general Lagrange function

L(x, y) = f(x) + 〈y,Ax − b〉,
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with the modified dual feasible set. Namely, we say that w∗ = (x∗, y∗) ∈ X × YI

is a saddle point for problem (3)–(4) if

∀y ∈ YI , L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗) ∀x ∈ X, (5)

where
YI =

{
y = (yi)i∈L ∈ R

ln | yi = 0 ∈ R
n for i /∈ I

}
.

We denote by W ∗
I = D∗

I × Y ∗
I the set of saddle points in (5) since D∗

I is pre-
cisely the solution set of problem (3)–(4), whereas Y ∗

I is the set of its Lagrange
multipliers. Since D∗

L = D∗, we also set Y ∗ = Y ∗
L , i.e. W ∗ = D∗ × Y ∗ is the

set of saddle points for the initial problem (1)–(2). Observe that (5) is rewritten
equivalently as follows:

AIx
∗ = bI , L(x∗, y∗) ≤ L(x, y∗) ∀x ∈ X. (6)

Besides, if we take I = ∅, then YI = {0}, hence we can write D∗
I = F ∗ and

Y ∗
I = {0}.

Proposition 1. Suppose that assumptions (A1)–(A2) are fulfilled. If I ⊂ J is
a basic index set with respect to J , then D∗

I = D∗
J and Y ∗

I ⊆ Y ∗
J .

Proof. The first equality follows from Lemma 2 (i). If (x∗, y∗) ∈ D∗
I × Y ∗

I , then
(6) holds, which now implies (6) with I = J . Hence y∗ ∈ Y ∗

J . ��
Corollary 1. Suppose that assumptions (A1)–(A2) are fulfilled. If I is a basic
index set, then D∗

I = D∗ and Y ∗
I ⊆ Y ∗.

We can establish similar relations for dual variables in case F ∗⋂FI = ∅.

Proposition 2. Suppose that assumptions (A1)–(A2) are fulfilled, the set
F ∗⋂FI is nonempty for some I ⊆ L. Then F ∗⋂FI = D∗

I and 0 ∈ Y ∗
I .

Proof. The first equality follows from Lemma 1. Take any x∗ ∈ F ∗⋂FI , then
x∗ ∈ D∗

I and (6) holds with y∗ = 0. Therefore, 0 ∈ Y ∗
I . ��

3 Primal-Dual Method for the Family of Saddle Point
Problems

We intend to find saddle points in (5) by a modification of the primal-dual
method that was proposed in [7]. First we note that the set of saddle points for
the initial problem (1)–(2) is nonempty under the assumptions in (A1)–(A2); see
e.g. [8, Corollary 28.2.2]. Therefore, this is the case for each saddle point problem
in (5) associated with a basic index set I. Denote by πU (u) the projection of u
onto U . Also, for simplicity we will write Y(k) = YIk , Y ∗

(k) = Y ∗
Ik

, etc. Then the
method is described as follows.

Method (PDM). Step 0: Choose an index set I0 ⊆ L, a point w0 = (x0, y0) ∈
X × Y(0). Set k = 1.
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Step 1: Choose an index set Ik ⊆ L and a number λk > 0.
Step 2: Take pk = πY(k) [y

k−1 + λk(Axk−1 − b)].
Step 3: Take xk = argmin{f(x)+ 〈pk, Ax− b〉+0.5λ−1

k ‖x−xk−1‖2 | x ∈ X}.
Step 4: Take yk = πY(k) [y

k−1 +λk(Axk − b)]. Set k = k +1 and go to Step 1.

First we observe that

pk = argmin{−L(xk−1, p) + 0.5λ−1
k ‖p − yk−1‖2 | p ∈ Y(k)}

and
yk = argmin{−L(xk, y) + 0.5λ−1

k ‖y − yk−1‖2 | y ∈ Y(k)}.

Therefore, each iteration of (PDM) involves two projection (proximal) steps in
the dual variable y and one proximal step in the primal variable x. The point
wk = (xk, yk) belongs to X × Y(k). The next two properties follow the usual
substantiation schemes for this method; see [7] and also [9].

Lemma 3. Suppose U is a closed convex set in a finite-dimensional space E,
ϕ : E → R is a convex function, u is a point in E. If

μ(z) = ϕ(z) + 0.5λ−1‖z − u‖2, λ > 0,

and
v = argmin{μ(z) | z ∈ U},

then
2λ{ϕ(v) − ϕ(z)} ≤ ‖z − u‖2 − ‖z − v‖2 − ‖v − u‖2 ∀z ∈ U. (7)

Proof. Since the function μ is strongly convex with constant λ−1, we have

μ(z) − μ(v) ≥ 0.5λ−1‖z − v‖2 ∀z ∈ U.

This inequality gives (7). ��
Proposition 3. Suppose that assumptions (A1)–(A2) are fulfilled. For any pair
w∗ = (x∗, y∗) ∈ D∗

(k) × Y ∗
(k) we have

‖wk − w∗‖2 ≤ ‖wk−1 − w∗‖2 − ‖pk − yk‖2 − ‖pk − yk−1‖2 − ‖xk − xk−1‖2
+2λk〈yk − pk, A(xk − xk−1)〉
= ‖wk−1 − w∗‖2 − ‖pk − yk‖2 − ‖pk − yk−1‖2 − ‖xk − xk−1‖2
+2λ2

k‖A(k)(xk − xk−1)‖2. (8)

Proof. Choose any w∗ = (x∗, y∗) ∈ D∗
(k) ×Y ∗

(k). Setting ϕ(z) = L(z, pk), λ = λk,
U = X, u = xk−1, v = xk, and z = x∗ in (7) gives

2λk{L(xk, pk) − L(x∗, pk)} ≤ ‖x∗ − xk−1‖2 − ‖x∗ − xk‖2 − ‖xk − xk−1‖2.
Also, using (5) with I = Ik, x = xk, and y = pk gives

2λk{L(x∗, pk) − L(xk, y∗)} ≤ 0.
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Adding these inequalities, we obtain

‖xk − x∗‖2 ≤ ‖xk−1 − x∗‖2 − ‖xk − xk−1‖2 + 2λk〈pk − y∗, Axk − b〉. (9)

On the other hand, setting ϕ(z) = −L(xk−1, z), λ = λk, U = Y(k), u = yk−1,
v = pk, and z = yk in (7) gives

2λk{L(xk−1, yk) − L(xk−1, pk)} ≤ ‖yk − yk−1‖2 − ‖pk − yk‖2 − ‖pk − yk−1‖2.

Next, setting ϕ(z) = −L(xk, z), λ = λk, U = Y(k), u = yk−1, v = yk, and z = y∗

in (7) gives

2λk{L(xk−1, y∗) − L(xk, yk)} ≤ ‖y∗ − yk−1‖2 − ‖y∗ − yk‖2 − ‖yk − yk−1‖2.

Adding these inequalities, we obtain

‖yk − y∗‖2 ≤ ‖yk−1 − y∗‖2 − ‖pk − yk‖2 − ‖pk − yk−1‖2
−2λk{〈y∗ − yk, Axk − b〉 + 〈yk − pk, Axk−1 − b〉}. (10)

Now adding (9) and (10) gives the first inequality in (8). Since

〈yk − pk, A(xk − xk−1)〉 = λk‖A(k)(xk − xk−1)‖2,

we conclude also that the second relation in (8) holds true. ��
Now we can indicate conditions that provide basic convergence properties.

Theorem 1. Suppose that assumptions (A1)–(A2) are fulfilled,

∞⋂
k=j

W ∗
(k) = ∅ for some j ≥ 1, (11)

the sequence {λk} satisfies the condition

λk ∈ [τ,
√

(1 − τ)/(
√

2‖A(k)‖)] (12)

for some τ ∈ (0, 1). Then:

(i) the sequence {wk} has limit points,
(ii) each of these limit points is a solution of problem (5) for some I ⊆ L,
(iii) for any limit point w̄ of {wk} such that

w̄ ∈
∞⋂
k=j

W ∗
(k) for some j ≥ 1,

it holds that
lim
k→∞

wk = w̄. (13)
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Proof. Take any point

w∗ ∈
∞⋂
k=j

W ∗
(k).

Then from (8) and (12) we have

‖wk −w∗‖2 ≤ ‖wk−1 −w∗‖2 −‖pk − yk‖2 −‖pk − yk−1‖2 − τ‖xk −xk−1‖2 (14)

for k = j, j + 1, . . . Hence, the sequence {wk} is bounded and has limit points,
i.e. part (i) is true. Besides, (14) gives

lim
k→∞

‖wk − w∗‖ = σ ≥ 0 (15)

and
lim
k→∞

‖pk − yk‖ = lim
k→∞

‖pk − yk−1‖ = lim
k→∞

‖xk − xk−1‖ = 0, (16)

hence
lim
k→∞

‖yk − yk−1‖ = 0. (17)

Let w̄ = (x̄, ȳ) be an arbitrary limit point of {wk}, i.e.

w̄ = lim
s→∞ wks .

Then there exists J ⊆ L such that J = Iks
for infinitely many times. Without

loss of generality we can suppose that J = Iks
for any s. Then wks = (xks , yks) ∈

X × YJ for any s, hence w̄ = (x̄, ȳ) ∈ X × YJ . Setting ϕ(z) = L(z, pk), λ = λk,
U = X, u = xk−1, v = xk, and z = x ∈ X in (7) gives

2λk{L(xk, pk) − L(x, pk)} ≤ ‖x − xk−1‖2 − ‖x − xk‖2 − ‖xk − xk−1‖2.
Taking the limit k = ks → ∞ due to (16)–(17) gives

L(x̄, ȳ) − L(x, ȳ) ≤ 0. (18)

Also, setting ϕ(z) = −L(xk, z), λ = λk, U = YJ , u = yk−1, v = yk, and
z = y ∈ YJ in (7) gives

2λk{L(xk, y) − L(xk, pk)} ≤ ‖yk−1 − y‖2 − ‖yk − y‖2 − ‖yk − yk−1‖2.
Taking the limit k = ks → ∞ due to (16)–(17) gives

L(x̄, y) − L(x̄, ȳ) ≤ 0. (19)

It follows from (18) and (19) that w̄ = (x̄, ȳ) ∈ W ∗
J = D∗

J × Y ∗
J . Hence, part (ii)

is also true.
Next, if

w̄ ∈
∞⋂
k=j

W ∗
(k) for some j ≥ 1,

we can set w∗ = w̄ in (15). However, now σ = 0, which gives (13) and part (iii)
is true. ��



Optimization Problems with Changing Constraints 53

These properties enable us to establish convergence to a solution under suit-
able conditions.

Definition 2. We say that I ⊆ L is a support index set with respect to the
sequence {wk} if I = Ik for infinitely many k. We say that I ⊆ L is a strongly
support index set with respect to the sequence {wk} if it is a support index set
and

inf
I=Il,k<l

sup
I=Ik

(l − k) ≤ d < ∞.

We denote by P (respectively, by P∗) the collection of all support (respec-
tively, strongly support) index sets with respect to the sequence {wk}. Also, we
set

Js =
⋂
I∈P

I and J∗ =
⋂

I∈P∗
I,

then clearly Js ⊆ J∗ if P∗ = ∅.

Theorem 2. Suppose that assumptions (A1)–(A2) are fulfilled, the sequence
{λk} satisfies condition (12) for some τ ∈ (0, 1).

(i) If Js is a basic index set, then the sequence {wk} has limit points and each
of these limit points belongs to W ∗.

(ii) If Js is a basic index set and Js ∈ P or Js = J∗, then

lim
k→∞

wk = w∗ ∈ W ∗. (20)

Proof. Let J = Js be a basic index set. By assumption, the sets W ∗
J and W ∗

are now nonempty. Due to Proposition 1, W ∗
J ⊆ W ∗

(k) for k large enough, hence
condition (11) holds. Then the sequence {wk} has limit points due to Theorem
1 (i). Also, there exists I ⊆ L such that J ⊆ I = Iks

for infinitely many times.
But now I is a nonempty basic index set, hence W ∗

I ⊆ W ∗. Following the lines
of part (ii) of Theorem 1, we obtain that any limit point of {wks} will belong to
W ∗

I ⊆ W ∗. Therefore, part (i) is true.
In case (ii) we first take the case where J ∈ P. It follows that J = Iks

for
infinitely many times. Then we have similarly that any limit point w∗ of {wks}
will belong to W ∗

J , but

w∗ ∈
∞⋂
k=j

W ∗
(k) for some j ≥ 1, (21)

and (20) follows from Theorem 1 (iii).
Now we take the case where J = Js = J∗. Let w∗ = (x∗, y∗) be a limit point

of {wk}, i.e.
w∗ = lim

s→∞ wks

and let I ∈ P∗. By definition, for each ks there exists a number ls such that
I = Ils and ks ≤ ls ≤ ks + d. Due to (16)–(17) we have

w∗ = lim
s→∞ wls ,
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but yls
i = 0 for any i /∈ I, hence y∗

i = 0 for any i /∈ I. It follows that w∗ =
(x∗, y∗) ∈ D∗

J × Y ∗
J and (21) holds. Then (20) also follows from Theorem 1 (iii).

��
Theorem 3. Suppose that assumptions (A1)–(A2) are fulfilled, the sequence
{λk} satisfies condition (12) for some τ ∈ (0, 1).

(i) If F ∗⋂FL = ∅, then the sequence {wk} has limit points.
(ii) If F ∗⋂FL = ∅ and each I ∈ P is a basic index set, then all the limit points

of {wk} belong to W ∗.
(iii) If F ∗⋂FL = ∅, Js is a basic index set and Js ∈ P or Js = J∗, then the

sequence {wk} converges to a point of W ∗.

Proof. Due to Proposition 2, we now have F ∗⋂FI = D∗
I , D∗

I = ∅, and 0 ∈ Y ∗
I

for any I ⊆ L. It follows that

{
F ∗⋂FL

}
× {0} ⊆

∞⋂
k=1

W ∗
(k).

Therefore, (11) holds and assertion (i) follows from Theorem 1 (i). Following
the lines of part (ii) of Theorem 1, we obtain that any limit point of {wks} will
belong to W ∗

I ⊆ W ∗ where I is a nonempty basic index set. Therefore, assertion
(ii) is also true. Assertion (iii) clearly follows from Theorem 2. ��

The conditions of part (ii) of Theorem 2 are satisfied if for instance we take
the rule Ik ⊆ Ik+1 or Ik+1 ⊆ Ik for index sets. These rules can be also applied
in part (iii) of Theorem 3.

4 Primal-Dual Method for Multi-agent Optimization
Problems

We now describe a specialization of the proposed approach to the multi-agent
optimization problem

min →
{

m∑
i=1

fi(v)

∣∣∣∣∣
m⋂
i=1

Xi

}
, (22)

where m is the number of agents (units) in the system. That is, the information
about the function fi and set Xi is known only to the i-th agent and may
be unknown even to its neighbours. Besides, it is usually supposed that the
agents are joined by some transmission links for information exchange so that
the system is usually a connected network, whose topology may vary from time
to time. This decentralized system has to find a concordant solution defined by
(22).

For this reason, we replace (22) with the family of optimization problems of
the form

min
x∈DI

→ f(x) =
m∑
i=1

fi(xi), (23)
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where x = (xi)i=1,...,m ∈ R
mn, i.e. x� = (x�

1 , . . . , x�
m), xi = (xi1, . . . , xin)� for

i = 1, . . . , m,

DI = X
⋂

FI , X = X1 × · · · × Xm =
m∏
i=1

Xi, Xi ⊆ R
n, i = 1, . . . , m; (24)

the set FI describes the information exchange scheme within the current topology
of the communication network, and I is the index set of arcs of the corresponding
oriented graph. More precisely, the maximal (full) communication network with
non-oriented edges denoted by F corresponds to the set

F̃ = {x ∈ R
mn | xs = xt, s, t = 1, . . . , m, s = t} ,

i.e. each edge is associated with two directions or equations (xs = xt and xt =
xs). However, this definition of topology is superfluous. It seems more suitable
to introduce some other graph topology for writing the multi-agent optimization
problem in addition to the graph F . For this reason, we associate each pair of
vertices (agents) (s, t) to one oriented arc i, so that L = {1, . . . , l} is the index
set of all these arcs, hence l = m(m − 1)/2. That is, each arc (s, t) is in fact
used in both the directions in the communication network F , but we fix only
one direction for definition of the multi-agent optimization problem and obtain
the graph G. Taking subsets I ⊆ L, we obtain various constraint sets

FI = {x ∈ R
mn | xs − xt = 0, i = (s, t) ∈ I} , (25)

corresponding to the oriented graphs GI in the multi-agent optimization problem
formulation. Replacing the arcs in GI with non-oriented edges, we obtain the
corresponding communication network FI of the system. It follows that F = FL,
G = GL, and F = FL. Next, for each arc i = (s, t) we can define the n × mn
sub-matrix

Ai = (Ai1 · · · Aim) ,

where

Aij =

⎧⎨
⎩

E, if j = s,
−E, if j = t,

Θ, otherwise,

E is the n × n unit matrix, Θ is the n × n zero matrix. Then clearly

FI = {x ∈ R
mn | AIx = 0} ,

where
AI =

({A�
i }i∈I

)�
,

which corresponds to the definition in (3) for bI = 0 and any I ⊆ L, hence we
can set A = AL. Therefore, our problem (23)–(25) corresponds to (3)–(4).
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In what follows, we will use the following basic assumptions.

(B1) For each i = 1, . . . , m, Xi is a convex and closed set in R
n, fi : R

n → R is
a convex function.

(B2) The set D∗ = D∗
L is nonempty.

These assumptions imply (A1)–(A2). If the graph FI for some I ⊆ L is con-
nected, then I a basic index set. Now we present an implementation of Method
(PDM) for the multi-agent optimization problem (23)–(25), where each agent
(or unit) receives information only from its neighbours. Given an oriented graph
GI and an agent j, we denote by N+

I (j) and N −
I (j) the sets of incoming and

outgoing arcs at j. Since many oriented graphs GI are associated with the same
graph FI , we suppose that agent j is responsible for calculation of the current
values of the primal variable xj and all the dual variables yi and pi such that
i ∈ N −

I (j). That is, we will fix the oriented graph G and its subgraphs GI such
that agent j is associated with all the outgoing arcs for vertex j. The general
Lagrange function for problems (23)–(25) is written as follows:

L(x, y) = f(x) + 〈y,Ax〉 =
∑
j∈M

fj(xj) +
∑
i∈L

〈yi, Aix〉 (26)

=
∑
j∈M

⎧⎨
⎩fj(xj) +

∑

i∈N −
L (j)

〈yi, xj〉 −
∑

i∈N+
L (j)

〈yi, xj〉
⎫⎬
⎭ .

The saddle point problems are defined in (5). As in Sect. 3, for simplicity we will
write Y(k) = YIk , Y ∗

(k) = Y ∗
Ik

, etc.

Method (PDMI). At the beginning, the agents choose the communication
topology by choosing the active arc index set I0 ⊆ L. Next, each s-th agent
chooses x0

s and y0
i for i ∈ N −

(0)(s) and reports these values to its neighbours.
This means that y0

i = 0 for i /∈ I0.
At the k-th iteration, k = 1, 2, . . ., each s-th agent has the values xk−1

s and
yk−1
i , i ∈ N −

(k−1)(s), and the same values of its neighbours. The agents choose
the current communication topology by choosing the active arc index set Ik ⊆ L
and determine the stepsize λk. This means that they set yk

i = 0 for i /∈ Ik.
Step 1: Each s-th agent sets

pki = yk−1
i + λk(xk−1

s − xk−1
t ) ∀i = (s, t), i ∈ N −

(k)(s). (27)

Then each s-th agent reports these values to its neighbours.
Step 2: Each s-th agent calculates

vk
s =

∑

i∈N −
(k)(s)

pki −
∑

i∈N+
(k)(s)

pki

and
xk
s = arg min

xs∈Xs

{
fs(xs) + 〈vk

s , xs〉 + 0.5λ−1
k ‖xs − xk−1

s ‖2} (28)

and reports this value to its neighbours.
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Step 3: Each s-th agent sets

yk
i = yk−1

i + λk(xk
s − xk

t ) ∀i = (s, t), i ∈ N −
(k)(s). (29)

Then each s-th agent reports these values to its neighbours. The k-th iteration
is complete.

We observe that the agents do not store the dual variables related to the
inactive arcs, i.e. yk

i = 0 for i /∈ Ik. If some arc i = (s, t) /∈ Ik−1 becomes active
at the k-th iteration, i.e. i ∈ Ik, then agent s simply sets yk−1

i = 0.
Due to (26), relations (27)–(29) correspond to Steps 2–4 of (PDM), respec-

tively. Hence, the convergence properties of (PDMI) will follow directly from
Theorems 2 and 3.

Corollary 2. Suppose that assumptions (B1)–(B2) are fulfilled, the sequence
{λk} satisfies condition (12) for some τ ∈ (0, 1).

(i) If Js is a basic index set, then the sequence {wk}, wk = (xk, yk), generated
by (PDMI) has limit points and each of these limit points belongs to W ∗.

(ii) If Js is a basic index set and Js ∈ P or Js = J∗, then (20) holds.

Corollary 3. Suppose that assumptions (B1)–(B2) are fulfilled, the sequence
{λk} satisfies condition (12) for some τ ∈ (0, 1).

(i) If F ∗⋂FL = ∅, then the sequence {wk}, wk = (xk, yk), generated by
(PDMI) has limit points.

(ii) If F ∗⋂FL = ∅ and each I ∈ P is a basic index set, then all the limit points
of {wk} belong to W ∗.

(iii) If F ∗⋂FL = ∅, Js is a basic index set and Js ∈ P or Js = J∗, then the
sequence {wk} converges to a point of W ∗.

Convergence of (PDMI) requires for all the agents to choose the stepsize λk

in accordance with (12), hence they have to evaluate the norm ‖A(k)‖ at the
k-th iteration. Fix some I ⊆ L, then

A�
I AI = HI ⊗ E,

where HI is the Kirchhoff matrix of the graph FI , ⊗ denotes the Kronecker
product of matrices. Application of the Gershgorin theorem (see Theorem 5 in
[10, Chapter XIV]) gives

‖AI‖ =
√

‖HI‖ ≤
√

2d(FI),

where d(FI) is the maximal vertex degree of the graph FI . There exist more
precise estimates for some special classes of graphs; see e.g. [11,12]. Together
with (12) we obtain the bound

λk ∈
[
τ, 0.5

√
(1 − τ)/d(F(k))

]
(30)
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for some τ ∈ (0, 1). In case of varying topology the separate agents may meet
difficulties in evaluation of d(F(k)) since the graph then may be non-regular. The
concordant value of λ = λk satisfying (30) can be obtained by determining some
upper bound for d(F(k)). It seems suitable to apply the following strategy. First
we choose the fixed topology that corresponds to an arc index set J ⊂ L so that
it gives the connected graph FJ and J ⊆ Ik for any k. This means that all the
arcs in J remain always active. The status of the other arcs may vary, but the
maximal vertex degree of the graph F(k) can not exceed some fixed number v.
Then each agent can take λ = 0.5

√
(1 − τ)/v and the assumptions of Corollary 2

(i) and Corollary 3 (i)–(ii) on the choice of parameters hold.
We now give a natural example of problem (23)–(25) such that F ∗⋂FL = ∅.

Namely, set Xi = R
n, fi(v) = (1/p)(max{hi(v), 0})p, p ≥ 1 for i = 1, . . . , m.

Then (23)–(25) corresponds to a penalized problem for finding a point of the set

Ṽ = {u ∈ R
n | hi(u) ≤ 0, i = 1, . . . , m} .

If Ṽ = ∅, then clearly F ∗⋂FL = ∅, which gives stronger convergence proper-
ties.

It should be noticed that primal-dual methods are usually applied to large-
scale convex optimization problems with binding constraints in order to keep the
decomposability properties. However, the streamlined primal-dual gradient pro-
jection method requires strengthened assumptions. Utilization of extrapolation
steps enables one to attain convergence under custom convex-concavity; see [13].
These methods admit a fixed positive stepsize that yields a linear rate of con-
vergence; see e.g. [14, Chapter VI] and the references therein. However, replac-
ing projections with proximal steps also will enhance convergence, besides the
method becomes applicable to non-smooth problems. This primal-dual method
with proximal steps was proposed in [7]. Similar methods were described in
[9,15]. It should be also noticed that known iterative methods for multi-agent
optimization problems with changing communication topology are based on dif-
ferent conditions; see e.g. [16,17].

5 Computational Experiments

In order to check the performance of the proposed method we carried out pre-
liminary series of computational experiments. We evaluated the total number of
iterations of (PDMI) for obtaining some desired accuracy. We implemented the
method in Delphi with double precision arithmetic.

We took the well-known Fermat-Weber problem:

min
v∈Rn

→ ϕ̃(v) =
m∑
i=1

‖v − ãi‖,

where ãi, i = 1, . . . , m are some given points (anchors). Clearly, this is a particu-
lar case of problem (22) with the coercive, convex, and non-smooth cost function
over the whole space R

n. It is rewritten in the format (23) as follows:
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min
x∈FI

→
m∑
i=1

‖xi − ãi‖,

where the set FI describes the current topology of the communication network
in accordance with (25), i.e. Xi = R

n, fi(xi) = ‖xi − ãi‖ for i = 1, . . . , m. Then
its solution set D∗

I is nonempty and bounded. In the multi-agent setting, the i-th
unit of the network knows only the vector ãi. We created the communication
network by using the following three simple cycles:

C1 = {(1, 2), (2, 3), . . . , (m − 1,m), (m, 1)},

C2 = {(1, 3), (3, 5), . . . , (m − 3,m − 1), (m − 1, 1)},

C3 = {(2, 4), (4, 6), . . . , (m − 2,m), (m, 2)},

m was chosen to be even. More precisely, the fixed topology of the communication
network was defined by C1, whereas the changing topology was given by the
iteration cycle scheme

C1 =⇒ C1

⋃
C2 =⇒ C1

⋃
C3 =⇒ C1

⋃
C2

⋃
C3 =⇒ C1.

We calculated the total number of the iterations for attaining the accuracy
δ with respect to the distance between two points: Δk = ‖wk − wk−1‖. Besides,
given a primal point x = (xi)i=1,...,m ∈ R

mn, we can calculate the average point

z = (1/m)
m∑
i=1

xi and the value of the cost function ϕ̃(z). This average point

zk was calculated at xk in a separate block and this value was not used in the
method itself. For brevity, we write ϕ̃k = ϕ̃(zk). The elements of the vectors ãi

were defined by

ãij = 5 sin(i/j) cos(ij), j = 1, . . . , n, i = 1, . . . , m.

We took the same starting point x0 = (5, . . . , 5)� and the fixed stepsize λ = 0.25
for all the cases. Table 1 describes the results of application of (PDMI), where (kt)
denotes the number of its iterations for attaining the accuracy δ = 0.001. Besides,
it gives the value of the function ϕ̃(zk) at the average point for the same number
of iterations (k) close to (kt). We can conclude that (PDMI) demonstrated more
rapid convergence with respect to Δk in the case of changing topology, but
gave somewhat greater cost function values after the same number of iterations.
However, this difference appeared not so essential, and in general the convergence
of (PDMI) was rather stable.
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Table 1. Computations by (PDMI)

Fixed topology Changing topology

m n kt ϕ̃k k kt ϕ̃k k

20 10 509 152.3378 390 397 152.3383 390

50 10 557 382.2441 480 485 382.2443 480

100 10 568 759.3882 480 496 759.3883 480

100 20 700 1094.8977 580 585 1094.8979 580

100 50 1090 1760.8916 960 963 1760.8918 960
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Abstract. Modern power systems are now in continuous process of mas-
sive changes. Increased penetration of distributed generation, usage of
energy storage and controllable demand require introduction of a new con-
trol paradigm that does not rely on massive information exchange required
by centralized approaches. Distributed algorithms can rely only on lim-
ited information from neighbours to obtain an optimal solution for various
optimization problems, such as optimal power flow, unit commitment etc.
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tralized minimization of the smooth and convex partially separable func-
tion f =
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the shared Ãx̃− b̃ ≤ 0 affine constraints, where the information about Ak

and bk is only available for the k-th node of the computational network.
One way to handle the coupled constraints in a distributed manner is

to rewrite them in a distributed-friendly form using the Laplace matrix of
the communication graph and auxiliary variables (Khamisov, CDC, 2017).
Instead of using this method we reformulate the constrained optimization
problem as a saddle point problem (SPP) and utilize the consensus con-
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1 Introduction

Optimal operation of power systems relies heavily on the ability of system opera-
tor to solve efficiently a number of optimization problems such as optimal power
flow, unit commitment, as well as a number of online problems such as fre-
quency and voltage control. Traditionally such problems were solved by System
Operators in a centralized way. However, recent developments in implementa-
tion of distributed energy sources, storage systems and possibility of demand
response can be effectively controlled by distributed algorithms. Such approach
has a number of potential benefits, namely reduction of necessary communica-
tions between agents, increased robustness with respect to malfunction of any
agent and possibility to increase cybersecurity and privacy of each agent.

The detailed surveys on the application of distributed algorithms in power
systems is given in [10,14]. These applications often lead to the necessity of solv-
ing an optimization problem, which can be formulated as distributed optimiza-
tion problem with coupled constraints. Distributed approaches for optimization
problems with coupled constraints can be separated into two main groups: (i)
primal, dual or primal-dual consensus algorithms [2,8,9,11–13,19]; (ii) ADMM-
based algorithms [1,3,16,18].

In this paper we propose a novel optimization approach for convex optimiza-
tion problems with coupled linear equality and inequality constraints. Here intro-
duction of specially placed Laplace matrices is used to model communications
between neighboring agents in a computational network described as a connected
graph. In the core of our approach lies: 1) the reduction of the decentralized
optimization problem with constraints to decentralized saddle point problem; 2)
applying decentralized Mirror Prox algorithm from [15] to solve the obtained
saddle point problem. We obtain the same rate of convergence ∼ 1/N (N –
number of communication steps/oracle calls) as the best known competitors,
like ADMM [7]. The main benefit of our approach is that the local optimiza-
tion problem at each node is much simpler than in the ADMM-based approaches
since we use only gradient oracle instead of complicated proximal mapping which
may require a matrix inversion. Compared to the dual algorithms of [11–13], we
consider a more general setting in which the objective may be non-separable and
there are local linear constraints at each node of the computational network.

2 Problem Statement

Let us consider the following optimization problem:

min
x∈Rn

f(x), (1a)

A′x − b′ = 0, A′ ∈ R
m×n, b′ ∈ R

m, (1b)

C ′x − d′ ≤ 0, C ′ ∈ R
h×n, d′ ∈ R

h, (1c)

where f : R
n → R is a differentiable strictly convex function. It is assumed

that constraints (1b) and (1c) are consistent and there exists a unique solution
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x∗. Thus, Karush–Kuhn–Tucker (KKT) conditions are necessary and sufficient
optimality conditions.

Let us now consider the case, when problem (1) must be solved by a multi-
agent network with l agents connected by a graph defined by a Laplacian matrix
W . For this case, we assume, that each agent seeks to find its own subvector
xk ∈ R

nk , k ∈ {1, . . . , l} (
∑l

k=1 nk = n) and the shared vector x̃ ∈ R
ñ. We

denote vector of private variables by x = (x1�, . . . , xl�)�. Additionally, function
f is partially separable:

f(x, x̃) =
l∑

k=1

fk(xk, x̃)

and each fk is known only to agent k. Each agent has partial information
Ak ∈ R

m×nk , bk ∈ R
m, Ck ∈ R

h×nk and dk ∈ R
h about constraints’ parts corre-

sponding only to variables xk: A := [A1, . . . , Al], b :=
∑l

k=1 bk, C := [C1, . . . , Cl]
and n :=

∑l
k=1 nk. Additionally we assume that there are shared constraints

with matrices Ã ∈ R
m̃×ñ, C̃ ∈ R

þ×ñ and vectors b̃ ∈ R
m̃, d̃ ∈ R

þ which are
known to all agents.

As a result, each agent k has only its own part of the objective function
fk(xk, x̃) and parts of the coupled equality and inequality constraints respec-
tively: Akxk − bk and Ckxk − dk.

Therefore, we have an optimization problem of the following form:

min
x∈Rn+ñ

l∑

k=1

fk(xk, x̃), (2a)

s.t.
l∑

k=1

(Akxk − bk) = 0, (2b)

l∑

k=1

(Ckxk − dk) ≤ 0, (2c)

Ãx̃ − b̃ = 0, (2d)

C̃x̃ − d̃ ≤ 0. (2e)

Here x̃ ∈ R
ñ is a subvector of x that contains global variables used by all agents.

3 Mathematical Setting

Assumption 1. For every k = 1, . . . , l

1. fk(xk, x̃) is differentiable.
2. (Convexity) ∀xk, x′k ∈ X k,∀x̃, x̃′ ∈ X̃

fk(x′k, x̃′) ≥ fk(xk, x̃) +
〈

∇fk(xk, x̃),
(

x′k − xk

x̃′ − x̃

)〉

.



Decentralized Convex Optimization Under Affine Constraints 65

3. (Lipschitz smoothness)

∥
∥∇fk(x′k, x̃′) − ∇fk(xk, x̃)

∥
∥ ≤ Lk

∥
∥
∥
∥

(
x′k − xk

x̃′ − x̃

)∥
∥
∥
∥ .

Assumption 2. Variable x is subject to block constraints: xk ∈ ∏nk

i=1[ξ
k,i, ηk,i] =

X k, ξk,i, ηk,i ∈ R and x̃ ∈ ∏ñ
i=1[ξ̃

i, η̃i] = X̃ , ξ̃i, η̃i ∈ R.

This is a natural assumption since in a real-world system maximal and mini-
mal values of every control and auxiliary variable are limited. Let us also denote

– λmax(A), λ+
min(A) — the largest and the smallest positive eigenvalues of a

matrix A.
– σmax(A) =

√
λmax(A�A) and σ+

min(A) =
√

λ+
min(A�A) — the largest and

the smallest positive singular values of a matrix A.
– χ(A) = σmax(A)

σ+
min(A)

— condition number of a matrix A on (KerA)�.

– ProjS(x) — projection of x onto a set S.

The key instrument in separating shared variables and coupled constraints
is introducing the consensus constraint with the help of matrix W defined as
follows:

1. W is symmetric positive semi-definite matrix.
2. (Network compatibility) For all i, j = 1, . . . , l the entry of W : [W ]ij = 0 if

i 	= j and there is no edge in the communication graph between nodes i and j.
This property allows to perform multiplications by W in a distributed manner
(only using information from neighbours in the communication graph).

3. (Kernel property) For any v = [v1, . . . , vm]� ∈ R
m, Wv = 0 if and only if

v1 = . . . = vm, i.e. KerW = span {1}. This property allows to rewrite pairwise
equality constraint in a distributed way.

An example of matrix satisfying this assumption is the graph Laplacian
W∈ R

m×m:

[W ]ij =

⎧
⎪⎨

⎪⎩

−1, if (i, j) ∈ E,

deg(i), if i = j,

0, otherwise,

where deg(i) is the degree of the node i, i.e., the number of neighbors of the
node.

Matrix W can be used to rewrite pairwise equality of scalars. To rewrite pair-
wise equality of vector variables with equal dimension we will use the following
extension of matrix W , called communication matrix :

W = W ⊗ Id, (3)

where ⊗ denotes the Kronecker product and d is the dimension of the vector
variables.



66 D. Yarmoshik et al.

4 Distributed Saddle Point Problem Formulation

4.1 Saddle Point Problem and Consensus Constraints

We reformulate problem (1) as saddle point problem:

min
x,x̃

max
λ,λ̃

μ,μ̃≥0

l∑

k=1

[
fk(xk, x̃) + λ�(Akxk − bk) + μ�(Ckxk − dk)

]
+

λ̃�(Ãx̃ − b̃) + μ̃�(C̃x̃ − d̃). (4)

Let us unify the analysis of equality and inequality constraints by stacking
Lagrange multipliers λ and μ in a single dual variable

y =
(

λ
μ

)

, y ∈ Y = R
m × R

h
+.

And similarly we introduce the joined dual variable for the coupled con-
straints:

ỹ =
(

λ̃
μ̃

)

, ỹ ∈ Ỹ = R
m̃ × R

þ
+.

To solve this saddle point problem in a distributed manner we have to sep-
arate dual variables y by making their copies at each node and introducing
consensus constraint into the saddle point problem, as described in [15]. That
brings us to the following formulation:

min
x,x̃,z

max
y,ỹ

l∑

k=1

[

fk(xk, x̃) + yk�
(

Akxk − bk

Ckxk − dk

)]

+ z�Wy + ỹ�
(

Ãx̃ − b̃

C̃x̃ − d̃

)

(5)

To separate the terms corresponding to the shared constraints (2d), (2e) we
should go back to the optimization problem (2) and do the same trick with
them: make a copy of x̃ at each node and introduce consensus constraint. So we
transform (2d), (2e) into equivalent system

Ãx̃k + b̃ = 0, k ∈ {1, . . . , l}, (6a)

C̃x̃k + d̃ ≤ 0, k ∈ {1, . . . , l}, (6b)

W̃x̃ = 0, (6c)

where x̃ = (x̃1�, . . . , x̃l�)�, W̃ = W ⊗ Iñ.
Note, that each node can handle constraints (6a) and (6b) independently, so

we don’t have to introduce additional consensus constraints over corresponding
dual variables in the final saddle point problem:
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min
x,x̃,z

max
y,ỹ,z̃

l∑

k=1

[
f
k
(x

k
, x̃

k
) + y

k�
(

Akxk − bk

Ckxk − dk

)
+ ỹ

k�
(

Ãx̃k − b̃

C̃x̃k − d̃

)]
+ z

�
Wy + z̃

�
W̃x̃

= min
x,x̃,z

max
y,ỹ,z̃

l∑

k=1

g
k
(x

k
, x̃

k
, y

k
, ỹ

k
) + z

�
Wy + z̃

�
W̃x̃, (7)

where y = (y1�, . . . , yl�)�, W = W ⊗ Im+h.
We will also use the following notation:

G(x, x̃,y, ỹ) =
l∑

k=1

gk(xk, x̃k, yk, ỹk), (8)

and
Gw(x, x̃,y, ỹ) = G(x, x̃,y, ỹ) + z�Wy + z̃�W̃x̃. (9)

4.2 Comparison with [4,5]

In this subsection we show the equivalence of our approach and approach from
[4,5] from the perspective of saddle point problems. Since the shared variables x̃
are handled in the same way in both approaches (by introducing the constraint
W̃x̃ = 0 into the optimization problem), we consider the case without shared
variables and only with equality-type constraints to simplify the derivations.

Let us introduce a set of new matrices and vectors:

A = diag(A1, . . . , Al),b = (b1�, . . . , bl�)�, (10)

Wmk = diag(Wk•, . . . , Wk•) ∈ R
m×ml,Wm =

⎡

⎢
⎣

Wm1

...
Wml

⎤

⎥
⎦ ∈ R

ml×ml, (11)

In [4,5] the following distributed-friendly reformulation of problem (2) is
proposed, and its equivalence to the original problem is shown:

min
x∈Rn,y∈Rml

{

f(x) =
l∑

k=1

fk(xk)

}

, (12a)

Ax − b + Wmy = 0. (12b)

Here a sort of consensus constraint is integrated directly into the minimization
problem, which differs from our technique of adding consensus constraint into
the corresponding saddle point problem. Note also that Wm and W differ in
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their structure (the way of constructing communication matrix for using it with
multi-dimensional variables).

The saddle point problem corresponding to the minimization problem (12)
is

min
x,y

max
z

L(x,y, z) = min
x,y

max
z

f(x) + z� (Ax − b + Wmy) . (13)

Let us now compare this problem with the saddle point problem (7). By
rewriting sum in (7) and using the symmetry of W we have

min
x,z

max
y

l∑

k=1

[
fk(xk) + yk�(Akxk − bk)

]
+ z�Wy

= min
x,z

max
y

f(x) + y�(Ax − b) + z�Wy

= min
x,z

max
y

f(x) + y�(Ax − b + Wz). (14)

Since W and Wm differ only in the arrangement of columns, problems (13)
and (14) differ only in the arrangement of components of maximized variables.
Therefore, both approaches leads to the same saddle point problem.

5 Algorithm

We use classical Extragradient algorithm from [6]. Being applied to the problem
(2) it converges to the solutions of the primal and the dual problems as will be
shown in the next sections. Here we describe it in an explicit form, so it is ready
to be applied to the problem (2), see Algorithm 1.

Note, that the projection in our case is a simple clipping and can be performed
independently for each component of the variable.

6 Smoothness and Domain Size Analysis

In this section we will perform some technical analysis to obtain the relations
between parameters of the input data to the problem (object functions and
constrains) and parameters of Extragradient’s convergence rate.

6.1 Bounds on ‖y∗‖, ‖ỹ∗‖
To calculate Lipschitz smoothness constants of the problem we have to localize
y∗ (dual part of solution of the initial saddle problem (4), which is also a solution
to the dual problem under our assumptions), i.e. find Ry such that Y lies in a ball
in R

m with center in 0 and radius Ry, and y∗ ∈ Y. From optimality conditions
for dual problem of (2)

∇xL = ∇xf + (A�, C�)y∗ = 0, (15)
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Algorithm 1. Decentralized Extragradient for problem (2)
1: Initialize x0 ∈ X ,y0 = z0 = 0l(m+h), x̃0 ∈ X̃ l, ỹ = 0

l(m̃+þ), z̃0 = 0lñ

2: for i = 0, . . . , N − 1 do
3: Compute z′

i = Wzi, y
′
i = Wyi, z̃

′
i = W̃z̃i, x̃

′
i = W̃x̃i.

4: Make intermediate gradient step

xk
i+ 1

2
= ProjX

(
xk
i − h∇xk fk(xk

i , x̃
k
i ) − h(Ak�,Ck�)yk

i

)

x̃k
i+ 1

2
= ProjX̃

(
x̃k
i − h∇x̃k fk(xk

i , x̃
k
i ) − hz̃′k

i

)

yk
i+ 1

2
= ProjY

(

yk
i + h

(
Akxk

i − bk

Ckxk
i − dk

)

+ hz′k
i

)

ỹk
i+ 1

2
= ProjỸ

(

ỹk
i + h

(
Ãkx̃k

i − b̃k

C̃kx̃k
i − d̃k

))

zki+ 1
2

= zki − hy′k
i

z̃ki+ 1
2

= z̃ki + hx̃′k
i

5: Compute z′
i+ 1

2
= Wzi+ 1

2
, y′

i+ 1
2

= Wyi+ 1
2
, z̃′

i+ 1
2

= W̃z̃i+ 1
2
, x̃′

i+ 1
2

= W̃x̃i+ 1
2
.

6: Make gradient step

xk
i+1 = ProjX

(
xk
i − h∇xk fk(xk

i+ 1
2
, x̃k

i+ 1
2
) − h(Ak�,Ck�)yk

i+ 1
2

)

x̃k
i+1 = ProjX̃

(
x̃k
i − h∇x̃k fk(xk

i+ 1
2
, x̃k

i+ 1
2
) − hz̃′k

i+ 1
2

)

yk
i+1 = ProjY

(

yk
i + h

(
Akxk

i+ 1
2

− bk

Ckxk
i+ 1

2
− dk

)

+ hz′k
i+ 1

2

)

ỹk
i+1 = ProjỸ

(

ỹk
i + h

(
Ãkx̃k

i+ 1
2

− b̃k

C̃kx̃k
i+ 1

2
− d̃k

))

zki+1 = zki − hy′k
i+ 1

2

z̃ki+1 = z̃ki + hx̃′k
i+ 1

2

7: end for

Ensure: For t ∈ {x,y, z, x̃, ỹ, z̃} compute t̂N =
1

N

N−1∑

k=0

tk+
1
2 .

∇x̃L = ∇x̃f + (Ã�, C̃�)ỹ∗ = 0. (16)

Since for any y ∈ ker AT vector y∗+y is also a solution, we consider only solution
with the smallest norm (it’s enough for saddle point problem solution’s quality
criteria and convergence analysis), i. e. y∗ ∈ (

ker AT
)⊥.
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Therefore

‖y∗‖2 ≤ ‖∇xf(x∗, x̃∗)‖2
(σ+

min ((A�, C�)))2
,

‖ỹ∗‖2 ≤ ‖∇x̃f(x∗, x̃∗)‖2
(σ+

min((Ã�, C̃�)))2
,

where σ+
min(A) =

√
min{λ > 0 : ∃x 	= 0 : AAT x = λx}. Hence we get

Lemma 1. Saddle point problem (7), which is unconstrained on variables y, ỹ,
is equivalent to the same problem with constraints ‖y‖ ≤ Ry and ‖ỹ‖ ≤ Rỹ,
where

Ry =
√

l

max
x∈X ,x̃∈X̃

‖∇xf(x, x̃)‖

σ+
min ((A�, C�))

, Rỹ =
√

l

max
x∈X ,x̃∈X̃

‖∇x̃f(x, x̃)‖

σ+
min

(
(Ã�, C̃�)

) . (17)

6.2 Bounds on ‖z∗‖, ‖z̃∗‖
Next we want to find constants for Euclidean-case bounds for Theorem 3.5 [15].
To specify, how the convergence rate depends on problem’s parameters, we need
to find scalars My,Mx̃, Lxx, Lyx, LxyLyy, determined by inequalities

‖∇ygk(xk, x̃k, yk, ỹk)‖ ≤ My ∀k, xk ∈ Xk, yk ∈ Y, (18a)

‖∇x̃gk(xk, x̃k, yk, ỹk)‖ ≤ Mx̃ ∀k, xk ∈ Xk, yk ∈ Y, (18b)

‖∇xG(x,y) − ∇xG(x′,y)‖ ≤ Lxx‖x − x′‖ ∀x,x′ ∈ X ,y ∈ Y, (18c)

‖∇xG(x,y) − ∇xG(x,y′)‖ ≤ Lxy‖y − y′‖ ∀x ∈ X ,y,y′ ∈ Y, (18d)

‖∇yG(x,y) − ∇yG(x′,y)‖ ≤ Lyx‖x − x′‖ ∀x,x′ ∈ X , ∀y ∈ Y, (18e)

‖∇yG(x,y) − ∇yG(x,y′)‖ ≤ Lyy‖y − y′‖ ∀x ∈ X , ∀y,y′ ∈ Y, (18f)

where x = (x�, x̃�)� and y = (y�, ỹ�)�.
By using the triangle inequality

‖∇ykgk(xk, x̃k, yk, ỹk)‖ = ‖∇yky�(Akxk − bk)‖ =
∥
∥
∥
∥

(
Akxk − bk

Ckxk − dk

)∥
∥
∥
∥ ≤

max
k∈{1,...,l}

{
σmax

(
(Ak�

, Ck�
)
)

Rxk +
∥
∥
∥(bk�

, dk�
)
∥
∥
∥
}

= My,

and

‖∇x̃kgk(xk, x̃k, yk, ỹk)‖ = ‖ (Ã�, C̃�) ỹk‖ ≤ σmax

((
Ã�, C̃�))Rỹ

= χ
(
(Ã�, C̃�)

)
max

x∈X ,x̃∈X̃
‖∇x̃f(x, x̃)‖ = Mx̃.

Then by directly applying Lemma 4.2 in [15] we have
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Lemma 2. Saddle point problem (7), which is unconstrained on variables z, z̃,
is equivalent to the same problem with constraints ‖z‖ ≤ Rz and ‖z̃‖ ≤ Rz̃,
where

Rz =

√
2lMy

λ+
min(W)

, Rz̃ =

√
2lMx̃

λ+
min(W̃)

. (19)

6.3 Smoothness Constants

Let us find smoothness constants of function G. From (7) we have

∇xG(x,y) − ∇xG(x′,y) =

⎛

⎜
⎝

∇f1(x1, x̃1) − ∇f1(x1′
, x̃1′

)
...

∇f l(xl, x̃l) − ∇f l(xl′ , x̃l′)

⎞

⎟
⎠ .

By Assumption 1

‖∇xG(x,y) − ∇xG(x′,y)‖2 =
l∑

k=1

‖∇fk(xk, x̃k) − ∇fk(xk′
, x̃k′

)‖2

≤
l∑

k=1

L2
k

∥
∥
∥
∥

(
x′k − xk

x̃′ − x̃

)∥
∥
∥
∥

2

≤ max
k

L2
k‖x − x′‖2.

Taking square root from both parts of the inequality we get

Lxx = max
k∈{1,...,l}

Lk.

Similarly, for other variables

∇xG(x,y) − ∇xG(x,y′) =
(

(A�, C�) (y − y′)(
Ã�, C̃�) (ỹl − ỹl′)

)

,

∇yG(x,y) − ∇yG(x′,y) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(A1�
, C1�)�(x1 − x1′

)
...

(Al�, Cl�)�(xl − xl′)
(
Ã�, C̃�)�

(x̃1 − x̃1′
)

...
(
Ã�, C̃�)�

(x̃l − x̃l′)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

and

Lxy = max
{

max
k∈{1,...,l}

σmax

(
(Ak�

, Ck�
)
)

, σmax

(
(Ã�, C̃�)

)}

= Lyx,

Lyy = 0.
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7 Main Result

Let us denote

Lζ = 2 · max{R2
xx̃Lxx̃,xx̃, R2

yỹLyỹ,yỹ,

√
2Rxx̃RyỹLxx̃,yỹ + 2Mxx̃Rxx̃

λmax(W̃)
λ+
min(W̃)

+ 2MyỹRyỹ
λmax(W)
λ+
min(W)

}.

Then, following the arguments presented in Theorem 4.5 from [15], we intro-
duce ζ = (x�, x̃�,y�, ỹ�, z�, z�)�. We also define a norm for ζ as follows:

‖ζ‖2 =
‖x‖2
R2

x

+
‖x̃‖2
R2

x̃

+
‖y‖2
R2

y

+
‖ỹ‖2
R2

ỹ

+
‖z‖
R2

z

+
‖z̃‖2
R2

z̃

.

According to the standard analysis of Mirror-Prox algorithm, the duality gap is
bounded as follows:

Gw(xN , x̃N , zN ,y, ỹ, z̃) − Gw(x, x̃, z,yN , ỹN , z̃N ) ≤ Lζ

2N
‖ζ − ζ0‖2, (20)

Substituting y = 0, ỹ = 0, z̃ = 0,x = x∗, x̃ = x̃∗, z = 0 we get complexity
estimate by function residual:

�∑

k=1

f(xk
N , x̃k

N ) −
�∑

k=1

f(xk
∗, x̃∗) ≤ 3Lζ

N
. (21)

Analogously, we obtain bounds for affine constraints and consensus constraints

‖AxN − b‖ + ‖CxN − d‖ ≤ 17
√

2Lζ

N
min

k=1,...,l
σ+
min(A

k�
, Ck�

),

∥
∥
∥Ãx̃ − b

∥
∥
∥+

∥
∥
∥C̃x̃ − d

∥
∥
∥ ≤ 17

√
2Lζ

N
min

k=1,...,�
σ+
min(Ã

�, C̃�),

‖WyN‖ ≤ 17
√

2Lζ

2N
λ+
min(W),

∥
∥
∥W̃x̃N

∥
∥
∥ ≤ 17

√
2Lζ

2N
λ+
min(W̃).

Remark 1. In the problem formulation (2) we can additionally assume that xk ∈
Qk ⊆ R

nk , x̃ ∈ Q̃ ⊆ R
ñ, where Qk and Q̃ – simple convex sets, i.e. simplex, ball,

half plane e.t.c. In this case instead of decentralized Extragradient method for
saddle point problem (Mirror Prox with euclidian prox-function) one should use
general decentralized Mirror Prox algorithm [15].
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8 Numerical Experiment

For the purpose of numerical experiment data is taken from [17]. Here 6 bus
system contains 2 generators. DC optimal power flow problem of the following
form is considered:

min
pG∈P
θ∈Θ,

∑

i∈G

ci(pG
i ) (22a)

pG
i − pD

i = Bij(θi − θj), (22b)

|(θi − θj)/Xij | ≤ Fmax
ij . (22c)

Optimization Variables:

– pG
i , i ∈ {1, . . . , l}—generator power output;

– θi, i ∈ {1, . . . , l}—phase angle of the bus i.

Parameters:

– P =
∏l

i=1

[
pG,min

i , pG,max
i

]
— minimal and maximal generation. For nodes

without generation pG,min
i = pG,max

i = 0;
– Θ =

∏l
i=1 [−θmax

i , θmax
i ] — maximal phase angle;

– pD
i , i ∈ {1, . . . , l}—demand;

– Bij = Bji, i, j ∈ {1, . . . , l}—line susceptances. If no power line between
nodes i and j then Bij = 0 else Bij > 0. Xij = −Bij , i, j ∈ {1, . . . , l} are
line reactances;

– Fmax
ij , i, j ∈ {1, . . . , l}—maximal power flow on the line (i, j).

Cost Functions:
ci(·), i ∈ {1, . . . , l}—convex sufficiently smooth functions, representing the

cost of operating a generator at given power.
The obtained results are consistent with the results in [17]: generation is

equal to 110 MW and 200 MW for the 1-st and 2-nd generators respectively. The
results of numerical experiment are given in Fig. 1. Here the plots of function
value and constraint residual convergence.

Fig. 1. Results of the numerical experiment for DC optimal power flow problem on
6-bus system [17]
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Abstract. Characterization of a graph by its spectrum is a very attrac-
tive research problem that has numerous applications. It is shown that
the graph is not necessarily uniquely determined by its spectrum in the
most general case, i.e., there could be several non-isomorphic graphs cor-
responding to the same spectrum. All such graphs are called cospectral.
However, in most of the cases, it is important to find at least one graph
whose spectrum is equal to a given constant vector. This process is called
Spectral Reconstruction of Graph (SRG) and it is known as one of the
most difficult optimization problems. We address the SRG problem by
the metaheuristic methods, more precisely, by Basic Variable Neighbor-
hood Search (BVNS) and improvement-based Bee Colony Optimization
(BCOi) methods. The resulting heuristics are called SRG-BVNS and
SRG-BCOi, respectively. Both methods are implemented in such a way
to take into account the graph properties defined by its spectrum. We
compare the performance of the proposed methods with each other and
with the results obtained by other approaches from the relevant literature
on the reconstruction of some well-known graphs.

Keywords: Spectral graph theory · Spectral distance · Cospectral
graphs · Metaheuristics

1 Introduction

Graphs are mathematical objects defined as 2-tuples G = (V,E) [8], where
V = {v1, v2, . . . , vn}, represents the set of vertices vi, while E ⊆ V × V denotes
the connections (relations) between the pairs of vertices and is called the set of
edges. If there is a connection (edge) between vertices vi and vj , we say that
{vi, vj} ∈ E and that vertices vi and vj are adjacent. Graphs are used to model
numerous problems in science, engineering, industry, etc. Usually, V is finite set,
however, the infinite cases are also studied in the literature starting with [22].
In this paper, we consider only finite and undirect graphs.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Pardalos et al. (Eds.): MOTOR 2022, LNCS 13367, pp. 79–93, 2022.
https://doi.org/10.1007/978-3-031-09607-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09607-5_6&domain=pdf
https://doi.org/10.1007/978-3-031-09607-5_6
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The simplest graph representation is by the Adjacency matrix A with ele-
ments 0 or 1 defined as follows:

aij =
{

1, if {vi, vj} ∈ E;
0, otherwise.

If graph is undirected, A is symmetric, i.e., aij = aji. The degree of vertex
vi (denoted by di) in graph G represents the number of vertices adjacent to
vi, i.e., the number of edges having vi as an end-vertex and it is calculated as
di =

∑n
j=1 aij . Eigenvalues λi, i = 1, 2, . . . , n for the graph G are actually the

eigenvalues of matrix A, i.e., the roots of its characteristic polynomial PG(x) =
det(xI − A). As the adjacency matrix A is symmetric its eigenvalues are real
numbers. The set of all eigenvalues of graph G is called spectrum. It can contain
negative, positive values and zeros, with some repeated values. It is usual to
represent the spectrum as a non-increasing array of values λ1 ≥ λ2 ≥ · · · ≥ λn.
Then, the largest eigenvalue λ1 of graph G is called index. An array x such that
Ax = λx is known as eigenvector (corresponding to the eigenvalue λ) of graph
G, and it actually represents the eigenvector of matrix A.

Spectral graph theory (SGT) [11,23] studies graphs based on their adjacency
matrix, more precisely, based on the eigenvalues and eigenvectors of this matrix.
In recent literature, some other matrices associated with graphs are defined
and analyzed, such as Laplacian matrix and signless Laplacian matrix ([11],
Sect. 1.3). However, they will not be considered in this paper. SGT has important
applications in various fields of computer science [13], some of them including
graph recognition problems [5,7,13,19] as graphs represent natural models for
various types of objects. It has been shown in the literature that some special
classes of graphs, e.g., complete graphs, paths, cycles, are determined (to the
isomorphism) by the spectrum with respect to the adjacency matrix A. However,
it has been proved that it does not hold in the general case, i.e., an arbitrary
graph cannot be fully characterized by its spectrum, and there may exist non-
isomorphic graphs having the same spectrum. In particular, it has been shown
that trees cannot be characterized by a spectrum, nor can molecules in chemistry.
Non-isomorphic graphs that have identical spectra are called cospectral. In [17,
24], the number of non-isomorphic cospectral graphs is analyzed in relation to the
three mentioned matrices for all graphs with n ≤ 11 vertices. Graphs with n = 12
vertices are considered in [3]. In these papers, it was noticed that the number
of graphs with non-isomorphic co-spectral mates decreases from n = 10 with
respect to the total number of graphs with the same number of vertices. Based
on that observation, a hypothesis has been introduced stating that graphs with
a large number of vertices (for n → ∞) may be determined by their spectrum.
The hypothesis is still an open problem in SGT.

Our work is inspired by the results published in [5] and presents their general-
ization and expansion. In the first part of [5], the authors discussed the problem
of Spectral Reconstruction of Graphs (SRG) [9] with the help of AutoGraphiX
(AGX) software package developed at GERAD Institute in Montreal [1,6]. AGX
uses the Variable Neighborhood Search (VNS) metaheuristic method [18,21] to
find graphs that have extreme values of selected invariants or their combinations.
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We have also applied AGX, optimized its execution by adding new constraints
that enable to reduce the search space, and consequently, to decrease the time
required to obtain the results.

As AGX is a general purpose software, it obviously contains many auxil-
iary functions that are not necessary for the considered problem. Therefore, we
do not expect its good performance and we propose the application of meta-
heuristic methods to efficiently find a graph with the given spectrum. We have
implemented a basic version of VNS (BVNS) and an improvement-based Bee
Colony Optimization (BCOi) [14,15] to tackle the SRG problem. The methods
are called SRG-BVNS and SRG-BCOi, respectively. The stochastic nature of
metaheuristic methods allows us to perform restarts from different random ini-
tial graphs, and to generate mutually non-isomorphic cospectral graphs (if any).
However, finding all cospectral graphs still remains a challenging task because it
is actually a NP-hard optimization problem: it is necessary to examine all graphs

with n vertices and m edges and the number of such graphs is
(

n(n − 1)/2
m

)
,

i.e., the number of ways m edges can be distributed in n(n − 1)/2 places.
The remainder of this paper is organized as follows. Section 2 provides a

brief overview of the relevant literature. The SRG problem is described in detail
in Sect. 3, specifying its complexity and some special cases in which there are
efficient algorithms for finding all non-isomorphic cospectral graphs with a given
spectrum. In Sects. 4 and 5, the implementations of SRG-BVNS and SRG-BCOi
are described. The results obtained by applying the implemented methods to
some known graphs from the literature, are presented in Sect. 6. Concluding
remarks and guidelines for future work are given in Sect. 7.

2 Literature Review

The study of graphs based on their spectra has become very popular in the past
two decades because the spectrum can be determined relatively quickly (the
computational complexity is, in the general case, O(n3), and for special classes
of graphs this complexity may be significantly reduced). Based on the spectrum,
various information can be determined on the structure of the corresponding
graph [9,11,19], especially on some parameters of the graph that require expo-
nential time for calculation. As already mentioned in the introduction, graphs
are not uniquely determined by the spectrum, i.e., for some graphs there exist
non-isomorphic cospectral graphs. However, due to its great importance, spectral
recognition of graphs is intensively studied in the literature [9,17,24].

The review paper [9] defines 4 basic problems that are considered in connec-
tion with spectral recognition of graphs: characterization of graphs with a given
spectrum; construction (exact or approximate) of a graph with a given spectrum;
spectral similarity of graphs; and spectral perturbations of graphs. Let us note
once again that all these problems are related to the spectrum of the graph and
use spectral distance. This distance is defined for graphs with the same number
of vertices as the distance between their spectra. Various types of distances may
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be used, such as Euclidean, Manhattan or some other distance between ordered
sequences of eigenvalues, i.e., vectors in the n-dimensional space.

The first problem (characterization of a graph with the given spectrum) [9]
involves describing as many of its properties as possible based on the spectrum.
For the second problem, it is necessary to find a graph whose spectrum is rep-
resented by a given vector (which actually represents the SRG problem that is
considered in this paper). The characterization of a graph by the spectrum is
achieved by solving the optimization problem representing minimization of the
spectral distance between the given vector and the spectrum of the constructed
graph. The solution to this problem does not have to be unique, several mutu-
ally non-isomorphic cospectral graphs can be obtained. It is obvious that the
cospectral graphs are at a distance equal to zero, which is the minimal value
of any spectral distance. The spectral distance can be considered as a measure
of graphs’ similarity, i.e., we say that the two graphs are similar if their spec-
tral distance is small. Similar graphs are obtained from each other by small
perturbations (changes in the structure or spectrum of graphs). Examples of
perturbations are removing or adding edges, moving edges from one position to
some other, and so on.

One of the first algorithms for spectral reconstruction of graphs based on
the Laplacian matrix was developed in [7]. It is based on the Tabu Search (TS)
metaheuristic method, starts from a random graph with n vertices and tries to
minimize the spectral distance. The algorithm was tested on several classes of
networks (random, regular, cluster graphs, etc.).

The VNS method is used in [5] indirectly, through the AGX program pack-
age. The authors have performed the reconstruction of some classes of graphs
based on Euclidean and Manhattan spectral distances defined with respect to
the various matrices associated with the graph. Graphs of up to 20 vertices
have been analyzed and the number of successful reconstructions in 100 restarts
was reported. The stopping criterion in each execution was 100,000 evaluations
of the objective function (i.e., calculations of the spectral distance), and the
initial solution was always a randomly generated graph. The paper [5] served
as the inspiration for our work. We aim to maximally exploit the information
that can be obtained about the target graph from its spectrum and to develop
efficient implementations of our methods and to generate the desired graph in
the shortest possible time. By repeated restarts, it is possible to obtain several
non-isomorphic cospectral graphs.

3 Finding Graph with a Given Spectrum

As it is already mentioned, SRG implies finding (one or more) graphs whose
spectrum is equal to a given vector. In this paper we use the Euclidean distance,
that is (among others) used in [5] as well. Let C = (c1, c2, . . . , cn) be a given
vector, let G = (V,E) be a graph having n vertices, and let S = (λ1, λ2, . . . , λn)
represent its spectrum. It is necessary to perform transformations of the graph
G with an aim to minimize (nullify) the spectral distance defined by Eq. (1).
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d =
√

(c1 − λ1)2 + (c2 − λ2)2 + · · · + (cn − λn)2. (1)

First, we applied AGX software [1,6]. It is an interactive software package
designed to find extreme graphs, i.e., graphs that minimize or maximize cer-
tain graph invariant or a function of graph invariants. A graph invariant is a
parameter of a graph that is independent of the vertex and edge labeling. Graph
invariants are, for example, the index of a graph (i.e., the largest eigenvalue
λ1), minimum (δ) and maximum (Δ) vertex degree, etc. [8,11]. Searching for
extremal graphs, AGX uses an optimization module based on the VNS meta-
heuristics and generates the corresponding graph examples for some special cases
(for some given values of n). The researchers use these experimentally obtained
graphs to set hypotheses for the general case and then try to prove them theoret-
ically, “by hand” or applying some automatic theorem prover [2,5,6]. The latest
version of the AGX software package (AGX 3.3.9) as well as the accompanying
documentation can be downloaded from the Internet address
https://www.gerad.ca/Gilles.Caporossi/agx/AGX/AutoGraphiX.html.

To solve SRG problem, we need to ask AGX to minimize the Euclidean dis-
tance between the given constant vector C and the ordered vector of eigenvalues
of the required graph. To make things easier for AGX, we exploit the fact ([11],
p. 85) that the number of edges in a graph can be calculated by the following

equation m =
1
2

n∑
i=1

λ2
i . As the input vector C is actually the spectrum of the

desired graph, we can calculate the number of its edges by Eq. (2), i.e., using the
scalar product of the vector C with itself:

m =
1
2

n∑
i=1

c2i . (2)

On the other hand, the number of edges in the graph equals one half the sum
of all elements of the adjacency matrix A, and we can reduce the search space
for AGX by equalizing this sum with the scalar product of the vector C with
itself. The block-diagram of the corresponding optimization task performed by
AGX software is presented in Fig. 1. Constant vector C is an input parameter,
while the adjacency matrix A is provided by AGX in the process of graph gener-
ation/transformation. The initial graph is generated randomly with the number
of edges depending on the input vector C according to Eq. (2), while all other
graphs are obtained by performing transformations (that preserve the number
of edges) of the currently best found graph. The goal is to minimize the spectral
distance d (given by Eq. (1)) between input vector C and graph defined by the
adjacency matrix A, and therefore, the loop is executed until d becomes zero.
However, it may take to much time and it is necessary to define some stopping
criterion that will interrupt the execution of AGX even if the solution is not
found. This is required also for fair comparison of AGX with other approaches.

It is important to note that AGX is a stochastic search engine, and there-
fore, each of its executions can give a different result, with respect to either
the solution itself (when a non-isomorphic cospectral graph is obtained) or the

https://www.gerad.ca/Gilles.Caporossi/agx/AGX/AutoGraphiX.html
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Fig. 1. Minimization of spectral distance according to AGX software

time required to find the same graph. Consequently, for the analysis of AGX
performance, it is necessary to repeat executions and determine some average
(mean) results. Although AGX cannot guarantee a complete search of the solu-
tion space (graphs with a given number of vertices and edges), repeating the exe-
cution allows to find some non-isomorphic cospectral graphs (if any). Of course,
the fact that AGX failed to generate a cospectral graph, i.e., it obtained the
same solution in all executions, does not imply that there are no non-isomorphic
cospectral graphs for the given graph. As it is already mentioned, in order to
find all non-isomorphic cospectral graphs for a given graph, it is necessary to
perform a complete search of graphs with the same number of vertices n and
edges m. For example, for a graph with n = 8 vertices and m = 9 edges, it is
necessary to examine 6,906,900 graphs. It is clear that (in the general case) as
the number of vertices increases, the complexity of complete search is increasing
nonlinearly. On the other hand, there are algorithms developed for some special
classes of graphs that employ a priori knowledge about these graphs in order
to reduce the number of analyzed graphs. An example of such an algorithm is
described in [12]. The authors considered Smith graphs (whose spectrum is lim-
ited to the interval [−2, 2]). They identified transformations that translate one
Smith graph into another, mutually non-isomorphic cospectral with the starting
one, and developed an algorithm for generating all such graphs. Our goal is to
develop algorithm that can be applied to any graph, and therefore, we cannot
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compare against the methodology proposed in [12]. We develop two metaheuris-
tic methods (VNS and BCOi) that are compatible with the block-diagram from
Fig. 1, however, transformations of solutions are performed in more systematic
ways.

4 Variable Neighborhood Search for SRG

In this section we briefly recall some information about the VNS method and
then describe its implementation for the considered SRG problem.

4.1 Variable Neighborhood Search

Variable Neighborhood Search (VNS) is a trajectory-based metaheuristic
method proposed in [21]. It uses distances between solutions and employs one
or more neighborhood structures to efficiently search the solution space of a
considered optimization problem. VNS uses some problem-specific local search
procedure(s) in the exploitation phase and changing distances between solutions
to ensure the exploration of solution space. The role of exploration (diversifica-
tion, perturbation) phase is to ensure escaping from local optima traps. VNS
is widely used optimization tool with many variants and successful applications
[18] and we used its basic variant (BVNS) for the SRG problem.

Algorithm 1. Pseudo-code for BVNS method
procedure BVNS(Problem input data, kmax, STOP)

xbest ← InitSolution()
repeat

k ← 1
repeat

x′ ← RandomSolution(xbest, Nk) � Shaking
x′′ ← LS(x′) � Local Search
if (f(x′′) < f(xbest)) then � Neighborhood Change

xbest ← x′′

k ← 1
else

k ← k + 1
end if
Terminate ← StoppingCriterion(STOP )

until (k > kmax ∨ Terminate)
until (Terminate)
return (xbest, f(xbest))

end procedure
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BVNS employs a single type of neighborhood and consists of three main steps:
Shaking, Local Search, and Neighborhood Change (see Algorithm 1). The role of
Shaking step is to ensure the diversification of the search. It performs a random
perturbation of xbest in the given neighborhood and provides a starting solution
x′ to the next step. Local Search tries to improve x′ by visiting its neighbors with
respect to the selected neighborhood. After the Local Search, BVNS performs
Neighborhood Change step in which it examines the quality of the obtained
local optimum x′′. If it is better than xbest, the search is concentrated around
it (the global best solution xbest and the neighborhood index k are updated
properly). Otherwise, only k is changed. The three main steps are repeated until
a pre-specified stopping criterion is satisfied [18].

The main parameter of BVNS is kmax, the maximum number of neigh-
borhoods for Shaking. Actually, the current value of k represents the distance
between xbest and x′ obtained within the Shaking phase. BVNS is known as
the First Improvement (FI) search strategy because the search is always concen-
trated around xbest: as soon as this solution is improved, k is reset to 1.

4.2 Implementation Details

Let us remind that the number of edges in the graph, which we want to generate
based on the given spectrum C, is known, i.e., it can be calculated by Eq. (2).
Therefore, we have implemented BVNS because it is enough to consider only
one type of neighborhood: moving an edge from one place to another. This
neighborhood preserves the number of edges in the graph. The resulting graphs
do not have to be connected because this condition is not set for the starting
graphs either (although all analyzed examples are connected graphs, they may
have non-connected cospectral mates).

The solution of the considered problem is a graph denoted here by g, which
should have a spectral distance given by Eq. (1) from the given constant vec-
tor C less than some predetermined constant ε. The initial solution is chosen
randomly from all graphs with a given number of vertices n and edges m cal-
culated by Eq. (2). Then, the transformations of the initial graph are performed
following the steps of BVNS. The solutions in BVNS are represented by three
data structures in order to reduce the computational complexity required to find
neighbors of the considered graph in Local Search, as well as a random graph
at a given distance (with respect to the number of transformations). Obviously,
memory usage is sacrificed to increase the efficiency.

The first structure is the adjacency matrix A = [aij ]n×n. It is needed for
calculating the spectrum. The second structure contains the lists of adjacent
g[i].ls and non-adjacent g[i].ln vertices for each vertex i in graph g. In addition,
for each vertex i, it is necessary to always know the number of neighbors/non-
neighbors, and this information is stored in the arrays g[i].ns and g[i].nn. All
these data structures allow to perform any transformation of the graph in a
constant number steps O(1). Each deleted vertex is replaced by the last one in
the list and the corresponding number of elements is reduced by one (− − ns[i]
and − − nn[i1]). A new vertex is always added to the end of the list, while
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the number of list elements is increased by one (nn[i] + + and ns[i1] + +).
Of course, it must be checked that some of the used lists are not empty. The
mentioned operations are performed on randomly selected pairs of vertices (i, j)
and (i1, j1) in the Shaking, while they are applied to all pairs of vertices from
the neighborhood of the current solution in the Local Search. Of course, there
are still some steps that cannot be performed in less than polynomial (or at least
log n) number of operations.

5 Bee Colony Optimization for SRG

This section contains the brief description of Bee Colony Optimization (BCO)
metaheuristic, more precisely its improvement-based variant BCOi, as well as
the implementation of BCOi for finding graphs with given spectrum.

5.1 Bee Colony Optimization

Bee Colony Optimization (BCO) is a population-based metaheuristic that mim-
ics the foraging process of honeybees in nature [15]. The population consists of
artificial bees, each responsible for one solution of the considered problem. Dur-
ing the execution of BCO, artificial bees build (in the constructive BCO variant,
BCOc) or transform (in the improvement-based BCOi) their solutions in order
to find the best possible with respect to the given objective. The BCO algorithm
runs in iterations until a stopping condition is met and the best found solution
(the so called global best) is reported as the final one.

Algorithm 2. Pseudo-code of the BCO algorithm
procedure BCO(Problem input data, B, NC, STOP )

repeat � Main BCO loop
for b ← 1, B do � Initializing population

Sol(b) ← SelectSolution()
end for
for u ← 1, NC do

for b ← 1, B do � Forward pass
EvaluateMove(Sol(b))
SelectMove(Sol(b))

end for
EvaluateSolutions() � Backward pass
Loyalty()
Recruitment()

end for
Update(xbest, f(xbest))
Terminate ← StoppingCriterion(STOP )

until (Terminate)
return (xbest, f(xbest))

end procedure
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Each BCO iteration contains several execution steps divided into two alter-
nating phases: forward pass and backward pass (see Algorithm2). Within for-
ward passes, all bees explore the search space by applying a predefined number
of moves and obtain new population of solutions. Moves are related to building
or transforming solutions, depending on the used BCO variant and they explore
a priori knowledge about the considered problem. When a new population is
obtained, the second phase (backward pass) is executed, where the information
about the quality of solutions is exchanged between bees. The solution’s quality
is defined by the corresponding value of the objective function. The next step in
backward pass is to select a subset of promising solutions to be further explored
by applying loyalty decision and recruitment steps. Depending on the relative
quality of its current solution with respect to the best solution in the current
population, each bee decides with a certain probability should it stay loyal to
that solution and become a recruiter that advertises its solution by simulating
waggle dance of honeybees [15]. Obviously, bees with better solutions should
have more chances to keep their solutions. A non-loyal bees are referred to as
uncommitted followers, they abandon current solutions, and have to select one
of the solutions held by recruiters. This selection is taken with a probability,
such that better advertised solutions have greater opportunities to be chosen for
further exploration. In the basic variant of BCO there are only two parameters:

• B – the number of bees involved in the search and
• NC – the number of forward/backward passes in a single BCO iteration.

5.2 Implementation of SRG-BCOi

As in BVNS, we used multiple data structures to represent solutions. The first is
adjacency matrix, represented by 2-D arrays in the C(C++) programming lan-
guage. For each bee b we introduced variable A[b] as array of arrays containing
n ∗ n elements. Therefore, our data structure A is actually an 3-D array. If in
the solution handled by bee b, vertices i and j of the corresponding graph are
connected, then A[b][(i−1)∗n+j −1] = A[b][(j −1)∗n+ i−1] = 1 (as A is sym-
metric matrix), otherwise, the corresponding elements are equal to 0. We chose
1-D array for storing matrix because it is used in a version of Jacobi algorithm
for calculating eigenvalues, which we found on the internet [4]. Our algorithm
heavily relies on powerful data structures vector and unordered_set from C++.
Unordered sets take (approximately) constant time to perform insert, delete and
find operations, which is very important for obtaining efficient implementation
of iterative algorithms. These data structures are used to model lists of adjacent
and non-adjacent vertices for a given vertex vi. It is important to note that here
the dimension of used vectors and unordered sets increases by one, for counting
bees in our population-based BCOi algorithm. To increase efficiency even more,
we store in a separate vector (for each bee) non-isolated vertices, i.e., the ones
that have at least one neighbour. We use this vector to select the first end-vertex
of an edge to be removed. In addition, we list vertices that have less than n − 1
adjacent vertices, to efficiently select the end-vertices of an edge to be added.
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An initial population of each BCOi iteration is constructed randomly, by
adding edges starting from an empty graph (containing only vertices). For each
initial solution, we calculate spectrum by Jacobi algorithm and its spectral dis-
tance from the input vector C to evaluate the obtained solutions and to check
if we already found the desired graph.

Forward pass involves the required transformations. Each transformation
consists of moving a (randomly selected) number (o) of edges from one position
to another one. As the first step, we need to select a random value for variable
o from the interval [1, 2 ∗m]. The range for o is determined experimentally, hav-
ing in mind that we should enable performing significant changes of the current
solution. Although the total number of edges to be moved is only m, we allow
o to take larger values, i.e., to move some edges more than once and, possibly,
increase the diversity of the obtained solution. The value for o is determined for
each bee separately, ensuring various treatment of the same solutions assigned
to different bees (after recruitment). The second step in solution transforma-
tion assumes substituting o times an existing edge with an non-existing one. To
determine the edge to be removed, we randomly select an element i from the set
of non-isolated vertices (as the first end-vertex of the corresponding edge) and
then pick randomly one of the vertices (j) adjacent to i from the corresponding
unordered set. In a similar way, we select an edge (i1, j1) to be included in the
transformed graph. Vertex i1 is selected randomly from the set of vertices that
have less than n − 1 adjacent vertices, while j1 is determined as a random ele-
ments from the set of non-adjacent vertices of i1. Random selection from a set
usually takes linear time but we found smart trick to avoid it, on the internet
[20]. When o transformations are completed, the spectrum of the resulting graph
is calculated by Jacobi algorithm and used to determine spectral distance from
the input vector C. Among all B solutions, the one with the smallest spectral
distance is identified and used to check if we already found the desired graph or
if the current best solution is improved.

The backward pass is performed in standard way described in [15]. The prob-
ability that bee is loyal to the current solution equals the normalized value of
the corresponding objective function, while the recruitment is performed using
the roulette wheel composed of solutions advertised by recruiters. Redundant
solution representation helps to reduce the complexity of these steps also.

6 Experimental Evaluation

Here we present the results of applying AGX software and the proposed SRG-
BVNS and SRG-BCOi methods to the reconstruction of some graph examples
with a small number of vertices.

6.1 Testing Environment

SRG-BVNS method is implemented in the R language [16] within RStudio Ver.
2022.02.0 for Windows and executed on Intel Core i7-11800H 2.30GHz (24MB
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Cache, up to 4.6GHz) 16GB DDR4, 512GB SSD, NVidia GeForce RTX 3050 Ti,
GDDR6 4GB VRAM. AGX software is run on the same computer. SRG-BCOi
is coded in C++ and executed on Intel(R) Core(TM) i3-7020U CPU 2.30GHz,
8GB DDR4, 512GB NVMe SSD, Nvidia GeForce MX130 with 2GB VRAM.
In order to be able to ensure fair comparison of the tested methods, we set
the stopping criterion for all of them to be the maximum number of objective
function evaluation. As in [5], this number is set to 100000.

SRG is specific optimization problem because we know the optimal value of
the objective function (when the optimal solution found, the spectral distance
between the corresponding graph and a given input vector equals zero). There-
fore, we “just” need to find a graph with n vertices and m (calculated by Eq. (2))
edges satisfying the condition d = 0, where d is calculated by Eq. (1). This also
means that we can stop the execution of the algorithms after the optimal solu-
tion is found. As we already noted, the solution space (depending on n and m)
can be quite large, making our task very hard.

All of the compared methods are stochastic search algorithms, and therefore,
we need to execute them repeatedly (for different values of random generator’s
seed) in order to evaluate their stability and performance. We set the number
of repetitions to 100 as it ensures statistical significance of the obtained results.
As the performance measure, we report the number of successful runs, i.e., the
number of graph reconstructions in 100 repetitions, as well as the average num-
ber of required objective function evaluations. In the cases when solution was
not found in each of 100 executions, we report the average value of the objective
function. Regarding the parameters of the compared methods, we used default
settings for AGX and performed some preliminary experiments to determine the
values of SRG-BVNS and SRG-BCOi parameters. For SRG-BVNS the parame-
ters are specified as follows: kmax = m and we apply a FI strategy in LS in order
to reduce the time spent in the intensification phase. Parameters of SRG-BCOi
are set to the following values: B = 6 and NC = 30.

6.2 Results of Spectral Reconstruction of Some Graph Examples

The graphs that we selected as the test examples for comparison are presented
in Fig. 2 and Fig. 3. These are graphs with 8, 9, and 10 vertices that have been
identified in [10] as suitable models for multiprocessor systems. To be able to
control the experiment and to replicate the results, we used a fixed set of values
for seed in SRG-BVNS, and SRG-BCOi. For the sake of simplicity, seed value
in the i-th execution equals i. To the best of our knowledge, it is not possible to
control seed value in AGX and its results may be slightly different in some new
executions. We hope that 100 repetitions is enough to have a general judgement
about AGX performance. The comparison results of these three algorithms are
presented in Table 1.

Table 1 is organized as follows: the first column contains the name of the
graph example used to define the input vector C; the remaining columns are
grouped by three and they contain the results for each of the compared methods.
The first group of three columns show the number of successful reconstructions,
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Fig. 2. Test examples with 8 vertices

Fig. 3. Test examples with 9 and 10 vertices

Table 1. Comparison of AGX, SRG-BVNS, SRG-BCOi

Graph AGX SRG-BVNS SRG-BCOi
#graphs av. eval. av. obj. #graphs av. eval. av. obj. #graphs av. eval. av. obj.

Ω8,1 42 65676.66 0.56 100 445.76 0.00 100 595.37 0.00
Ω8,2 16 88186.25 0.23 100 735.64 0.00 100 339.73 0.00
Ω8,3 100 1390.70 0.00 100 324.88 0.00 100 1017.03 0.00
Ω8,4 45 58939.98 0.20 100 489.14 0.00 100 1557.70 0.00
Ω8,5 100 1698.89 0.00 100 336.16 0.00 100 123.73 0.00
Ω8,6 100 2454.73 0.00 100 409.97 0.00 100 *10288.97 0.00
Ω8,7 100 4563.33 0.00 100 415.99 0.00 100 11818.75 0.00
Ω9,1 98 23256.09 0.05 100 369.55 0.00 100 446.10 0.00
Ω9,2 0 100000.00 0.27 100 1182.50 0.00 100 1611.08 0.00
Ω10,1 0 100000.00 0.97 100 1143.97 0.00 100 1866.42 0.00
Ω10,2 95 20094.89 0.06 100 1513.41 0.00 46 *75939.58 1.01
∗ - the results are obtained when 2 (out of 6) initial solutions are set to the current
best solution.

the average number of function evaluations, and the average value of the objec-
tive function for AGX, respectively. The corresponding results for SRG-BVNS
and SRG-BCOi are presented in the columns 5–7 and 8–10.

Comparing the results from Table 1 we can conclude that both problem-
oriented metaheuristic implementations outperformed AGX (except for one
example where AGX performed better than SRG-BCOi). This result was
expected having in mind that AGX is a general-purpose graph optimization
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software. SRG-BVNS was able to find a graph with given spectra in all execu-
tions, while SRG-BCOi had troubles with the last tested graph, the Petersen
graph Ω10,2. With respect to the average number of objective function evalua-
tions, the superiority of SRG-BVNS is evident in all but two examples, where
SRG-BCOi managed to reconstruct a graph faster. Our main conclusion is that
single-solution metaheuristic performs better for these examples and we believe
that it is a consequence of more systematic search with less randomness, that
may lead to the situations where some solutions are visited more than once.
We tried to resolve this problem by recording visited solutions in a hash table,
however, it turned out that searching this table is also time consuming.

7 Conclusion

We considered the problem of Spectral Reconstruction of a Graph (SRG)
and developed the Basic Variable Neighborhood Search (BVNS) and the
improvement-based Bee Colony Optimization (BCOi). The SRG problem con-
sists of finding at least one graph whose spectrum coincides with a given vec-
tor. The implemented metaheuristic methods take into account the well-known
relationship between the number of edges in the graph and its spectrum. The
results of applying SRG-BVNS and SRG-BCOi to the reconstruction of some
known graphs are compared with each other and with the results obtained using
the AutoGraphiX (AGX) package. They clearly show the superiority of the pro-
posed SRG-BVNS implementation with respect to both solution quality and
search speed measured by the number of objective function evaluations needed
for reconstruction. Potential topics for future research include experiments with
graphs of larger dimensions, comparison with similar methods from the litera-
ture, and generation of more (as much as possible) non-isomorphic cospectral
graphs (if any). In addition, we plan to incorporate other known connections
between the parameters of the graph and its spectrum in order to reduce the
search space and speedup the execution of our SRG-BVNS and SRG-BCOi meth-
ods. Other matrices associated with graphs and other types of distances can be
used as well.
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Abstract. With the growing dimensionality of the data in many real-
world applications, feature selection is becoming an increasingly impor-
tant preprocessing step in multi-label classification. Finding a smaller
subset of the most relevant features can significantly reduce resource
consumption of model training, and in some cases, it can even result in
a model with higher accuracy. Traditionally, feature selection has been
done by employing some statistical measure to determine the most influ-
ential features, but in recent years, more and more metaheuristics have
been proposed to tackle this problem more effectively. In this paper,
we propose using the Basic Variable Neighborhood Search (BVNS) algo-
rithm to search for the optimal subset of features, combined with a local
search method based on mutual information. The algorithm can be con-
sidered a hybrid between the wrapper and filter methods, as it uses
statistical knowledge about features to reduce the number of examined
solutions during the local search. We compared our approach against
Ant Colony Optimization (ACO) and Memetic Algorithm (MA), using
the K-nearest neighbors classifier to evaluate solutions. The experiments
conducted using three different metrics on a total of four benchmark
datasets suggest that our approach outperforms ACO and MA.

Keywords: K-nearest neighbors · Metaheuristics · Optimization ·
Mutual information

1 Introduction

During the last decade we have witnessed the growing popularity of machine
learning and data mining algorithms. These algorithms for predicting the out-
come based on the given data have found numerous applications in the business
and day-to-day lives of billions of people. This was made possible by advances
in both hardware and software, but also by the ever-growing amount of accumu-
lated data used for training these algorithms. This data is often high-dimensional
and may sometimes range in tens of thousands of attributes (features). Taking
into account all of these features can be computationally expensive and can
result in models that are essentially useless in practice. However, not all of the
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http://orcid.org/0000-0002-4575-6720
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features contribute equally to the accuracy of the particular model, hence find-
ing an appropriate subset of features is an essential preprocessing step of every
machine learning model.

The traditional feature selection problem most often considers the situation
where each row in the data is associated with exactly one label. This might not
always be the case as many datasets have several labels associated with the same
row. In other words, labels in these datasets are not mutually exclusive. Applying
several labels to the same data can be useful in many fields, such as biology
[7,26], text processing [11,18], image and video analysis [20,29], chemistry [1],
etc. The version of the problem which considers multiple labels is referred to as
Multi-label feature selection (MLFS).

There are two main approaches when dealing with multi-label feature selec-
tion. The first approach transforms multi-label data into single-label data and then
applies some traditional feature selection techniques to the transformed dataset.
The second approach works directly on a multi-label dataset, utilizing specialized
metrics and local search methods to optimize the solution. In both approaches,
three main types of algorithms can be distinguished: filter, wrapper, and embedded
[17]. Filter methods calculate the statistical relevance of each attribute, which are
then used to determine a good subset of features without actually calling the learn-
ing algorithm. Wrapper methods use a specific learning algorithm to determine
the quality of each considered feature subset. Most commonly, these methods are
based on some heuristic or metaheuristic method that calls a learning algorithm
as a black box, thus exploring the search space consisting of all possible feature
subsets. Finally, embedded methods select features during the learning process.

In this paper, we use a direct hybrid method for finding a satisfactory solu-
tion to the multi-label feature selection problem, combining wrapper and filter
techniques. More precisely, we utilize the Variable Neighborhood Search (VNS)
algorithm, originally proposed by Mladenović and Hansen (1997) [14]. VNS has
since been applied to numerous optimization problems with a great deal of suc-
cess.

The rest of the paper is organized as follows. In Sect. 2 we present a more con-
cise definition of the problem, along with a suitable evaluation metrics. Section 3
is a brief overview of the existing literature. In Sect. 4 we present our method,
and in Sect. 5 we discuss the experimental results obtained on several benchmark
datasets. Finally, the conclusion is presented in Sect. 6.

2 Problem Description

Feature selection (FS) problem can be formulated as follows:

Definition 1. Let us assume that we have a dataset D where each row is
described with a set of features S = {s1, s2, · · · , sn} and a specific machine
learning model M. The goal is to find a feature subset of size k (k < n) such
that

max
Sk⊂S

accuracy(M(D[Sk])) (1)

where D[Sk] is the original data where only the features from Sk are present.
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The function accuracy can be substituted with any appropriate metric. For
the purpose of our study, we adopted three metrics suitable for multi-label fea-
ture selection, but a lot more metrics can be found in the paper by Tsoumakas
et al. (2009) [25].

Let us assume that we have a set of test instances (xi, Yi), i = 1...n, where Yi

is a subset of labels associated with instance xi. Also, let us denote a predicted
set of labels for each test instance as Zi. We can then define the following metrics.

– Classification Accuracy

Classification Accuracy =
1
n

n∑

i=1

I(Zi = Yi) (2)

where I(true) = 1 and I(false) = 0.
– Hamming loss

Hamming − Loss =
1
n

n∑

i=1

|YiΔZi|
L

(3)

where Δ is the symmetric difference between two sets, and L is the number
of all available labels.

– Precision

Precision =
1
n

n∑

i=1

|Yi

⋂
Zi|

|Zi| (4)

3 Related Work

In this section, we give a brief overview of some multi-label feature selection
methods, as well as existing single-label feature selection methods based on VNS.

There have been several studies in which the authors used VNS for single-
label feature selection. Mucherino and Liberti (2013) [15] formulated the feature
selection problem as a bilevel program and used VNS to optimize it. Mari-
naki and Marinakis (2015) [13] combined clonal selection algorithm with iter-
ated local search and VNS for finding a good subset of features. Garćıa-Torres et
al. (2015) [8] applied VNS to high-dimensional datasets, having previously used
Markov blankets to group subsets of features. Boughaci and Alkhawaldeh (2018)
[2] explored three methods: VNS, hill-climbing local search, and stochastic local
search. Chen et al. (2020) [5] combined VNS with the estimation of distribution
technique to find a solution to the feature selection problem. To the best of our
knowledge, VNS has not yet been used for multi-label feature selection.

Several surveys were conducted on the topic of multi-label feature selection
[10,17,22]. As previously stated, the transformation-based methods transform
a multi-label problem into a single-label problem and then apply some of the
existing feature selection methods, usually the filter methods. An example of
transformation-based method is a study by Spolaôr et al. (2013) [21].
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In a study by Zhang et al. (2009) [28], the principal component analysis
is used to remove irrelevant and redundant features before applying a genetic
algorithm (GA) to the remaining features to determine the best possible feature
subset.

Shao et al. (2013) [19] combined mutation-based simulated annealing, genetic
algorithm, and the greedy hill-climbing algorithm. The simulated annealing
is used to find promising parts of the search space. The best-found solutions
detected by simulated annealing are then used as the initial population for the
genetic algorithm. Finally, the hill-climbing algorithm is used to further refine
and improve solutions found by GA, as well as to determine the best possible
subset of features.

Yu et al. (2014) [27] used a forward search strategy to obtain a relevant
feature subset for each label by employing dependence maximization as a metric.
In the next step, GA is used to find the globally optimal feature subset.

In the study by Lee and Kim (2015) [12], the authors used a memetic algo-
rithm, combined with a local search based on the approximated mutual infor-
mation.

Jungjit and Freitas (2015) [9] applied a standard genetic algorithm to the
MLFS, but presented a novel fitness function based on the correlation between
pairs of features, and between features and labels.

An algorithm based on particle swarm optimization was presented in a study
by Zhang et al. (2017) [30] for MLFS. The features are encoded as a vector of real
numbers, each representing the probability that a corresponding feature will be
selected. Furthermore, a local learning strategy is utilized to improve the overall
performance of the algorithm.

Dowlatshahi et al. (2017) [6] proposed a novel algorithm called Epsilon-
Greedy Swarm Optimizer. In each iteration of the algorithm, a random parti-
cle is chosen. Next, the nearest better particle to the selected particle in the
swarm is determined, after which the epsilon-greedy method is applied to those
two particles in order to obtain the new one. If the new particle is better than
the randomly selected one, it replaces the latter in the swarm. This algorithm is
further hybridized with filter-based rankers to improve its performance.

In a study by Paniri et al. (2019) [16], the ant colony optimization algorithm is
utilized for MLFS. Pheromone values are initialized by using the cosine similarity
between features and labels. Furthermore, correlations between pairs of features
and between features and labels are incorporated in the state transition rule.

4 Proposed Method

In this section, we will present our method based on the VNS metaheuristic.
The solution is represented as a set of selected features, where cardinality is

limited by the input parameter k, which represents the number of features to be
selected.

The solution quality is determined by invoking a multi-label k-nearest neigh-
bors algorithm [29] on the given sets of training and test instances and predictions
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are then evaluated by using one of the metrics described in Sect. 2. Multi-label
KNN classifier is used as it does not require any model training other than stor-
ing the training dataset into memory. Nonetheless, any multi-label classifier can
be used to evaluate subsets of features. The number of neighbors is preset to
10. The standard scaler is applied to all the data, which normalizes each feature
individually so that its mean (μ) is equal to zero, and its standard deviation (σ)
is equal to one, using the formula 5.

z =
x − μ

σ
(5)

μ =
1
N

N∑

i=1

xi (6)

σ =

√√√√ 1
N

N∑

i=1

(xi − μ)2 (7)

Basic VNS consists of three main steps: shaking procedure, local search, and
move-or-not procedure. In Algorithm 1, we present our shaking procedure. In
essence, we substitute k features in the incumbent set with k other features,
selected at random.

Algorithm 1. Shaking procedure
1: procedure SHAKE(k, features)
2: selected ← features
3: available ← F \ features � F is the set of all the possible features
4: for i = 1 to k do
5: f− ← randomly choose a feature from selected
6: f+ ← randomly choose a feature from available
7: features ← features ∪ f+

8: features ← features \ f−

9: selected ← selected \ f−

10: available ← available \ f+

11: end for
12: return features
13: end procedure

Our local search method is inspired by the procedure presented in [12]. Let
us first introduce a helper function Q(f), where f is a specific feature.

Q(f) =
∑

yj∈Y

I(f, yj) −
∑

fj∈Sk

I(f, fj) (8)

where Y is the set of all possible labels, and Sk is a set of currently selected fea-
tures. The function I(f, h) represents mutual information, and can be calculated
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as:
I(f, h) = H(f) + H(h) − H(f, h) (9)

where H(X) is the entropy of the variable X (Eq. 10), and H(X,Y ) is the
joint entropy between variables X and Y (Eq. 11). In Eq. 10, p(x) denotes the
probability that the outcome x is observed in variable X. Likewise, p(x, y) in
Eq. 11 designates the probability that outcomes x and y are jointly observed in
variables X and Y . We can notice that these values can be calculated just once,
during the preprocessing step.

H(X) = −
∑

x

p(x) log p(x) (10)

H(X,Y ) = −
∑

x

∑

y

p(x, y) log p(x, y) (11)

We can now define two functions: ADD FEATURE (Algorithm 2) and
DEL FEATURE (Algorithm 3). The function ADD FEATURE finds a feature
f from the set of unselected features that maximizes function Q(f) and adds it
to the set of selected features. On the contrary, function DEL FEATURE finds
a feature f from the set of selected features that minimizes function Q(f) and
removes it from the set of selected features.

Algorithm 2. Procedure that adds a feature into the set of selected features
1: procedure ADD FEATURE(features)
2: A ← F \ features � F is the set of all the possible features
3: f ← arg max

f∈A
Q(f)

4: features ← features ∪ f
5: return features
6: end procedure

Algorithm 3. Procedure that removes a feature from the set of selected features
1: procedure DEL FEATURE(features)
2: f ← arg min

f∈features
Q(f)

3: features ← features \ f
4: return features
5: end procedure

Finally, our local search method is presented in Algorithm 4. In each step
of the algorithm, we first add i features to the incumbent solution (Lines 4–6)
and then remove i different features from the solution (Lines 7–9). If the newly



100 L. Matijević

created solution is better than the incumbent solution, it is accepted as the
new incumbent solution and the search resumes from the smallest neighborhood
(Line 12). Determining the quality of the solution is done by using the EVAL-
UATE function, which consists of invoking the multi-label K-nearest neighbors
algorithm on the testing dataset and applying one of the aforementioned metrics
to the result.

Algorithm 4. Local search
1: procedure LOCAL SEARCH(features, h)
2: for i = 1 to h do
3: features′ ← features
4: for j = 1 to i do
5: ADD FEATURE(features′)
6: end for
7: for j = 1 to i do
8: DEL FEATURE(features′)
9: end for

10: if EV ALUATE(features) < EV ALUATE(features′) then
11: feature ← features′

12: i ← 1
13: end if
14: end for
15: return features
16: end procedure

Using the same idea as in the local search procedure, we can construct
a procedure that generates the initial solution. The pseudocode of that pro-
cedure is given in Algorithm 5, and it consists of k consecutive calls to the
ADD FEATURE procedure.

Algorithm 5. Procedure for generating the initial solution
1: procedure initial solution(k)
2: features ← ∅
3: for j = 1 to k do
4: ADD FEATURE(features)
5: end for
6: return features
7: end procedure

The whole proposed algorithm is presented in Algorithm 6.
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Algorithm 6. Basic Variable Neighborhood Search
1: procedure BVNS(training data, test data, k, lmin, lmax, h)
2: features ← initial solution(k)
3: while stopping criterion is not met do
4: l ← 1min

5: while l < lmax do
6: features′ ← SHAKE(features, l)
7: features′′ ← LOCAL SEARCH(features′, h)
8: if EV ALUATE(features) < EV ALUATE(features′′) then
9: features ← features′′

10: l ← lmin

11: else
12: l ← l + 1
13: end if
14: end while
15: end while
16: return features
17: end procedure

5 Experimental Evaluation

5.1 Experimental Settings

For the purpose of evaluating our approach, we implemented three algo-
rithms: the multi-label ant colony optimization (MLACO), as presented in [16],
memetic algorithm (MA) with the local refinement procedure based on mutual
information from [12], and our own basic variable neighborhood search (BVNS).

Each of these algorithms has a set of parameters which have to be fine-tuned
in order to achieve the best performance. For this purpose, we used the iRace1

package for the R programming language with a budget of 200 tests for each
algorithm. The results are presented in Table 1. The meaning of each parameter
for MLACO and MA can be found in original publications. The size of the feature
subset that needs to be selected is set to 10 for the purpose of testing. In general,
there is no optimal number of features that would work for every dataset, as it
is highly dependent on the properties of the dataset under consideration.

The experiments were conducted on a personal laptop with Intel i7-10750H
CPU and 32 GB of RAM, under Ubuntu 20.04 operating system. The algorithms
were implemented in Python programming language, using packages such as
scikit-learn, scikit-multilearn [23], and numpy. The tests were performed on four
benchmark datasets for multi-label classification, presented in Table 2. Features
with continuous values in the datasets were discretized by linearly dividing the
interval into 10 bins. The tests were performed with 30 repetitions to ensure
the stability of the obtained results. Three different metrics were tested as the
fitness function, presented in Sect. 2.

1 https://cran.r-project.org/web/packages/irace/index.html.

https://cran.r-project.org/web/packages/irace/index.html
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Table 1. The optimal parameter values

MLACO MA BVNS

number of ants = 25 population size = 15 lmin = 2

β = 0.8 v = 500 lmax = 8

ρ = 0.1 h = 15 h = 5

crossover probability = 0.5

mutation probability = 0.1

Table 2. Multi-label datasets used for experimental evaluation

Dataset Domain Instances Features Labels Source

Birds Audio 645 260 19 [4]

Emotions Music 593 72 6 [24]

Scene Image 2407 294 6 [3]

Yeast Biology 2417 103 14 [7]

The stopping criterion for all three algorithms was the number of times the
fitness function was called. This way we wanted to show which algorithm was
the most successful in navigating the search space with the limited resources.
The total number of fitness function calls for each algorithm execution was set
to 500. In practice, this limit would be set much higher allowing algorithms to
obtain much better solutions.

5.2 Obtained Results

In Table 3, we present the average accuracy over 30 independent runs for all three
algorithms and all four datasets, with standard deviation presented in the paren-
thesis. The algorithm with the best performance for each dataset is bolded. Fur-
thermore, we performed the Wilcoxon pair-wise statistical test between BVNS
and other proposed methods, taking into account all 30 independent runs for
each dataset and each pair of methods. The p-values of these tests are given in
Table 6, using accuracy as the metric. Nonetheless, the results are almost iden-
tical when using the other two metrics. With a significance level of p=0.05 we
can observe that there is a statistically significant difference between the results
obtained by BVNS and MLACO for all four datasets, and the results obtained
by MA statistically differ from BVNS results in two out of four cases. In cases
of Yeast and Scene datasets, BVNS and MA performed rather similarly.

Similarly, the results obtained by using the Hamming loss as the fitness func-
tion are presented in Table 4. It is important to mention that in the case of
Hamming loss metric the lower value corresponds to a better solution. Likewise,
in Table 5 we gave the average precision for implemented method.



Variable Neighborhood Search for Multi-label Feature Selection 103

From these tables one can conclude that BVNS outperformed other meth-
ods for each dataset. On the other hand, we have not observed any significant
difference between different fitness functions.

Table 3. Average Accuracy over 30 independent runs

Dataset MLACO MA BVNS

Emotions 0.2574 (0.0107) 0.3054 (0.0066) 0.3178 (0.0109)

Birds 0.5108 (0.0039) 0.5012 (0.0045) 0.5170 (0.0044)

Yeast 0.1586 (0.0037) 0.1747 (0.0073) 0.1783 (0.0063)

Scene 0.4153 (0.0151) 0.5099 (0.0052) 0.5115 (0.0060)

Table 4. Average Hamming loss over 30 independent runs

Dataset MLACO MA BVNS

Emotions 0.2524 (0.0097) 0.2195 (0.0075) 0.2138 (0.0079)

Birds 0.0490 (0.0019) 0.0484 (0.0008) 0.0472 (0.0022)

Yeast 0.2192 (0.0031) 0.2168 (0.0045) 0.2150 (0.0043)

Scene 0.1445 (0.0054) 0.1250 (0.0033) 0.1235 (0.0029)

Table 5. Average Precision over 30 independent runs

Dataset MLACO MA BVNS

Emotions 0.4897 (0.0161) 0.5451 (0.0121) 0.2138 (0.0079)

Birds 0.0969 (0.0085) 0.0899 (0.0074) 0.1016 (0.0122)

Yeast 0.3516 (0.0024) 0.3523 (0.0049) 0.3523 (0.0034)

Scene 0.4104 (0.0158) 0.4843 (0.0071) 0.4891 (0.0069)

Table 6. p-values of Wilcoxon pair-wise statistical tests comparing BVNS to other
proposed methods

Dataset MLACO MA

Emotions 0.00195 0.01141

Birds 0.0373 0.00195

Yeast 0.00195 0.09289

Scene 0.00097 0.0625
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In Fig. 1, we present a boxplot for each dataset, where we compared the
obtained accuracy for all three methods. Again, it is clear that BVNS outper-
formed other methods, but it is noteworthy that in the case of the Scene dataset,
BVNS and MA performed quite similarly.

Fig. 1. Boxplots showcasing the difference in the accuracy of tested algorithms on four
datasets

In Fig. 2, we present the accuracy BVNS was able to achieve with the limited
number of fitness function calls. The accuracy was measured after every 50 calls.
The blue line represents the average accuracy after n calls, the orange and green
lines symbolize the best and worst accuracy respectively, and the shaded area
denotes the interval that 80% of the results belong to. It is easy to see that
the quality of the 80% of the results closely follows the average accuracy, with
very little deviation, suggesting the stability of the method. While in the worst-
case BVNS reported solutions that are below average, it is compensated by a
relatively steady climb of the average accuracy. Given enough time, it is safe to
assume that the results from all executions would converge at some point.
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Fig. 2. Diagram displaying the obtained accuracy after every 50 calls to the fitness
function (30 repetitions)

6 Conclusion

In this paper, we have proposed a Basic Variable Neighborhood Search (BVNS)
algorithm for finding a good subset of features for multi-label classification. To
increase the performance of this algorithm, we incorporated the local search
procedure based on mutual information, as well as a procedure for generating
the initial solution which uses the same idea. A multi-label k-nearest neighbors
algorithm was used to evaluate the quality of proposed solutions.

We have tested our approach in comparison with two methods present in
the literature: Multi-Label Ant Colony Optimization (MLACO) and Memetic
Algorithm (MA). Four different benchmark datasets for this problem were used.
Based on conducted experiments, BVNS was able to outperform MLACO and
MA, with the limited numbers of calls to the fitness function. Three different fit-
ness functions were tested: classification accuracy, Hamming loss, and precision,
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but we concluded that the choice of these measures did not affect the overall
performance of the algorithm.

In future work, we will approach this problem as a multi-objective optimiza-
tion problem, in which we need to maximize the accuracy of the model, while
simultaneously minimizing the number of features.

Acknowledgements. This work was supported by the Serbian Ministry of Education,
Science and Technological Development, Agreement No. 451-03-9/2021-14/200029 and
by the Science Fund of the Republic of Serbia, Grant AI4TrustBC: Advanced Artifi-
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Trustworthy BlockChain Technology.
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Abstract. Diversity and dispersion problems consists of selecting a sub-
set of elements from a given set so that their diversity is maximized. The
one of most recently proposed variant is the MaxMin dispersion prob-
lem with capacity and cost constraints. This variant usually called the
generalized dispersion problem. In this paper we propose variant of tabu
search based on multiple neighborhoods to solve large-size instances.
Extensive numerical computational experiments are performed to com-
pare our tabu search metaheuristic with the state-of-art heuristic. Results
on public benchmark instances show the superiority of our proposal with
respect to the previous algorithms.
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1 Introduction

In the last thirty years, the study of diversity has very popular in Operations
Research and Computer Science. For large period, it was mainly devoted to
continuous models. Discrete diversity maximization was introduced by Kuby [5]
in a paper that was the origin of a today very large area of location problems
(Mart́ı et al., [8]).

In its simplest form, the problem of maximizing diversity or dispersion con-
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distance among the selected elements is maximized. We may think on the stan-
dard distance definition based on the Euclidean formula. But many applications
may require non-Euclidean geometries, such as those induced by affinities rela-
tionships expressing a relative degree of attraction between the elements. Typical
examples are architectural space planning and analysis of social networks (Glover
et al., [4]).

Over the last few years, different mathematical expressions have been pro-
posed as measure of diversity, dispersion, or even equity. The sum of the distances
among all pairs of the selected elements is probably the most well-known model
(the MaxSum model). But, we can also use the minimum among these distances
(the MaxMin model) as an efficient way to model it. Parreño et al. [11] perform
an empirical comparison of the different diversity models, and conclude that
maximizing the minimum of the distances among the selected elements is the
best way for measuring the representativeness, which many location applications
require when maximizing diversity.

Figure 1 shows in the left part the optimal solution of the MaxSum model on
an Euclidean instance with 50 elements from which we select 10 of them. In the
right part of this figure, we can see the optimal solution of the MaxMin model
for the same instance (see [11]). We can conclude that the MaxMin model does
not avoid to select points in the central region of the plane, as the MaxSum
model does. Also, the MaxMin model selects almost equidistant points deployed
all over the plane. If we consider the points in the plane as potential locations
to set facilities over a given territory, the MaxMin solution in the right, presents
a better distribution of the selected elements than the one in the left, since it
covers the territory (with disperse points) in a better way.

Fig. 1. Comparison of optimal solutions for MaxSun and MaxMin Dispersion Problem
on instance with n = 50 elements (see also [11]).

In this paper we consider the generalized dispersion problem (GDP), which
is based on the MaxMin diversity model, but also incorporates capacity and cost
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constraints. This model was introduced for the first by Rosenkrantz et al. [13]. In
short, the authors considered the allocation of the same-type of facilities, such as
shops, but in such way to avoid their closeness. The capacity constraints intro-
duce the maximal number of customers (patients, students) that corresponding
facility may serve and ensures that total capacity of all allocated facilities is not
fewer than given lower limit. The cost constraint allows to limit total cost (which
is real situation) of setting up all facilities.

Despite of their existence, the side constraints, such as capacity and cost
constraints, have been mostly ignored in the discrete diversity literature. There
are only two papers considering these two types of constraints. On the other
hand Mart́ı et al. [8] found more than 50 papers considering the unconstrained
discrete diversity (but including the standard constraint regarding the number
of facilities to be selected). In this paper we study this more realistic NP -hard
problem involving capacity constraint as well as cost constraint.

The paper is organized as follows. In the Sect. 2 Mathematical model of the
studied problem is presented. In the Sect. 3 overview of existing heuristics is given.
The developed Multiple neighborhood tabu search for generalized dispersion prob-
lem is described in Sect. 4. Computational results are presented in Sect. 5.

2 Mathematical Model

Given a set of n potential facilities V (V = {1, 2, . . . , n}) connected by edges
(links) each of which has positive length (let us denote by dij the length of
edge connecting facilities i and j). Each potential facility has capacity (let ci
is capacity of the facility i) and cost of establishing (let us denote by ai cost
of establishing facility at location i). Let B be the minimum total capacity
(so called service level) and let K be maximum allowed budget (maximal total
cost of establishing all facilities). It is necessary select subset P ⊂ V satisfying
capacity and cost constraints such that minimum distance among elements of P
is maximized.

The mathematical model for generalized diversity problem (GDP for short)
is based on binary decision variables xi (i = 1, 2, . . . , n) which take value 1 if
facility i is selected and value 0 if facility i is not selected into subset P . Under
these assumptions the GDP can be defined in the following way:

max
x

min
i,j∈V,i�=j

dijxixj + (2 − xi − xj)M

such that
n∑

i=1

cixi � B (1)

n∑

i=1

aixi � K. (2)

In this model, M is arbitrary big number (for example M = maxi,j∈V dij).
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In the above model the constraint 1 ensures that total capacity is not lower
than minimum required capacity B. The constraint 2 ensures that total cost of
establishing all facilities is not greater than allowed budget K. Above mathe-
matical model can be rewritten as follows:

max
x

z

such that
n∑

i=1

cixi � B (3)

n∑

i=1

aixi � K, (4)

dijxixj + (2 − xi − xj)M � z 1 � i < j � n. (5)

3 Previous Heuristics

Rosenkrantz et al. [13] propose a binary search based method to solve a variant
of the GDP also known as the capacitated dispersion problem (CDP for short).
This problem involves distances and capacity in the same way than the GDP, but
does not consider the cost constraint. In short, the greedy algorithm proposed by
Rosenkrantz et al. [13] performs a binary search over the non-zero distances in
order to find a set of elements satisfying the capacity constraint with minimum
distance as large as possible. Mart́ınez-Gavara et al. [9] modify this algorithm to
algorithm solving the GDP, and named it TI Ad. Specifically, Mart́ınez-Gavara
et al. [9] consider the ratio between the capacity and cost of each element and
sort elements from V according to the ratio. TI Ad then selects the elements
from this list in decreasing order, and checks both, capacity and cost constraint,
to validate the feasibility of the selected set of elements, and stops when the
capacity level is reached.

Mart́ınez-Gavara et al. [9] applied two metaheuristics to obtain high quality
solutions of the GDP: a greedy randomized adaptive search procedure, GRASP,
and a long-term tabu search, TS. As it is known, GRASP is a multi-start method
that in each iteration creates a new solution, and improves it by applying a local
search to obtain a local-optimum. We will describe in a short the main features
of the GRASP algorithm. The construction phase starts by creating the so-called
candidate list (CL), which consists of all unselected elements (locations) that can
be inserted in the solution P without violation the upper bound on the budget
K. Then, the next element to be added in the solution is selected at random from
the restricted candidate list (RCL) containing the good candidates. To obtain
RCL, the value of greedy function (denoted by g̃) calculates for each element
of CL, and the elements having greater values of greedy function inserts into
RCL. The greedy function collects in a single expression all the three criteria
involved in this problem: distance, cost, and capacity (the exact formula can be
seen in [9]).
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Once a feasible solution P is constructed, the algorithm explores the neigh-
borhood of P in order to obtain a local optimum. This neighborhood is based
on swap moves. Let d∗ be the objective function value of solution P , and
pivotallist is the set of all elements belonging to the solution P with minimum
distance equal to d∗. Then, at each iteration, the algorithm evaluates the objec-
tive function value of each solution obtained by exchange between a randomly
selected site i from the pivotallist with a element j ∈ V \ P , with distance
to the selected elements (except the element i), larger than d∗. The swap move
is applied if it is feasible and it improves the current solution. The local search
based on this neighborhood performs while there is improving move.

The authors also propose a long–term tabu search for GDP. This is a memory-
based methodology that explores efficiently the solution space [3]. The proposed
algorithm, TS, starts by constructing an initial solution in the same way as the
GRASP constructive phase, but without selecting the next element at random
way. After that, the algorithm explores the same neighborhood of the current
solution as the previously described GRASP. But in this method, the algorithm
always performs a move even if it does not improve the solution. After executing
an exchange between a site i ∈ pivotallist and a site j ∈ V \P , the tabu structure
records as tabu–active the site i, i.e., the element that leaves the solution. The
tabu status of a element i remains active for a specific number of iteration, and
during these iterations, it cannot be selected for inclusion in the solution. Also,
the long term phase in TS is diversifies the search and forces exploring unvisited
areas of the solution space, by ignoring frequently used elements and forcing the
non–frequently used elements which provide high quality solutions.

The computational experiments performed in [9] showed that the TI Ad
heuristic algorithm determines relatively good solutions for small size instances
with very short running times (less than 1 s). But the TI Ad cannot compete
with GRASP and TS in terms of the quality of the solutions, especially for large
size instances. Moreover, authors state that GRASP has best performances, with
respect to the running times.

4 Tabu Search for Generalized Dispersion Problem

4.1 Solution Representation

To store a solution and allow an efficient moving from one solution to
another the following solution representation is proposed (see also [10]).
The potential facility locations are stored in the vector (or array) x =
{x1, x2, x3, . . . , xm−1, xm, xm+1, . . . , xn} so that the first m elements represent
solution Px, i.e., the subset of selected locations, while the remaining n − m
elements are the non-selected locations. This implies that pair (x,m) determines
the solution Px (Px = {x1, x2, . . . , xm}) and we will use this two notations inter-
changeably.

Beside the vector x (and the number of selected locations m) we all time
update four auxiliary data structures:
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– array dm1 where each element dm1i contains the minimum distance of the
element i ∈ V to the elements in Px, i.e., dm1i = min{di,xj

|xj ∈ Px, xj �= i};
– array c1 where each element c1i corresponds to the element in Px, that is

the closest to element i ∈ V . More precisely, c1i = argmin{di,xj
|xj ∈ Px, xj �=

i}, or dm1i = di,c1i ;
– array dm2 where each element dm2i contains the second minimum distance

of the element i ∈ V to the elements in Px, i.e., dm2i = min{di,xj
|xj ∈

Px, xj �= i, xj �= c1i};
– array c2 such that each element c2i corresponds to the element in Px, that

is the second closest to element i ∈ V and which may be determined as
c2i = argmin{di,xj

|xj ∈ Px, xj �= i, xj �= c1i}.

The array dm1 enables us to quickly calculate the objective function value
of a solution Px as

f(Px) = min{dm1xj
|j = 1, 2, 3, . . . ,m}.

On the other hand, arrays c1 and c2 will be used to speed up the exploring
neighborhoods and the local search (i.e. tabu search). Beside the above data
structures, we also calculate the total number of elements in the current solution
that yield the objective function value, i.e. the number of elements xj ∈ Px

satisfying condition dm1xj
= f(Px). Such elements are called critical elements

and constitute set Cx defined as Cx = {xi ∈ Px|dm1xi
= f(Px)}. The cardinality

of set Cx is denoted with nminx (i.e., nminx = |Cx|). In case that there are a
more locations at the same smallest distances, values for c1 and c2 are fewest
location labels among all closest locations.

According introduced notation we propose new criteria for comparing solu-
tions. So the solution Px′ will be considered as better than the solution Px′′ if
one of the following conditions is satisfied:

– f(Px′) > f(Px′′) or
– f(Px′) = f(Px′′) and nminx′ = |Cx′ | < |Cx′′ | = nminx′′ .

In other words, the solution x′ is better than the solution x′′ either if its objective
function value (i.e. minimal distance between elements belonging to the solution
Px′) is strictly greater or in the case of the same minimal distance between
elements if solution x′ has fewer number of critical elements.

4.2 Neighborhoods

In this section, we describe neighborhoods that are explored within our heuristic.
In total, three neighborhood structures have been considered (swap, 2–out–1–in,
and 1–out–2–in neighborhoods). Comparing to the previous papers, this paper
proposes two new neighborhood structures (2–out–1–in and 1–out–2–in) that
have not been considered before for solving the GDP. In addition, the previous
papers use relatively inefficient procedure for evaluating a neighboring solution
(did not use any additional data structures). In this paper we explain how a
neighboring solution may be efficiently evaluated by using the auxiliary data
structures.
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Swap Neighborhood. The swap neighborhood of a solution Px (stored as
(x,m)) is defined as a set of all solutions that may be obtained by a feasible
swap move that replaces one element in Px by one element not belonging Px. A
swap move is considered feasible if its execution yields a solution that satisfies
the minimum capacity requirement and maximum cost requirement.

In order to efficiently calculate the objective function value of the solution
obtained by swapping elements out ∈ Px and in /∈ Px, we will use arrays c1
and c2. Let us denote by dm1′

k the minimal distance for element k ∈ V , after
executing the swap move involving elements in and out, then we have:

dm1′
k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dk,in, if dk,in � dk,c1k
dm1k, if out �= c1k and dk,in > dk,c1k
dk,in, if out = c1k and dk,in < dm2k
dm2k, otherwise.

or equivalently

dm1′
k =

{
min{dm1k, dk,in}, if out �= c1k,
min{dm2k, dk,in}, if out = c1k.

These formulas imply that resulting dm1 value for any element (after per-
forming a swap move) can be calculated in O(1) time complexity. On the other
hand, to evaluate the objective function value of a resulting solution after a swap
move it is necessary to calculate new dm1 values only for elements participating
in the solution and for the element that is inserted by the swap move. Because of
that, the objective function value (as well as the number of critical vertices) of
the solution obtained by performing a swap move may be calculated in the time
complexity O(m) = O(n). On the other hand, the number of different solutions
belonging to the swap neighborhood is m · (n − m) = O(m × n). So the worst
case time complexity of exploring swap neighborhood is O(m2 × n).

2-out-1-in Neighborhood. 2-out-1-in neighborhood of a solution Px contains
all solutions that may be obtained by applying a feasible 2-out-1-in move on a
given solution Px. A feasible 2-out-1-in move removes two elements out1 and out2
from solution Px and inserts one element in not belonging Px, while respecting
the minimum capacity requirement and the maximum cost constraint. To effi-
ciently calculate the objective function value after performing a 2-out-1-in move,
the resulting array dm1′ must be calculated using the following formulas:

– min{dk,in, dm1k}, if c1k �∈ {out1, out2}
– min{dk,in, dm2k}, if c1k ∈ {out1, out2} and c2k �∈ {out1, out2}
– min{dk,in} ∪ {dk,xi

|i = 1, 2, ...,m, xi �= out1, xi �= out2}, otherwise.

It is easy to conclude that calculating of dm1k (for arbitrary element k) has
worst time complexity O(m) (it is complexity in third case of formula for calcu-
lating dm1′). In order to calculate objective value of the new solution (obtained
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after performing a 2–out–1–in move) we must calculate value of dm1′ for all ele-
ments belonging to the new solution. Because of that the worst time complexity
of evaluating the objective value of the neighbouring solution is O(m2). Taking
into account that cardinality of the 2–out–1–in neighborhood is O(m2(n−m) we
can conclude that worst case complexity of exploring the 2–out–1–in neighbor-
hood is O(m4(n−m) = O(m4n). But it is very pessimistic scenario, because the
time complexity of evaluating the most of neighbouring solution is not O(m2)
but O(m) (since the third case of the formula for calculating dm1′ is very rarely
applied).

1–out–2–in Neighborhood. The last considered neighborhood is based on
feasible 1–out–2–in moves. A feasible 1–out–2–in move removes one element out
from a given solution and inserts two other elements in1 and in2, not belonging to
the solution, while respecting the minimum capacity requirement and maximum
cost requirement. Each 1–out–2–in move can be considered as composition of
two moves: one swap move (swaps element out going out and one of elements
(for example in1) going in) and one insert move (inserting the second element
in2 going in). Considering 1–out–2–in move as composition of two moves allows
us to efficiently calculate values dm1 (for all elements belonging to the solution)
after performing both moves. We already seen how it is possible calculate values
dm1 after performing swap move (let us denote this values with dm1′). If we
denote by dm1′′ values of dm1 after inserting element in2 into the solution, then
we calculate dm1′′ by using the following rules:

dm1′′
k =

{
dm1′

k, if dm1′
k � dk,in2

dk,in2 , if dk,in2 < dm1′
k,

or dm1′′
k = min{dm1′

k, dk,in2}.
Because of that, the time complexity of evaluating value dm1 for one element

is O(1), and time complexity of evaluating objective value for the neighbouring
solution is O(m). On the other side, the cardinality of complete neighborhood is
O(m(n − m)2) = O(mn2), and the time complexity of exploring the 1–out–2–in
neighborhood is O(m2n2). But the number of infeasible moves in 1–out–2–in
neighborhood can be very large and in this case time complexity of exploring
1–out–2–in neighborhood reduces (because it is not necessary evaluate objective
function values for such solutions). However, it is showed that exploring the
complete 1–out–2–in neighborhood is very time consuming. Because of that we
decided to reduce this neighborhood by considering only the moves removing
some of the critical elements. We called such defined neighborhood Restricted
1–out–2–in neighborhood.
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4.3 Multiple Neighborhood Tabu Search for Generalized Dispersion
Problem

Taking into account that three possible neighborhoods are defined we decided to
implement multiple neighborhood tabu search in the following way. For begin-
ning we define two tabu lists:

– tabu list consisting of the elements belonging to solution which are included
into the solution in any of the last ntin (setting the value of ntin will be
described later) iterations;

– tabu list consisting of the elements not belonging to solution which are
excluded from the solution in any of the last ntout (setting the value of ntout
will be described later) iterations.

One iteration of the tabu search consists of the following steps:

– At first we explore complete Swap neighborhood in order to determine the
best non-tabu swap move m1 (move involving two elements not belonging
to the previously described tabu lists) as well as the best swap move m2

(including also all the tabu swap moves). If the solution obtained by applying
move m2 is better than the best found after the last restart, then we apply
such move and continue the tabu search from the obtained solution (go to
the next iteration). Otherwise, if the solution obtained by applying move m1

is better than the current solution, then we apply this move and continue the
tabu search from the obtained solution (go to the next iteration).

– If the better solution in the Swap neighborhood is not found, then we explore
complete 2–out–1–in neighborhood in order to determine the best non-tabu
2–out–1–in move m3 (move involving three elements not belonging to the
previously described tabu lists) as well as the best 2–out–1–in move m4. If
the solution obtained by applying move m4 is better than the best found after
the last restart, then we apply such move and continue the tabu search from
the obtained solution (go to the next iteration). Otherwise, if the solution
obtained by applying move m3 is better than the current solution, then we
apply this move and continue the tabu search from the obtained solution (go
to the next iteration).

– If the better solution in the 2–out–1–in neighborhood is not found, then we
explore the restricted 2–out–1–in neighborhood in order to determine the best
non-tabu 1–out–2–in move m5 (move involving three elements not belonging
to the previously described tabu lists) as well as the best 1–out–2–in move
m6. If the solution obtained by applying move m6 is better than the best
found after the last restart, then we apply such move and continue the tabu
search from the obtained solution (go to the next iteration). Otherwise, if the
solution obtained by applying move m5 is better than the current solution,
then we apply this move and continue the tabu search from the obtained
solution (go to the next iteration).

– Finally, if there is not improving move in all three neighborhoods, then we
apply best of the three non-tabu moves m1,m3 and m5 (the move giving the
best solution).
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Tabu Lists Length. Lengths of tabu lists are not fixed. Length of each tabu
list changes according to procedure previously proposed by Galinier et al. [2].
Complete Tabu search algorithm consists of sequence of iterations. Iterations are
numbered by positive integer numbers starting from 1 (after each restart of tabu
search, the numeration of iterations starts with number 1). Tabu lists lengths
are change in iterations bi (i = 0, 1, 2, ...), in the following way: length of tabu
list in iterations from interval [bi, bi+1] is equal ai + rand(2), where

ai =
⌊cimod 15

8
Tmax

⌋
.

In above formula:

– c is array with 15 elements as follows: 1, 2, 1, 4, 1, 2, 8, 1, 2, 1, 4, 1, 2, 1;
– Tmax is maximal allowed length of corresponding tabu list; and
– rand(n) represents random number between 0 and n.

Sequence bi is defined as follows:

b0 = 1 bi+1 = bi + 5 × ai.

In other words, length of all tabu lists change periodically (shortest period is
15) and can take one of the following four values (with “small noise” not greater
than 2):

⌊
1 × Tmax

8

⌋ ⌊
2 × Tmax

8

⌋ ⌊
4 × Tmax

8

⌋ ⌊
8 × Tmax

8

⌋
.

Number 5 in formula for calculating bi+1 is also proposed in [2]. Value Tmax

is selected after detailed experimentation and set by the following formulas

– Tmax = m′
best/2, for the list of elements currently belonging to the solution

and
– Tmax = (n − m′

best)/2, for the list of elements currently not belonging to the
solution.

In above formulas m′
best is number of elements in subset P ′

best representing best
solution obtained during executing of the tabu search.

Proposed algorithm restarts by calculating new initial solution and perform-
ing the tabu (local) search from the new solution. The restarts executes after
performing 4 · n iterations without improving best solution found since the last
restart. The value (limit) 4 · n was selected after long time experiments.

5 Computational Results

5.1 Instances

The benchmark set of instances was created (extracted) from the MDPLIB set.
The MDPLIB set (Mart́ı and Duarte [6]) was created from several data sets
previously employed in different studies on diversity problems [1,12,14]. The set
consists of three subsets:



118 N. Mladenović et al.

– GKD: this set was originally proposed by Glover and Laguna [4] for small-size
instances, and it was extended for medium-size and large-size instances in [1]
and [7], respectively. Mart́ınez–Gavara et al. [9] select 10 instances of size 50,
10 instances of size 150, and 10 instances of size 500.

– MDG: this data set was proposed in [1] and it consists of 100 matrices with
real numbers randomly selected from a uniform distribution. Mart́ınez-Gavara
et al. [9] select 10 of this set of size 500.

– SOM: this data set was created by Mart́ı et al. [7] for the maximum diver-
sity problem, where the objective function is the sum of the distances. The
matrices of this set are generated with random numbers of an integer uniform
distribution between 0 and 9. Mart́ınez-Gavara et al. [9] select 10 of them of
size 50.

For each of these 50 instances, the capacities and costs were generated as real
numbers with a Uniform distribution. Specifically, the capacity ci of a site i ∈ V
was generated by a U(1, 1000), the fix cost ai was generated from its capacity
ci by a U(ci/2, 2ci). The minimum capacity B was computed as the sum of all
capacities multiplied by a factor ϕb of 0.2 or 0.3, and the maximum budget was
computed as sum of all costs multiplied by a factor ϕk of 0.2 or 0.3. In this way
a set of 200 instances was generated.

5.2 Detailed Results

Our Tabu search is implemented in C++ programming language. All experiments
are performed on a machine equipped with Intel(R) Core(TM) i5-3470 CPU
3.20 GHz with 16 GB memory and Linux Operating System.

Due to lack of space we present detailed results on GKD instances with
n = 150 elements (Table 1), GKD instances with n = 500 elements (Table 2)
and MDG instances (Table 3).

Format of all tables is same. The first column contains name of correspond-
ing instance. Columns 2 and 3 contains the objective value for solution obtained
by using the Tabu Search proposed by Mart́ınez–Gavara et al. [9], as well as
running time until reaching the corresponding solution. Columns 4 and 5 con-
tains the objective value for the solution obtained by using GRASP proposed by
Mart́ınez–Gavara et al. [9], as well as running time until reaching the correspond-
ing solution. Columns 6–9 contains cumulative results obtained by 30 executions
of our Tabu search: the objective value for the best solution, average of objective
values, the objective value of the worst solution and average execution time. All
results obtained by GRASP and TS (Mart́ınez et al., [9]) are kindly provided by
Ana Mart́ınez-Gavara.
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Table 1. Detailed results on GKD instances with n = 150 elements.

Instance TS-M GRASP TS-N

Obj. Time Obj. Time Best Avg. Worst Time

GKD-b 41 n150 b02 m15 k02.txt 156.50 300.00 163.40 300.12 166.50 166.50 166.50 0.08

GKD-b 41 n150 b02 m15 k03.txt 161.80 300.01 163.40 300.01 166.50 166.50 166.50 0.08

GKD-b 41 n150 b03 m15 k02.txt 132.60 300.00 132.60 300.00 135.80 135.80 135.80 0.35

GKD-b 41 n150 b03 m15 k03.txt 151.30 300.00 152.10 300.03 154.90 154.90 154.90 0.46

GKD-b 42 n150 b02 m15 k02.txt 77.80 300.00 81.50 300.02 82.70 82.70 82.70 0.20

GKD-b 42 n150 b02 m15 k03.txt 78.80 300.01 82.20 300.00 83.30 83.30 83.30 0.07

GKD-b 42 n150 b03 m15 k02.txt 0.00 300.00 0.00 300.00 52.00 51.35 50.10 19.97

GKD-b 42 n150 b03 m15 k03.txt 65.30 300.00 70.00 300.22 70.70 70.70 70.70 8.77

GKD-b 43 n150 b02 m15 k02.txt 59.20 300.00 62.60 300.05 65.80 65.80 65.80 8.83

GKD-b 43 n150 b02 m15 k03.txt 56.60 300.01 63.80 300.07 66.00 66.00 66.00 0.51

GKD-b 43 n150 b03 m15 k02.txt 37.50 300.00 37.50 300.00 40.70 40.70 40.70 0.21

GKD-b 43 n150 b03 m15 k03.txt 47.70 300.00 51.60 300.11 54.30 54.30 54.30 6.71

GKD-b 44 n150 b02 m15 k02.txt 90.40 300.00 100.90 300.01 102.70 102.70 102.70 2.19

GKD-b 44 n150 b02 m15 k03.txt 93.90 300.01 102.70 300.06 102.90 102.90 102.90 0.08

GKD-b 44 n150 b03 m15 k02.txt 0.00 300.00 0.00 300.00 72.80 72.45 72.30 15.41

GKD-b 44 n150 b03 m15 k03.txt 84.20 300.00 85.70 300.04 89.30 89.30 89.30 1.06

GKD-b 45 n150 b02 m15 k02.txt 103.10 300.00 107.70 300.08 110.90 110.90 110.90 0.99

GKD-b 45 n150 b02 m15 k03.txt 104.10 300.00 107.60 300.11 110.90 110.90 110.90 0.41

GKD-b 45 n150 b03 m15 k02.txt 0.00 300.00 0.00 300.00 79.20 79.20 79.20 0.11

GKD-b 45 n150 b03 m15 k03.txt 80.70 300.00 93.30 300.05 97.40 97.40 97.40 7.49

GKD-b 46 n150 b02 m45 k02.txt 118.00 300.00 121.00 300.09 124.80 124.80 124.80 0.84

GKD-b 46 n150 b02 m45 k03.txt 118.90 300.01 121.10 300.10 124.80 124.80 124.80 0.51

GKD-b 46 n150 b03 m45 k02.txt 97.70 300.00 99.20 300.01 99.20 99.20 99.20 0.02

GKD-b 46 n150 b03 m45 k03.txt 107.50 300.00 109.30 300.09 111.90 111.90 111.90 15.99

GKD-b 47 n150 b02 m45 k02.txt 158.50 300.00 163.10 300.06 164.90 164.90 164.90 0.44

GKD-b 47 n150 b02 m45 k03.txt 158.70 300.00 162.70 300.10 165.10 165.10 165.10 0.47

GKD-b 47 n150 b03 m45 k02.txt 133.90 300.00 133.90 300.00 135.00 134.91 134.90 6.51

GKD-b 47 n150 b03 m45 k03.txt 144.30 300.00 148.60 300.07 154.80 154.80 154.80 3.51

GKD-b 48 n150 b02 m45 k02.txt 94.70 300.00 97.60 300.10 99.10 99.10 99.10 0.28

GKD-b 48 n150 b02 m45 k03.txt 94.80 300.01 98.10 300.01 99.10 99.10 99.10 0.40

GKD-b 48 n150 b03 m45 k02.txt 70.30 300.00 71.20 300.00 75.00 75.00 75.00 0.01

GKD-b 48 n150 b03 m45 k03.txt 79.70 300.00 84.80 300.12 86.60 86.58 86.30 12.59

GKD-b 49 n150 b02 m45 k02.txt 161.90 300.00 166.10 300.06 166.90 166.90 166.90 0.54

GKD-b 49 n150 b02 m45 k03.txt 160.60 300.00 166.90 300.09 166.90 166.90 166.90 1.03

GKD-b 49 n150 b03 m45 k02.txt 0.00 300.00 0.00 300.00 139.40 139.40 139.40 0.06

GKD-b 49 n150 b03 m45 k03.txt 141.80 300.00 153.90 300.01 158.50 158.50 158.50 0.13

GKD-b 50 n150 b02 m45 k02.txt 97.80 300.00 106.30 300.21 111.60 111.60 111.60 0.21

GKD-b 50 n150 b02 m45 k03.txt 104.90 300.00 106.50 300.11 112.80 112.80 112.80 4.05

GKD-b 50 n150 b03 m45 k02.txt 0.00 300.00 0.00 300.00 82.00 82.00 82.00 3.69

GKD-b 50 n150 b03 m45 k03.txt 89.90 300.00 94.30 300.01 100.00 100.00 100.00 0.34

Average 92.89 300.00 96.58 300.05 109.59 109.56 109.52 3.14
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Table 2. Detailed results on GKD instances with n = 500 elements.

Instance TS-M GRASP TS-N

Obj. Time Obj. Time Best Avg. Worst Time

GKD-c 01 n500 b02 m50 k02.txt 6.40 300.00 7.40 300.18 9.30 9.30 9.30 104.97

GKD-c 01 n500 b02 m50 k03.txt 6.50 300.45 7.40 301.32 9.30 9.30 9.30 114.47

GKD-c 01 n500 b03 m50 k02.txt 5.70 300.00 6.20 300.16 8.30 8.30 8.30 162.74

GKD-c 01 n500 b03 m50 k03.txt 5.70 300.00 6.30 300.83 8.30 8.30 8.30 162.83

GKD-c 02 n500 b02 m50 k02.txt 6.70 300.00 7.50 300.26 9.20 9.15 9.10 151.21

GKD-c 02 n500 b02 m50 k03.txt 6.70 300.24 7.50 300.20 9.20 9.16 9.10 176.82

GKD-c 02 n500 b03 m50 k02.txt 4.80 300.00 6.20 300.11 8.30 8.27 8.20 127.03

GKD-c 02 n500 b03 m50 k03.txt 5.20 300.00 6.20 300.03 8.30 8.27 8.20 127.07

GKD-c 03 n500 b02 m50 k02.txt 6.10 300.00 7.20 301.09 9.20 9.14 9.10 101.50

GKD-c 03 n500 b02 m50 k03.txt 6.10 300.39 7.20 301.56 9.20 9.15 9.10 115.29

GKD-c 03 n500 b03 m50 k02.txt 5.10 300.00 6.10 300.04 8.20 8.20 8.20 128.26

GKD-c 03 n500 b03 m50 k03.txt 5.90 300.00 6.10 300.67 8.20 8.20 8.20 128.27

GKD-c 04 n500 b02 m50 k02.txt 7.10 300.00 7.20 300.72 9.20 9.20 9.20 75.34

GKD-c 04 n500 b02 m50 k03.txt 7.10 300.03 7.20 300.97 9.20 9.20 9.20 66.21

GKD-c 04 n500 b03 m50 k02.txt 5.70 300.00 5.70 300.00 8.30 8.21 8.10 141.64

GKD-c 04 n500 b03 m50 k03.txt 5.70 300.00 6.20 301.49 8.30 8.21 8.10 141.88

GKD-c 05 n500 b02 m50 k02.txt 7.40 300.00 7.50 301.90 9.20 9.20 9.20 36.91

GKD-c 05 n500 b02 m50 k03.txt 7.40 300.53 7.50 300.25 9.20 9.20 9.20 31.27

GKD-c 05 n500 b03 m50 k02.txt 0.00 300.00 0.00 300.00 8.30 8.29 8.20 126.32

GKD-c 05 n500 b03 m50 k03.txt 5.10 300.00 7.40 302.04 8.30 8.29 8.20 126.42

GKD-c 06 n500 b02 m50 k02.txt 6.70 300.29 7.10 300.32 9.20 9.10 9.00 134.63

GKD-c 06 n500 b02 m50 k03.txt 6.70 300.21 7.00 300.68 9.20 9.11 9.10 129.47

GKD-c 06 n500 b03 m50 k02.txt 5.60 300.00 5.80 300.33 8.20 8.18 8.10 158.77

GKD-c 06 n500 b03 m50 k03.txt 5.60 300.00 5.90 301.49 8.20 8.18 8.10 158.68

GKD-c 07 n500 b02 m50 k02.txt 5.10 300.00 6.70 300.72 9.40 9.28 9.20 176.03

GKD-c 07 n500 b02 m50 k03.txt 5.10 300.37 6.70 301.88 9.40 9.29 9.20 187.42

GKD-c 07 n500 b03 m50 k02.txt 5.00 300.00 5.10 300.83 8.30 8.21 8.20 119.12

GKD-c 07 n500 b03 m50 k03.txt 5.10 300.00 5.60 300.99 8.30 8.21 8.20 119.46

GKD-c 08 n500 b02 m50 k02.txt 6.40 300.20 7.30 300.60 9.40 9.34 9.30 139.29

GKD-c 08 n500 b02 m50 k03.txt 6.80 300.40 7.30 301.75 9.40 9.34 9.30 152.35

GKD-c 08 n500 b03 m50 k02.txt 6.00 300.00 6.40 301.41 8.40 8.33 8.30 136.75

GKD-c 08 n500 b03 m50 k03.txt 6.10 300.00 6.60 301.97 8.40 8.33 8.30 136.61

GKD-c 09 n500 b02 m50 k02.txt 5.90 300.00 7.50 300.14 9.30 9.28 9.20 175.38

GKD-c 09 n500 b02 m50 k03.txt 5.90 300.08 7.10 300.44 9.30 9.28 9.20 203.75

GKD-c 09 n500 b03 m50 k02.txt 5.70 300.00 5.90 300.00 8.30 8.22 8.20 118.54

GKD-c 09 n500 b03 m50 k03.txt 6.00 301.65 6.00 300.63 8.30 8.22 8.20 118.30

GKD-c 10 n500 b02 m50 k02.txt 6.10 300.00 7.80 300.18 9.40 9.40 9.40 73.00

GKD-c 10 n500 b02 m50 k03.txt 6.10 300.42 7.40 301.39 9.40 9.40 9.40 81.27

GKD-c 10 n500 b03 m50 k02.txt 0.00 300.00 0.00 300.00 8.50 8.38 8.20 164.73

GKD-c 10 n500 b03 m50 k03.txt 6.10 300.00 6.10 300.47 8.50 8.38 8.20 165.06

Average 5.71 300.13 6.38 300.75 8.80 8.75 8.70 129.88
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Table 3. Detailed results on MDG instances with n = 500 elements.

Instance TS-M GRASP TS-N

Obj. Time Obj. Time Best Avg. Worst Time

MDG-b 01 n500 b02 m50 k02.txt 5.30 300.00 15.90 304.39 53.60 50.34 47.70 266.52

MDG-b 01 n500 b02 m50 k03.txt 8.40 300.32 17.60 300.59 53.60 50.34 47.70 267.39

MDG-b 01 n500 b03 m50 k02.txt 0.10 300.00 0.10 300.08 26.00 24.57 23.60 243.64

MDG-b 01 n500 b03 m50 k03.txt 0.10 300.00 0.10 300.91 26.00 24.57 23.60 243.83

MDG-b 02 n500 b02 m50 k02.txt 1.00 300.00 19.40 300.30 55.10 52.54 48.70 236.09

MDG-b 02 n500 b02 m50 k03.txt 1.00 300.02 19.20 300.15 55.10 52.54 48.70 235.98

MDG-b 02 n500 b03 m50 k02.txt 0.90 300.00 1.00 300.17 26.90 25.54 24.80 198.67

MDG-b 02 n500 b03 m50 k03.txt 0.90 300.00 1.00 300.27 26.90 25.54 24.80 199.06

MDG-b 03 n500 b02 m50 k02.txt 5.40 300.00 20.30 301.91 55.50 53.93 52.10 263.84

MDG-b 03 n500 b02 m50 k03.txt 5.40 300.24 17.40 302.39 55.50 53.93 52.10 263.56

MDG-b 03 n500 b03 m50 k02.txt 1.80 300.00 2.80 300.77 27.20 26.36 25.30 217.90

MDG-b 03 n500 b03 m50 k03.txt 1.80 300.00 2.80 300.85 27.20 26.36 25.30 217.94

MDG-b 04 n500 b02 m50 k02.txt 11.60 300.00 21.10 307.89 57.20 54.20 51.50 286.36

MDG-b 04 n500 b02 m50 k03.txt 21.10 300.38 26.10 300.86 57.20 54.20 51.50 286.37

MDG-b 04 n500 b03 m50 k02.txt 0.00 300.00 0.00 300.00 28.00 26.35 25.90 189.62

MDG-b 04 n500 b03 m50 k03.txt 0.60 300.00 5.10 302.05 28.00 26.35 25.90 189.73

MDG-b 05 n500 b02 m50 k02.txt 23.60 300.00 23.60 303.56 56.70 55.21 54.30 203.99

MDG-b 05 n500 b02 m50 k03.txt 21.20 300.80 23.60 301.05 56.70 55.21 54.30 204.30

MDG-b 05 n500 b03 m50 k02.txt 0.00 300.00 0.00 300.00 27.40 26.68 25.50 239.22

MDG-b 05 n500 b03 m50 k03.txt 0.50 300.00 6.60 301.95 27.40 26.68 25.50 239.49

MDG-b 06 n500 b02 m50 k02.txt 2.50 300.00 22.40 301.90 54.50 51.53 47.90 137.56

MDG-b 06 n500 b02 m50 k03.txt 2.50 300.15 12.50 300.47 54.50 51.86 50.10 177.28

MDG-b 06 n500 b03 m50 k02.txt 0.60 300.00 1.20 300.00 27.20 26.20 25.60 170.04

MDG-b 06 n500 b03 m50 k03.txt 0.50 300.00 2.50 301.06 27.20 26.20 25.60 169.77

MDG-b 07 n500 b02 m50 k02.txt 7.90 300.00 20.40 300.50 57.40 52.53 50.30 246.64

MDG-b 07 n500 b02 m50 k03.txt 8.70 300.02 18.80 300.28 57.40 52.53 50.30 246.45

MDG-b 07 n500 b03 m50 k02.txt 0.60 300.00 0.60 300.20 27.10 26.55 25.90 243.05

MDG-b 07 n500 b03 m50 k03.txt 0.60 300.00 4.80 300.35 27.10 26.55 25.90 242.60

MDG-b 08 n500 b02 m50 k02.txt 14.80 300.00 23.90 300.27 56.80 55.14 54.30 213.97

MDG-b 08 n500 b02 m50 k03.txt 5.40 300.23 20.50 300.85 56.80 55.14 54.30 213.94

MDG-b 08 n500 b03 m50 k02.txt 0.80 300.00 2.50 300.91 30.10 29.31 28.40 202.84

MDG-b 08 n500 b03 m50 k03.txt 0.80 300.00 6.10 301.66 30.10 29.31 28.40 202.86

MDG-b 09 n500 b02 m50 k02.txt 6.20 300.00 33.50 300.60 57.50 55.31 53.20 254.52

MDG-b 09 n500 b02 m50 k03.txt 5.40 300.56 22.20 303.81 57.50 55.31 53.20 254.60

MDG-b 09 n500 b03 m50 k02.txt 0.00 300.00 0.00 300.00 26.70 25.75 24.60 259.06

MDG-b 09 n500 b03 m50 k03.txt 1.70 300.00 2.50 301.78 26.70 25.75 24.60 258.89

MDG-b 10 n500 b02 m50 k02.txt 2.70 300.00 23.90 307.83 58.10 55.95 52.80 189.98

MDG-b 10 n500 b02 m50 k03.txt 2.70 300.26 26.00 308.65 58.10 55.95 52.80 189.10

MDG-b 10 n500 b03 m50 k02.txt 0.90 300.00 0.90 300.17 29.30 27.11 26.20 236.19

MDG-b 10 n500 b03 m50 k03.txt 0.90 300.00 5.20 300.25 29.30 27.11 26.20 236.34

Average 4.42 300.07 11.85 301.54 41.92 40.06 38.49 225.98
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5.3 Conclusions

From these tables we can conclude that our Tabu search significantly outper-
forms existing methods in both criteria: the objective function value of obtained
solutions as well as time need to reach the final solution. We think that main part
in our algorithm is using three neighborhoods. Note that using only one neigh-
borhood disables (not allows) changing number of selected elements. Because
of that, number of selected elements during the improving phase (in the GRASP
algorithm) or during the local search (in the Tabu search proposed by Mart́ınez–
Gavara et al. [9]) stay same as in the initial solution.

Our future research will be devoted to introducing new neighborhoods into
the solution space.
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Abstract. The paper addresses the Network Roll-Out (NRO) prob-
lem aimed at scheduling the construction of mobile stations. In this
case, NRO problem can be considered as a generalization of Resource-
Constrained Project Scheduling Problem, where we need to find a sched-
ule for the activities related to the construction of a set of base stations
taking into account the precedence constraints and the availability of
resources while minimizing some measure of performance. The gener-
alization involves the multiple projects, multi-modes, discrete time-cost
tradeoff, together with particular business requirements like precedence
redundancy and workload stability constraints.

To solve this problem, we propose a MIP formulation that is based on
a generalization of Disaggregated Discrete-Time formulation with pulse
start variables. Using this formulation, we propose a three-stage heuris-
tic based on a relax and fix strategy. The effectiveness and efficiency
of the proposed approach are illustrated in a series of computational
experiments on real-life problem instances.

Keywords: Network roll-out problem · Multiple project scheduling ·
MIP heuristic

1 Introduction

The modern world demands more and more internet connectivity and higher
data rates provided by wireless communications. It is the most important com-
ponent in the development of smart economy and world digitization. Currently,
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cellular networks, mainly based on LTE (4G) and 5G, have a wider range of tasks
than ever before. Wireless communications must satisfy requirements of multi-
ple device connectivity and high data rate, much greater bandwidth, low-latency
quality of service, and low interference. It requires providing high-quality service
and accommodating a wide range of prospective technologies, like the Internet
of Things (IoT), Internet of Vehicles (IoV), Device to Device (D2D) communi-
cations, e-healthcare, Machine to Machine (M2M) communications, self-driving
and Financial Technology (FinTech) etc. [1,6].

One of the key problems is rolling-out mobile networks. A Network Roll-
Out (NRO) problem involves multiple strategic decisions, including finding the
sites for locating base stations, selecting types of the stations, traffic routing.
The NRO is usually a large-scale telecommunication project, and its different
stages faced by carriers and vendors involve the decisions that can be modelled
as optimization problems. The Roll-out process consists of many stages, from
regulation, budgeting, and site selection to implementation of a detailed con-
struction plan. Several recent papers were focused on a site selection problem
with respect to existing government and user requirements [2,7].

In this paper we address the last stage—construction scheduling. At this
stage, the NRO problem can be considered as a generalization of Resource-
Constrained Project Scheduling Problem (RCPSP). It is to find a schedule for
all the activities related to the construction of stations, taking into account the
precedence constraints and the availability of resources while minimizing some
measure of performance. Thus, it leads us to the Multiple Project Scheduling
Problem (MPSP), where construction of a station is a single project, activities
of which are specified by contractors having various skills. To process a certain
activity, a predefined skill is needed. This case can be tackled in terms of Multi-
mode Resource-Constrained Project Scheduling Problem (MRCPSP), where the
multiple activity modes are presented, and each activity can be executed under
different conditions depending on skills. Moreover, the duration and cost involved
in completing the activity depend on the mode of an activity. Such problem is
also known as the Discrete Time-Cost Tradeoff Problem (DTCTP).

Due to their practical importance, the RCPSP and its generalizations remain
a very active field of research. We address the reader to handbooks [4,5,11,14,15]
for the comprehensive survey of theory and algorithms on this topic. Some more
details of MRCPSP can also be found in [12,13,17], DTCTP in [5,16] and MPSP
in [9,10].

In this paper, we propose a MIP formulation of NRO based on Disaggregated
Discrete-Time formulation with pulse start variables. The latter can be found
in [3,8] with the overview of different other formulations. Taking into account
the particularity of our problem, we generalize this formulation, provided that
we have many identical projects with a few activities and simple precedence
constraints. Our formulation also allows for many extra requirements coming
from technical and business considerations. We test our formulation in a series
of computational experiments on real life instances and demonstrate that a gen-
eral MIP solver cannot find good or even feasible solutions in a reasonable time.
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Thus, we propose a three-stage heuristic based on a relax and fix strategy. The
effectiveness and efficiency of the proposed approach are illustrated in the com-
putational experiments on real life instances.

The rest of the paper is structured as follows. The NRO problem statement is
introduced in Sect. 2 and its MIP formulation in Sect. 3. The three-stage heuristic
approach is outlined in Sect. 4. Finally, Sect. 5 gives preliminary computation
results and concluding remarks.

2 Problem Statement

In our particular case, the multiple projects consist of constructing mobile base
stations on some sites. To construct a base station, a certain sequence of activities
must be fulfilled in a prescribed order, which defines the precedence relations
between activities. We suppose to have a finite number of different station types,
and the sequence of activities is the same for the same station type. Therefore,
we can consider each activity not separately but group them by type of station.
Let us assume that

– T = {1, . . . , |T |} is the time horizon (the time unit is a day).
– The time horizon consists of a set of equal intervals (weeks or months) W =

{1, . . . , |W |}, where τw ∈ T is a beginning of interval w ∈ W . For the sake of
simplicity, we suppose that τ|W |+1 = |T |

– J is the set of activity types.
– nj is the number of activities of type j ∈ J that have to be fulfilled.
– J̄ ⊂ J is a subset of activity types, which have a predecessor activity, i.e.

J \ J̄ is a set of activity types that are the first in construction sequence, and
they do not have a predecessor.

– j∗
j ∈ J is a type of activity, which is a predecessor of activity type j ∈ J̄ .

– fj is the minimal time lag between the completion time of activity of type j∗
j

and the start time of successor activity of type j ∈ J̄ .
– C is the fixed cost per week until all the activities are not completed.

The capacity constraints are defined by contractors whose teams complete
activities:

– K is a set of contractors.
– B is a set of team types.
– Bk ⊂ B is a subset of team types of contractor k ∈ K, which partition B, i.e.

⋃

k∈K

Bk = B, Bl ∩ Bk = ∅ ∀l, k ∈ K : k �= l.

– ub
t is the number of teams of type b ∈ B available at time t ∈ T .

– Jb ⊂ J is a subset of activity types that a team of type b ∈ B can do (has
the skill to complete the activity).

– Bj ⊂ B is a subset of team types with the skill to do activity type j ∈ J
(related to Jb).
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– pj is a processing time of activity type j ∈ J .
– cjb is a cost of processing activity of type j ∈ J by a team of type b ∈ B.

In the general case, the problem consists of scheduling all activities with minimal
time lags with respect to the precedence constraints and assigning the contrac-
tor’s teams to complete these activities with respect to their skills and capacities.
We consider a more general objective. Instead of minimizing only the makespan,
our objective is to minimize the processing costs. It is acceptable to have the
makespan longer than minimal, but not too much. Moreover, we have the fixed
cost during the makespan, which has to be taken into account if the minimal
makespan is extended.

We have additional constraints that have never been considered in the lit-
erature. The first one is the precedence redundancy constraints, which should
reduce the risk of non-fulfillment of the project schedule. Within a week, for each
task type j ∈ J̄ , the cumulative completion of predecessors of type j∗

j is not less
than the cumulative completion of activities of type j multiplied by the given
risk factor rj ≥ 1 ∀j ∈ J̄ , unless the cumulative completion of activities of type
j∗
j is greater or equal to the total.

The second particular condition is a “stable” contractor workload. Contrac-
tors require that:

– the daily number of involved teams should be similar in a week (close to the
average);

– the maximal number of involved teams per week should be non-decreasing at
the beginning and, then, non-increasing. This condition is not hard, i.e. the
mild violation is acceptable.

The stability constraint is soft, not strictly defined, and cannot be analytically
evaluated. Its evaluation only can be done in practice by contractors; therefore,
a parametric approach is required to control this constraint.

3 MIP Formulation

Let us consider the variables xjbt which are equal to the number of activities of
type j ∈ J started by teams of type b ∈ Bj at time t ∈ T , variable H equals the
number of weeks in the makespan. Let us also introduce the variables

hw =
{

1, if there is any activities processed in week w ∈ W ,
0, otherwise.
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With these notations, the problem can be written as

min
∑

j∈J

∑

b∈Bj

∑

t∈T

cjbxjbt + C · H (1)

∑

j∈J

∑

b∈Bj

τw+1−1∑

t=τw

ub
thw ≥

∑

j∈J

∑

b∈Bj

τw+1−1∑

t=τw−pj+1

xjbt ∀w ∈ W (2)

H ≥ whw ∀w ∈ W (3)
∑

b∈Bj

∑

t∈T

xjbt ≥ nj ∀j ∈ J (4)

∑

b∈B
j∗
j

t−pj∗
j

−fj∑

l=0

xj∗
j kl ≥

∑

b∈Bj

t∑

l=0

xjbl j ∈ J̄ , t ∈ T (5)

∑

j∈Jb

t−pj+1∑

l=t

xjbl ≤ ub
t ∀b ∈ B, t ∈ T (6)

xjbt ∈ B ∀j ∈ J, b ∈ Bj , t ∈ T (7)
hw ∈ B ∀w ∈ W (8)
w ≥ 0 (9)

The objective (1) is to minimize the total processing and makespan costs. Con-
straints (2) ensure that variable hw equals one if there is any processed activity
during the corresponding week, and the inequalities (3) define the bound on the
number of weeks. All the activities must be completed due to the constraints (4).
The precedence constraints are guaranteed by inequalities (5). Furthermore, the
constraints (6) are capacity constraints on the available teams. In constraints
(5) and (6), if the lower bound of summation is greater than the upper bound,
then the sums are assumed to be zero.

For the precedence redundancy condition, let us consider new variables:
yjw equals 1 if the completion of activities of type j∗

j is less than the total in
week w ∈ W , and 0 otherwise, i.e.

nj∗
j
yjw ≥ nj∗

j
−

∑

b∈B
j∗
j

τw+1−pj∗
j∑

t=0

xj∗
j bt j ∈ J̄ , w ∈ W (10)

The redundancy is guarantied by

∑

b∈B
j∗
j

τw+1−pj∗
j∑

t=0

xj∗
j bt + nj(1 − yjw) ≥

≥ rj

∑

b∈Bj

τw+1−1∑

t=0

xjbt ∀j ∈ J̄ , w ∈ W (11)
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In addition, we have the following valid inequalities:

yjw ≥ yjw+1 ∀j ∈ J̄ , w = 1, |W | − 1 (12)

The stability condition is much harder to express, especially in soft case. Let
us consider a day contractor workload (number of used teams)

ξkt =
∑

b∈Bk

∑

j∈Jb

t∑

l=t−pj+1

xjbl ∀k ∈ K, t ∈ T,

i.e. the number of teams of contractor b which are used in this day. Let

πkw = max{ξkt : t = τw, . . . , τw+1 − 1} ∀k ∈ K,w ∈ W

be weekly peaks (maximum weekly workload). For the strict stability we want
that

πkw = ξkt ∀k ∈ K,w ∈ W, t = τw, . . . , τw+1 − 1

and the sequences πkw are weakly unimodal, i.e. there exists wk ∈ W such that

πk1 ≤ · · · ≤ πkwk ≥ · · · ≥ πk|W | ∀k ∈ K.

These conditions are very restrictive and usually cannot be satisfied in prac-
tice. So, we need to find a way to soften them, express them in a MIP, and define
a parameter that allows us to control their “softness”.

The best empirical results, compromising between quality schedules and dif-
ficulty of MIP model, were obtained with the following model. Let us consider
variables ψkw such that

ψkw ≥ πkw ∀k ∈ K,w ∈ W

or the same

ψkw ≥
∑

b∈Bk

∑

j∈Jb

t∑

l=t−pj+1

xjbl ∀k ∈ K,w ∈ W, t = τw, . . . , τw+1 − 1. (13)

The corresponding sequences must be unimodal, i.e.

ψkw ≤ ψkw+1 + Mzkw ∀k ∈ K,w = 1, d . . . , |W | − 1
ψkw+1 ≤ ψkw + M(1 − zkw) ∀k ∈ K,w = 1, . . . , |W | − 1 (14)
zkw ≤ zkw+1 ∀k ∈ K,w = 1, . . . , |W | − 1

where variables

zkw ∈ B ∀k ∈ K,w = 1, . . . , |W | − 1. (15)
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It follows that

zkw =
{

0 if ψkw ≤ ψkw+1

1 if ψkw+1 ≥ ψkw.

Of course, constraints (13)–(15) cannot guaranty strict or soft stability by
themselves. Let us consider a new objective function with penalized sum of all
ψkw variables, i.e.

min
∑

j∈J

∑

b∈Bj

∑

t∈T

cjbxjbt + C · H + S
∑

k∈K

∑

w∈W

ψkw (16)

where S is a given parameter. Our experiments showed that this approach gives
us a good results and changing S provides us with trade-off between the pro-
cessing cost and stability quality.

4 Three Stage Heuristic Approach

In the formulation (2)–(16), we have some fixed time horizon. As mentioned
in the problem statement, we are interested in finding solutions with minimal
processing costs, the value of which is not too longer than the minimal makespan.
Therefore, a minimal makespan has to be found.

In our approach, we suppose that the makespan is fixed and our objective
is to find the schedule with the minimal cost. With the fixed makespan the
variables H, hw ∀w ∈ W and constrains (2), (3) can be omitted. The fixed cost
is a constant, hence the objective is

min
∑

j∈J

∑

b∈Bj

∑

t∈T

cjbxjbt + S
∑

k∈K

∑

w∈W

ψkw. (17)

As we observed in our experiments, the resulting formulation (4)–(15), (17)
was hard to be solved by a MIP solver for relatively large instances, and heuristic
approaches are needed to find high-quality solutions quickly.

The LP relaxation of (4)–(15), (17) does not give a good direction of finding
integer solution. In our case study, the optimal objective values of LP relax-
ation and the integer formulation are close to each other, but solutions are far
away. The main reason is that the formulation contain several so-called BigM
inequalities which come from the redundancy constraints (10), (11) and stability
constraints (14). It makes the LP solution very fractional and useless in recov-
ering an integer solution, saying nothing about the optimal one. Thus, our idea
is to consider other relaxations, which allows us to find feasible and quite good
solutions.

Testing different possibilities, we found out that a three-stage heuristic based
on a relax and fix strategy gives us quite promising results.

In our heuristic, in the first stage, we relax the integrality constraints on
variables x as well as the stability constraints. Obtained variables y are fixed in
the second stage with stability constraints. Finally, in the third stage, we find the
integer solution x with fixed binary variables y and z from the previous stages.
The stages of the heuristic are summarized in detail in Table 1.
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Table 1. Heuristic details

Stage Constraints Variables

I (4)–(12) x – relaxed

y – binary

z – skipped

II (4)–(15) x – relaxed

y – fixed

z – binary

III (4)–(15) x – integer

y – fixed

z – fixed

5 Computational Results and Concluding Remarks

Our computational experiments were carried out on a workstation with Intel(R)
Core(TM) i7-8550U CPU and 16 Gb of RAM. SCIP version 7.0.2 was used as a
general MIP solver.

We consider 12 test instances which are based on real data. The details of
test instances are given in Table 2, where

– Name is the instance name;
– |K| is the number of contractors;
– |B| is the number of team types;
– |J | is the number of activity types;
– n is the total number of activities;
– H̄ is the minimal makespan in weeks.

Table 2. Instance details

Name |K| |B| |J | |n| H̄

Task01 6 16 12 6008 21

Task02 6 16 12 6006 42

Task03 6 16 18 3006 15

Task04 6 16 18 3010 21

Task05 6 16 21 3010 20

Task06 8 15 21 2010 15

Task07 8 15 28 2008 17

Task08 8 16 28 2012 24

Task09 7 19 28 1234 16

Task10 7 19 28 1812 8

Task11 4 9 28 1812 18

Task12 4 9 28 630 6
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In our case study, it turns out that the feasibility of LP relaxation always
relates to the feasibility of the original problem. Solving LP relaxation takes just
a few seconds, hence the minimal makespan can be easily and fast found by the
bisection of H̄ and solving the corresponding LP relaxations of (4)–(15), (17).

The last instance Task12 is the smallest one and can be easily solved to
optimality by the MIP solver. It is used only to answer a question of how the
stability penalty S can be chosen. We tried different variants based on average
construction cost denoted by c̄. The results on Task12 are illustrated in Figs. 1,
2, 3 and 4 and Table 3. The alternating red and blue colors represent weeks.
If we understand workload stability as small oscillation within each week and
unimodality of peak load, then the best tradeoff between the stability quality
and construction cost is given by S = 0.1 · c̄, as mild contractor cost increase
results in a near stable workload. One can observe similar behavior in other
instances; hence it was chosen for all experiments.

Table 3. Contractor cost for different values of penalty S

S 0 0.01 · c̄ 0.1 · c̄ c̄

Cost 1 008 565 1 008 769 1 010 138 1 031 422

Fig. 1. Workload with S = 0
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Fig. 2. Workload with S = 0.01 · c̄

Fig. 3. Workload with S = 0.1 · c̄
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Fig. 4. Workload with S = c̄

In practice, we are interested in fast finding a good solution in order to allow
practitioners to have different solutions with different problem parameters and
data. Our three-stage approach allows one to control the computation time and
solution quality by setting different parameters for the MIP solver at different
stages. In our preliminary experiments, we set time limit to 600 s and GAP limit
to 0.1% on all stages. In Tables 4 and 5, the results are given and compared with
solutions obtained by solving the formulation with SCIP within two hours of
time limit. The results are given with the following notations:

– Makespan is the makespan in weeks. We consider five consequent values start-
ing from the minimal makespan.

– GAP scip is the gap in percent between the best known upper and lower
bound obtained by the MIP solver.

– GAP heur is the gap in percent between our three-stage heuristic upper bound
and the MIP solver lower bound.

– Time heur is the total running time of all three stages of the heuristic.

In three cases, the heuristic yields slightly worse solutions. But the most
important thing is that the heuristic can find quite good feasible solutions in all
cases, while the MIP solver could not even find any feasible ones in 17 cases,
that is, for 17 different pairs of data instance and makespan there was no feasible
solution found by the MIP solver, hence the gap is equal to 100.0.

Our preliminary results showed that our three-stage heuristic can fast provide
us with good solutions to instances that are based on real-life data. But it is worth
mentioning that the MIP solver does not always give solutions with a small gap,
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especially in the third stage. Further research will be focused on improving our
approach by developing more problem-specific algorithms than a general MIP
solver, which involves better studying of problem structure.

Table 4. Computational results

Task01

Makespan 21 22 23 24 25

GAP scip 100.0 100.0 100.0 100.0 13.4

GAP heur 0.0 4.1 4.1 3.4 2.7

Time heur 711 196 211 385 837

Task02

Makespan 42 43 44 45 46

GAP scip 13.3 9.5 4.8 5.9 1.5

GAP heur 0.4 0.4 0.3 0.2 0.3

Time heur 1348 1100 523 535 614

Task03

Makespan 15 16 17 18 19

GAP scip 100.0 100.0 0.2 2.2 1.3

GAP heur 0.7 0.7 3.2 1.0 0.5

Time heur 967 994 1177 1140 957

Task04

Makespan 21 22 23 24 25

GAP scip 100.0 100.0 2.0 0.4 3.0

GAP heur 2.4 1.8 0.7 1.4 0.6

Time heur 1371 1363 1432 1242 1461

Task05

Makespan 20 21 22 23 24

GAP scip 100.0 100.0 100.0 2.9 100.0

GAP heur 0.5 0.8 0.3 0.4 0.2

Time heur 646 1275 487 475 464

Task06

Makespan 15 16 17 18 19

GAP scip 3.1 5.0 0.2 2.1 0.5

GAP heur 0.8 0.1 0.8 0.4 0.4

Time heur 808 259 828 769 706

Task07

Makespan 17 18 19 20 21

GAP scip 2.0 2.1 1.3 1.7 0.5

GAP heur 0.2 0.1 0.2 0.1 0.3

Time heur 916 899 581 296 797
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Table 5. Computational results

Task08

Makespan 24 25 26 27 28

GAP scip 100.0 5.9 100.0 22.2 100.0

GAP heur 0.0 0.6 1.2 0.9 0.6

Time heur 1570 1800 1800 1625 1800

Task09

Makespan 16 17 18 19 20

GAP scip 3.3 3.3 100.0 4.2 4.3

GAP heur 0.3 6.2 4.1 0.8 5.8

Time heur 1058 1382 1800 1382 1800

Task10

Makespan 8 9 10 11 12

GAP scip 2.7 1.3 100.0 1.9 1.9

GAP heur 0.8 0.2 0.0 0.3 1.2

Time heur 762 758 829 798 804

Task11

Makespan 18 19 20 21 22

GAP scip 6.0 9.1 6.8 6.3 2.4

GAP heur 1.3 1.1 1.5 2.6 1.7

Time heur 966 973 1104 1224 1147
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Abstract. Clustering is one of the basic data analysis tools and
an important subroutine in many machine learning tasks. Probably,
the most well-known and popular clustering model is the Euclidean
minimum-sum-of-squares clustering problem, also known as the k-means
problem. Clustering with Bregman divergences is a generalization of
the k-means problem where the distances between data items and clos-
est cluster centers are computed according to any Bregman divergence,
rather than the squared Euclidean distance. In this paper, we consider a
mathematical programming problem of clustering with Bregman diver-
gences. We propose several representations of the problem in the form
of a DC (difference of convex) program and develop a DC programming
approach to solve it. We provide particular DC representations and par-
ticular DC solution algorithms for several widely-known Bregman diver-
gences.

Keywords: Clustering · Bregman divergence · Nonconvex
optimization · DC programming · Local search · Global search scheme

1 Introduction

The cluster analysis problem is one of the most well-known and widely studied
problems in statistics, mathematical programming, and machine learning. In the
most general form, the cluster analysis problem is to divide a given set of patterns
or samples into non-overlapped subsets, called clusters, such that each cluster
consists of similar objects and the objects from different clusters are dissimilar.
In practical settings, clustering is one of the basic data analysis tool and an
important subroutine in many machine learning tasks, e.g. supervised learning
(regression analysis, deep learning, etc.).

There are numerous variations and extensions of the basic clustering problem
that are distinguished by the definition of similarity measure, possible constraints
on the size of clusters, the form of clusters, their structure, interrelations, etc.
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This variety in definitions of possible clusters in a dataset actually makes the
cluster analysis problem ill-posed, hence there may be many ways of formalizing
it. Because of that, there are plenty of clustering algorithms based on different
views on the cluster analysis problem, e.g. hierarchical algorithms, statistical
approaches, density-based algorithms, etc. Nevertheless, the so-called center-
based clustering algorithms, ones of the oldest clustering techniques, remain the
most popular and widespread ones. They are aimed at partitioning a dataset into
clusters by finding the so-called cluster representatives (or centers). Clusters are
then formed by assigning data items to the closest (most similar) cluster centers.
The underlying clustering model can be formulated as a nonconvex optimization
problem [12]. Note, the number of representatives is often assumed to be fixed.
Nevertheless, there are some general frameworks aimed at convexification of the
clustering problems by introducing some convex penalties (e.g. see [19]).

The center-based clustering models can be considered as facility location
problems, where one has to locate a set of facilitates (representatives) in order
to minimize the total cost of serving a given set of customers (data items) with
respect to some constraints (for a survey, please see [25]). The well-known clus-
tering models are k-means (minimum sum-of-squares) and closely related gen-
eralized multi-source Weber problem, k-center, and k-medoids (minimum sum-
of-stars, discrete p-median).

Among the center-based clustering models, the most famous one is the mini-
mum sum-of-squares clustering. Given m data items represented as feature vec-
tors in a n-dimensional space, the objective is to find k cluster centers, that can
be located in arbitrary points, such that the total sum of squared Euclidean
distances between data items and the closest centers is minimized. The corre-
sponding optimization problem of finding such kind of clustering is NP-hard.
Note that it is NP-hard even on the plane for arbitrary number of clusters k [17]
and in arbitrary space-dimension even for k = 2 [1]. Nowadays, the most com-
mon clustering algorithm is k-means (a.k.a. Lloyd’s algorithm) [14,16], which is
a local search (alternate location-allocation) algorithm for the minimum sum-of-
squares model. Its main idea is that both the problem of finding cluster centers
and the problem of assigning data items to the closest centers are simple if
they are considered independently. Thus, the algorithm alternates between two
steps: (i) finding the best cluster centers for a given partition of a dataset into
k clusters, and (ii) reassigning data items to the newly computed centers.

K-means is popular in numerous applications due to its simplicity and high
speed for relatively large-scale datasets. The latter is achieved due to simplicity
of finding the optimal cluster centers given a partition of data items into clus-
ters. Indeed, for each cluster, the optimal center can explicitly be found as the
mean of data items assigned to the cluster. This nice property is followed from
the first order optimality conditions and makes the algorithm spent only O(m)
time on this step. The property holds not for any distance measure. For example,
in the closely related generalized multisource Weber problem that uses Euclidean
distances instead of squared Euclidean distances, one has to solve a problem of
finding optimal centers by an iterative procedure, known as Weiszfeld’s algorithm.
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As noted in [20], taking means as cluster centers in case of Euclidean distances is
a widespread and hardly eradicated error.

It turns out that the mean (or center of gravity) turns out to be the optimal
cluster center for a relatively large class of distance measures known as Bregman
divergences, e.g. squared Euclidean distance. This result was proved in [2] and
was shown that k-means type algorithms converge to a locally optimal solution
in a finite number of steps if and only if the distance between data items and
cluster centers is computed using a Bregman divergence.

Recent research efforts have been focused on studying the properties of k-
means type algorithms with Bregman divergences and developing new ones. For
example, in [26], the authors employ Bergman divergence to compute distances
between data items and cluster centers in a multitask clustering setting and
develop the alternate solution algorithms for the corresponding optimization
problems. In [24], the authors extended the theory of Bregman divergences for
the case of nondifferentiable convex functions and proposed an agglomerative
clustering algorithm. Asymptotic properties of Bregman clustering and conver-
gence of the clustering procedure as the number of centers or data items increases
was studied in [15] and [5], respectively. Recently, robust Bregman clustering was
introduced in [6] aimed at avoiding the main drawback for k-means type algo-
rithms, sensitivity to noise. The authors also proposed a trimmed version of the
Lloyd-type algorithm that is robust to noise and outliers.

In this paper we formulate the Bregman clustering problem as a non-convex
optimization problem. We demonstrate that it can be represented as a DC (dif-
ference of convex) program. We propose several reductions of the Bregman clus-
tering problem to a DC program where a non-convex objective function is mini-
mized over a convex set. Using these formulations, we then develop two solution
approaches based on a special global search strategy and global optimality con-
ditions developed by A.S. Strekalovsky [21,23] proved to be effective for practical
problems, including machine learning tasks [7,8] and industrial problems [11].
We also provide specific implementations of the developed approaches for some
well-known Bregman divergences.

2 Bregman Divergences

A Bregman divergence or Bregman distance is a measure of difference between
two points, defined in terms of a strictly convex function.

Let F (·) : Ω → R be a continuously differentiable, strictly convex function
defined on a closed convex set Ω.

Definition 1 [4]. The Bregman distance associated with function F (·) for points
p, q ∈ Ω is the difference between the value of function F (·) at point p and the
value of the first-order Taylor expansion of F (·) around point q evaluated at
point p:

DF (p, q) = F (p) − F (q) − 〈∇F (q), p − q〉, (1)

where 〈·, ·〉 stands for the scalar product of two vectors.
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Squared Euclidean distance DF (x, y) = ‖x − y‖2 is the simplest example of
a Bregman distance induced by the convex function F (x) = ‖x‖2. Another
example that is useful in many applications is the squared Mahalanobis distance,
DF (x, y) = 1

2 〈(x−y), Q(x−y)〉 induced by the convex function F (x) = 1
2 〈x,Qx〉

with positive defined matrix Q of appropriate dimension. The latter can be
thought as a generalization of the squared Euclidean distance.

Bregman divergences have several well-known and useful properties [2]. In
the paper, we use the following ones:

1) Non-negativity: DF (p, q) ≥ 0 for all p, q. This is a consequence of the convex-
ity of function F (·).

2) Convexity: DF (p, q) is convex with respect to its first argument p, but not
necessarily to the second argument q (see [3]).

Note that the Bregman divergence is not a proper distance metric, since it
does not satisfy the triangle inequality and may also not be symmetric.

There are Necessary and Sufficient Conditions for a Bregman Divergence [2].
A divergence measure D : Ω × ri(Ω) → [0,∞), where ri(·) denotes the interior
within the affine hull of the set Ω, is a Bregman divergence if and only if there
exists α ∈ ri(Ω) such that the function Fα(p) = D(p, α) satisfies the following
conditions:

1. Fα(·) is strictly convex on Ω and differentiable on ri(Ω).
2. D(p, q) = DFα

(p, q), ∀p ∈ Ω, q ∈ ri(Ω) where DFα
(·) is the Bregman

divergence associated with Fα(·).
These conditions allow one to identify many other functions as Bregman

divergences.

3 Problem Statement

Here, we formulate the Bregman clustering problem as a non-convex optimiza-
tion problem. Given a finite set J = {1, . . . , m} of data items, each of which
is expressed by a feature vector aj ∈ R

n, j ∈ J . The goal is to find k cluster
centers, such that the total sum of distances (dissimilarities) between data items
and their closest centers is minimized. Obviously, the data items assigned to the
same center form a cluster. As a measure of dissimilarity between a data item
and its closest cluster center, we use a Bregman divergence.

Let us introduce the following binary variables

xij =
{

1, if data item j is assigned to cluster i,
0, otherwise, i = 1, . . . , k, j = 1, . . . , m.

which are often referred to as assignment variables.
We also suppose that the unknown locations of k cluster centers are decision

variables yi ∈ IRn, i = 1, . . . , k. Obviously, we suppose that the number of data
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items is greater than k, otherwise the problem is trivially solved. With these
notations, we can formulate the following mixed integer program:

k∑
i=1

m∑
j=1

xijDF (yi, aj) ↓ min
(x,y)

, (2)

k∑
i=1

xij = 1 ∀ j = 1, . . . , m; (3)

xij ∈ {0, 1} ∀i = 1, . . . , k; ∀j = 1, . . . , m. (4)

The objective function (2) minimizes the sum of distances between data items
and cluster centers, whereas constraints (3) guarantee that each data item is
assigned to exactly one cluster.

For fixed centers yi, the assignment variables xij take binary values in the
corresponding optimal solution, since data items are always assigned to the clos-
est cluster centers. Consequently, in our approach we consider a natural relax-
ation of (2)–(4) where the binary constraints xij ∈ {0, 1} are replaced with
xij ∈ [0, 1], i = 1, . . . , k; j = 1, . . . , m. The resultant problem is to minimize a
nonconvex function over a convex feasible set:

f(x, y) =
k∑

i=1

m∑
j=1

xijDF (yi, aj) ↓ min
(x,y)

, x ∈ S, y ∈ IRk×n, (5)

where S = {xij ∈ [0, 1] :
k∑

i=1

xij = 1, j = 1, . . . , m}, S ⊂ IRk×m.

If we intend to solve the problem (5) by applying the global search theory [21,
23], we need an explicit DC representation of the nonconvex objective function.

4 DC Representations of the Objective Function

It is well-known that DC representation is not unique, and different DC decom-
positions generate various auxiliary convex problems. Here we propose several
DC representations of the objective function in the problem (5).

Let us fix i and j, denote x := xij ∈ IR, y := yi ∈ IRn, a := aj ∈ IRn, and
consider the following representation of one nonconvex term of the sum in the
objective function f(·) of the problem (5):

x DF (y, a) =
1
2
(x + DF (y, a))2 − 1

2
(
x2 + D2

F (y, a)
)
. (6)

Since DF (y, a) is convex with respect to its first argument y, DF (y, a) ≥ 0
for all y, a, and x + DF (y, a) ≥ 0 for all x ∈ [0, 1] then

g(x, y) =
1
2

k∑
i=1

m∑
j=1

(xij + DF (yi, aj))2,

h(x, y) =
1
2

k∑
i=1

m∑
j=1

(
x2

ij + D2
F (yi, aj)

) (7)
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are convex functions. Thus, we obtain the following d.c. representation:

f(x, y) = g(x, y) − h(x, y). (8)

Another DC representation of the objective function can be obtained by
using the definition of the Bregman distance associated with the continuously
differentiable, strictly convex function F (·). Let us again fix i and j and consider
one nonconvex term in the objective function of the problem (5):

x DF (y, a) = x (F (y) − F (a) − 〈∇F (a), y − a〉)
= xF (y) − x〈∇F (a), y〉 − x(F (a) − 〈∇F (a), a〉). (9)

Obviously, the first two terms in the last part of (9) are nonconvex and one can
decompose them in the following way (x ∈ IR, y, a ∈ IRn):

xF (y) =
1
2
(x + F (y))2 − 1

2
(
x2 + F 2(y)

)
, (10)

x〈∇F (a), y〉 =
n∑

l=1

[∇F (a)]l ylx

=
n∑

l=1

[∇F (a)]l

[
1
2
(x + yl)2 − 1

2
(
x2 + y2

l

)]

=
1
2

n∑
l=1

[∇F (a)]l (x + yl)2 − 1
2

n∑
l=1

[∇F (a)]l
(
x2 + y2

l

)
,

(11)

where [∇F (a)]l is lth component of the gradient ∇F (a), l = 1, . . . , n.
Suppose that F (y) ≥ 0, x + F (y) ≥ 0. With these assumptions, we propose

another representation of the objective function in (5) as the following difference
of two sums of convex functions:

f(x, y) =
k∑

i=1

m∑
j=1

gij(x, y) −
k∑

i=1

m∑
j=1

hij(x, y), (12)

where

gij(x, y) =
1
2

(
xij + F (yi)

)2
+

1
2

n∑
l=1

[∇F (aj)
]
l

(
x2

ij +
(
yi

l

)2)

−xij(F (aj) − 〈∇F (aj), aj〉),
hij(x, y) =

1
2

(
x2

ij + F 2(yi)
)

+
1
2

n∑
l=1

[∇F (aj)
]
l
(xij + yi

l)
2,

i = 1, . . . , k, j = 1, . . . , m.

(13)

Remark 1. Note that functions gij(·) in (13) are convex functions if and only
if the non-negativity condition on the value of F (·) is satisfied, and moreover
xij + F (·) ≥ 0 ∀i, j.

The explicit DC representations (7)–(8) and (12)–(13) of the nonconvex
objective function allow us to generate different auxiliary convex (linearized)
problems and construct various methods for local search.
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5 Local Search

In order to find a local solution of the problem (5), which is turned out to be
the following DC minimization problem

f(x, y) = g(x, y) − h(x, y) ↓ min
(x,y)

, x ∈ S, y ∈ IRk×n, (P)

we apply the well-known DC Algorithm [13,21,22]. It consists of linearizing,
at a current point, the function h(·) which defines the basic nonconvexity of
Problem (P). The resultant convex approximation of the objective function f(·)
obtained by replacing the nonconvex part with its linearization is then mini-
mized. It is easy to see that such an approach allow finding local solutions by
employing conventional convex optimization techniques [18].

The scheme of DC Algorithm for Problem (P) is the following. We start with
an initial point (x0, y0) : y0 ∈ IRk×n, x0 ∈ S. Suppose a point (xs, ys), xs ∈ S, is
provided. Then, we find (xs+1, ys+1) as an approximate solution to the linearized
problem

Φs(x, y) = g(x, y) − 〈∇h(xs, ys), (x, y)〉 ↓ min
(x,y)

, x ∈ S, y ∈ IRk×n. (PLs)

It means that the next iteration (xs+1, ys+1) satisfies the following inequality:

g(xs+1, ys+1) − 〈∇h(xs, ys), (xs+1, ys+1)〉
≤ inf

x∈S

y∈IRk×n

{g(x, y) − 〈∇h(xs, ys), (x, y)〉} + δs, (14)

where δs ≥ 0, s = 0, 1, 2, . . . ;
∞∑

s=0

δs < ∞.

As it was proven in [22], the point (x∗, y∗), x∗ ∈ S, y∗ ∈ IRk×n, of the
sequence {(xs, ys)} generated by the method, is a solution to Linearized Problem
(PL∗), and stationary (critical) point of Problem (P).

Note that Linearized Problem (PLs) is convex, whereas Problem (P) is non-
convex.

As it was suggested in [21,22], one of the following inequalities can be
employed as a stopping criterion:

f(xs, ys) − f(xs+1, ys+1) ≤ τ

2
,

Φs(xs, ys) − Φs(xs+1, ys+1)
�
= g(xs, ys) − g(xs+1, ys+1)

+ 〈∇h(xs, ys), (xs+1, ys+1) − (xs, ys)〉 ≤ τ

2
,

(15)

where τ is a given accuracy. Therefore, if δs ≤ τ

2
, the point (xs, ys) is a τ -solution

to Problem (PLs).
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Applying the DC representation (7)–(8), we have to solve a series of the
following linearized problems:

1
2

k∑
i=1

m∑
j=1

(xij +DF (yi, aj))2−〈∇h(xs, ys), (x, y)〉 ↓ min
(x,y)

, x ∈ S, y ∈ IRk×n, (16)

where ∇h(xs, ys) = (∇xh(xs, ys),∇yh(xs, ys)) ∈ IRk×m+k×n with the following
components

[∇x h(xs, ys)]ij = xs
ij , i = 1, . . . , k, j = 1, . . . , m;

[∇y h(xs, ys)]il =
m∑

j=1

DF (ysi, aj)
[∇y DF (ysi, aj)

]
l
,

i = 1, . . . , k, l = 1, . . . , n.

(17)

Using second obtained DC representation (12)–(13) of the objective function
f(x, y) in the problem (5), we have to solve a series of the following linearized
problems:

k∑
i=1

m∑
j=1

gij(x, y) −
k∑

i=1

m∑
j=1

〈∇hij(xs, ys), (x, y)〉 ↓ min
(x,y)

, x ∈ S, y ∈ IRk×n, (18)

where the functions gij(x, y), i = 1, . . . , k, j = 1, . . . , m, are given by (13),
∇hij(xs, ys) = (∇xhij(xs, ys),∇yhij(xs, ys)) ∈ IRk×m+k×n with the following
components

[∇x hij(xs, ys)]ij = xs
ij +

n∑
l=1

[∇F (aj)
]
l
(xs

ij + ysi
l ),

[∇y hij(xs, ys)]il = F (ysi)
[∇F (ysi)

]
l
+

[∇F (aj)
]
l
(xs

ij + ysi
l ),

i = 1, . . . , k, j = 1, . . . , m, l = 1, . . . , n.

(19)

Therefore, the linearized problems (16) and (18) allow us to develop two
various local search methods which may converge to different stationary points
of the problem (5).

We denote the solution obtained by the local search method as z = (x, y)
(z ∈ Sol(P)), and in Sect. 7, we will show how to escape from local solutions
provided by the local search.

6 Bregman Divergence Examples

Let us illustrate the obtained DC representations as well as statements of Lin-
earized Problems (PLs) on some well-known strictly convex functions associated
with Bregman distance.
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6.1 Squared Euclidean Distance

Squared Euclidean distance is perhaps the simplest and most widely used Breg-
man divergence. The underlying function F (p) = 〈p, p〉, is strictly convex, dif-
ferentiable on IRn, ∇F (p) = 2p, and

DF (p, q) = 〈p, p〉 − 〈q, q〉 − 〈∇F (q), p − q〉 = 〈p, p〉 − 〈q, q〉 − 〈2q, p − q〉
= 〈p − q, p − q〉 = ‖p − q‖2.

In this case, according to (7)–(8) we get the following DC representation of the
objective function in (5):

f(x, y) = g(x, y) − h(x, y),

g(x, y) =
1
2

k∑
i=1

m∑
j=1

(
xij + ‖yi − aj‖2)2 ,

h(x, y) =
1
2

k∑
i=1

m∑
j=1

(
x2

ij + ‖yi − aj‖4) .

(20)

If the DC representation (12)–(13) is used, we get the following functions

f(x, y) =
k∑

i=1

m∑
j=1

gij(x, y) −
k∑

i=1

m∑
j=1

hij(x, y),

gij(x, y) =
1
2

(
xij + ‖yi‖2)2 +

n∑
l=1

aj
l

(
x2

ij +
(
yi

l

)2)
+ xij‖aj‖2,

hij(x, y) =
1
2

(
x2

ij + ‖yi‖4) +
n∑

l=1

aj
l

(
xij + yi

l

)2
,

i = 1, . . . , k, j = 1, . . . , m.

(21)

The obtained representations (20) and (21) are different from the decomposition
used in [9,10].

Remark 2. Since, the squared Mahalanobis distance,

DF (p, q) = 1
2 〈(p − q), Q(p − q)〉

which is generated by the convex function F (p) = 1
2 〈p,Qp〉, is a generalization

of the above squared Euclidean distance, it is easy to get DC representation in
the case of the squared Mahalanobis distance based on (20) and (21).

Applying the DC representation (20), using (16) and (17), we obtain the
following linearized problem:

1
2

k∑
i=1

m∑
j=1

(
xij + ‖yi − aj‖2)2− 〈xs, x〉−2

k∑
i=1

m∑
j=1

‖ysi − aj‖3
n∑

l=1

yi
l ↓ min

(x,y)
,

x ∈ S, y ∈ IRk×n.

⎫⎪⎬
⎪⎭
(22)
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The linearized problem (22) is convex, and although its objective function is
more complex than the quadratic one, (22) can be solved using suitable convex
optimization methods or software.

Similarly, using convex functions gij(·) from the DC representation (21), we
get the linearized problem (18), where, according to (19), the gradients

∇hij(xs, ys) = (∇xhij(xs, ys),∇yhij(xs, ys)) ∈ IRk×m+k×n

have the following components

[∇x hij(xs, ys)]ij = xs
ij + 2

n∑
l=1

aj
l (x

s
ij + ysi

l ),

[∇y hij(xs, ys)]il = 2‖ysi‖3 + 2aj
l (x

s
ij + ysi

l ),
i = 1, . . . , k, j = 1, . . . , m, l = 1, . . . , n.

(23)

6.2 Generalized I-Divergence

Another widely used Bregman divergence is the so-called generalized I-
divergence.

If p ∈ IRn
+, F (p) =

n∑
l=1

pl ln pl = 〈p, ln p〉 is a convex function, ∇F (p) =

ln p + 11, where 11 = (1, . . . , 1) ∈ IRn. The corresponding Bregman divergence is

DF (p, q) = 〈p, ln p〉 − 〈q, ln q〉 − 〈∇F (q), p − q〉
= 〈p, ln p〉 − 〈q, ln q〉 − 〈ln p + 11, p − q〉

= (〈p, ln p〉 − 〈p, ln q〉) − 〈11, p − q〉 =
〈

p, ln
p

q

〉
− 〈11, p − q〉.

(24)

Therefore, using (8) we get the following functions g(·) and h(·) in DC represen-
tation (7) of the objective function f(·) in the problem (5):

g(x, y) =
1
2

k∑
i=1

m∑
j=1

(
xij +

〈
yi, ln

yi

aj

〉
− 〈11, yi − aj〉

)2

,

h(x, y) =
1
2

k∑
i=1

m∑
j=1

(
x2

ij +
(〈

yi, ln
yi

aj

〉
− 〈11, yi − aj〉

)2
)

.

(25)

To construct the linearized problem (16) in this case, the components of the
gradient ∇h(xs, ys) = (∇xh(xs, ys),∇yh(xs, ys)) can be calculated as follows:

[∇x h(xs, ys)]ij = xs
ij , i = 1, . . . , k, j = 1, . . . , m;

[∇y h(xs, ys)]il =
m∑

j=1

(〈
ysi, ln

ysi

aj

〉
− 〈11, ysi − aj〉

)
ln

ysi
l

aj
l

,

i = 1, . . . , k, l = 1, . . . , n.

(26)
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If the DC representation (12)–(13) is considered, the following functions are
constructed:

gij(x, y) =
1
2

(
xij + 〈yi, ln yi〉)2+ 1

2

n∑
l=1

[
(ln aj

l +1)
(
x2

ij +
(
yi

l

)2)
+ 2xija

j
l

]
,

hij(x, y) =
1
2

(
x2

ij + 〈yi, ln yi〉2) +
1
2

n∑
l=1

(ln aj
l + 1)

(
xij + yi

l

)2
,

i = 1, . . . , k, j = 1, . . . , m.

(27)

However, it is worth noting that functions (27) are convex if and only if

〈yi, ln yi〉 =
n∑

l=1

yi
l ln yi

l > 0 ∀i = 1, . . . , k. In this case only, substituting the

convex functions (27) into (12), we obtain a DC representation of the objective
function f(·) in the problem (5). The components of gradients ∇hij(xs, ys) for
the linearized problem (18) are obtained by the following way

[∇x hij(xs, ys)]ij = xs
ij +

n∑
l=1

(ln aj
l + 1)(xs

ij + ysi
l ),

[∇y hij(xs, ys)]il = 〈yi, ln yi〉(ln ysi
l + 1) + (ln aj

l + 1)(xs
ij + ysi

l ),
i = 1, . . . , k, j = 1, . . . , m, l = 1, . . . , n.

(28)

In the next section, we describe how the aforementioned linearized problems can
be used in the so-called global search scheme.

7 Global Search

According to the Global Optimality Conditions [21,23] that form the basis
of the Global Search Theory for DC optimization problems developed by
A.S. Strekalovsky, whether a given point z = (x, y) is a global solution to Prob-
lem (P) is determined by solving a family of the following convex linearized
problems (PL(w))

g(x, y) − 〈∇h(w), (x, y)〉 ↓ min, x ∈ S, y ∈ IRk×n, (29)

They depend on the “perturbation” parameters (w, β) satisfying h(w) = β−ζ
with ζ = f(z). The problem (29) can be solved by any conventional convex
optimization method [18]. If the Optimality Conditions are violated at a given
triple (w̃, β̃, u), u = (u1, u2) : u1 ∈ S, u2 ∈ IRk×n, h(w̃) = β̃ − ζ, i.e.

g(u) − β̃ < 〈∇h(w̃), u − w̃〉,
then due to convexity of h(·) we get

g(u) < β̃ + h(u) − h(w̃),
g(u) < h(w̃) + ζ + h(u) − h(w̃),
f(u) = g(u) − h(u) < ζ = f(z)

and conclude that z = (x, y) : x ∈ S, is not optimal.
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Moreover, it is not necessary to investigate all pairs of (w, β): ζp = h(w)−β,
on each level ζp = f(zp), p = 1, 2, . . . , but it is sufficient to determine the
violation of the Optimality Conditions only for one pair (w̃, β̃) and u = (u1, u2) :
u1 ∈ S, u2 ∈ IRk×n.

The properties of the Optimality Conditions allow developing an algorithm
(a scheme) for solving DC minimization problems. The Global Search Scheme
comprises two principal stages:

I. Local search to find an approximate local minimizer zp with the value cor-
responding to the objective function ζp = f(zp);

II. Procedures of escaping from local pits, which are based on the Optimality
Conditions and can be represented as a chain of the following operations
[21,23]:
1. Choose a number (“perturbation” parameter) β :

inf(g, S) ≤ β ≤ sup(g, S).

2. Construct a finite approximation

Rp(β) = {w1, . . . , wNp | h(wt) = β − ζp, t = 1, . . . , Np}
of the level surface {h(x, y) = β − ζp} of the function h(·).

3. Find a δp-solution ūt of the following Linearized Problem:

g(x, y) − 〈∇h(wt), (x, y)〉 ↓ min
(x,y)

, x ∈ S, y ∈ IRk×n. (PLt)

4. Starting from the point ūt, find a local minimizer ut with a local search
method.

The procedures of escaping from local pits gave us with the triple (wt, β, ut).
If the Optimality Conditions are violated at the constructed triple we conclude
that f(ut) < f(zp), set zp+1 := ut and try to violate the Optimality Conditions
again with new value β + Δβ.

In the described Global Search Scheme, one can choose the local search
method (for instance, from Sect. 5), methods for varying the parameter β (for
example, Δβ is chosen by dividing a segment [inf(g, S), sup(g, S)] into q equal
parts) and constructing an approximation of the level surface of the convex func-
tion h(·). Therefore, the scheme can be clarified based on the properties of the
problem in question.

Note that constructing an approximation is considered as one of principal
steps. There are many ways and techniques to construct the approximation of the
level surface of the convex function h(·) which generates the basic nonconvexity
in Problem (P). The approximation Rp(β) of the level surface {h(·) = β−ζ} for
each pair (β, ζp), ζp = f(zp), may be constructed, for instance, by the following
rule [7,8,10]:

wil = zi + μile
l, i = 1, . . . , k, l = 1, . . . , n, (30)

where el is the standard vector from the Euclidean basis of IRn.
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For the quadratic function h(·) the search of μil is simple and, actually,
analytical (i.e. it is reduced to solving the quadratic equation of one variable μil).
For non-quadratic functions, the search for such coefficients μil can be rather
complicated. However, it is possible to suggest other approaches to choosing
the points wil of the approximation Rp(β) which differ from (30). In any case,
the approximation must be representative enough to decide whether the current
point zp is a global solution or not.

Using this approach, based on Optimality Conditions, we developed and
tested the algorithm for finding quality clustering solutions in minimum-sum-
of-squares (k-means) clustering problem [10]. In our computational experiments
we demonstrated that the proposed approach is competitive with conventional
k-means heuristics.

8 Conclusion

In this paper, we addressed the problem of clustering with Bregman divergences
from the mathematical programming point of view. We proposed two possible
reductions of the problem to a DC program, where a DC function is minimized
over a convex set. We developed two variants of local search algorithms based on
these formulations and considered their particular implementations for several
variants of Bregman divergences. For each particular case, the algorithms may
demonstrate different effectiveness and may converge to different critical points
since obtaining linearized problems differ from each other.

Our further research will be focused on implementation and testing the devel-
oped algorithms on both real and synthetic datasets.
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Abstract. When designing and optimizing modern semiconductor het-
erostructures, mathematical models are used that reflect the quantum
mechanical nature of the behavior of charge carriers. At the nanoscale
level, the applied mathematical model is a coupled system of Schrödinger
and Poisson equations. As a result of solving these equations, data are
obtained on the wave functions and the density distribution of charge car-
riers across the layered structure. The greatest computational costs when
using such a model are associated with the solution of the Schrödinger
equation. In this paper, we compare different methods for solving the
spectral problem. A method based on the Prufer transformation of the
Schrödinger equation, a variational method, and a method for solving
the spectral problem for a symmetric sparse matrix of a band structure
(a discrete analogue of the Schrödinger equation) are considered.

Keywords: Spectral problem · Prufer transformation · Variational
method · Numerical algorithms

1 Introduction

Recently, mathematical modeling of processes in semiconductor heterostructures
has become a very effective tool for determining the key parameters of such struc-
tures. This turned out to be possible due to the widespread introduction of numer-
ical methods in materials science. In particular, numerical methods are actively
used to determine the concentration profile of free charge carriers in doped semi-
conductor heterostructures containing a quantum well [1]. In this case, the volt-
farad characteristic of a heterostructure with a quantum well is calculated using a
numerical self-consistent solution of the Poisson and Schrödinger equations.

When finding a self-consistent solution of the Poisson and Schrödinger equa-
tions, the main computational costs are associated with the solution of the
Schrödinger equation. Therefore, the use of an efficient algorithm for solving
the spectral problem determines the effectiveness of solving the entire problem
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as a whole. It should also be taken into account that, in mathematical modeling
of the distribution of charge carriers in semiconductor nanostructures, the main
contribution to the distribution is made by the first eigenfunctions of the spec-
tral problem. The accuracy and efficiency of determining the first eigenvalues
and eigenfunctions is a key element in the mathematical modeling of modern
nanostructures.

The paper studies the possibility of using variational methods in solving the
spectral problem. This approach seems preferable for solving multidimensional
problems. Using the example of solving a one-dimensional spectral problem, the
variational method under consideration is compared with two other numerical
algorithms designed to determine the first eigenvalues and eigenfunctions.

2 Formulation of the Problem

Determining the wave functions of electrons in multilayer (with different param-
eters in each layer) heterostructures using the stationary Schrödinger equation
reduces to the following spectral problem.

Let the functions p(x) and q(x) be given on the interval x ∈ [a, b] and have
the following properties:

1) there are K points {X1,X2, . . . , XK} at which the functions p(x) and q(x)
have discontinuities of the first kind;

2) these points divide the interval (a, b) into (K+1) non-intersecting subintervals

(X0,X1), (X1,X2), ... (XK ,XK+1), so that [a, b] =
K⋃

n=0
[Xn,Xn+1], and X0 =

a, XK+1 = b.
3) on each subsegment [Xn,Xn+1], n = 0, . . . ,K is true

p(x) ∈ C1([Xn,Xn+1]), p(x) ≥ p0 > 0,
q(x) ∈ C([Xn,Xn+1]), q(x) ≥ 0.

The following spectral problem is considered: to find a number λ and a func-
tion u(x) ∈ C([a, b]), on each subsegment [Xn,Xn+1], n = 0, . . . ,K, satisfying
the following conditions

u(x) ∈ C2([Xn,Xn+1]),

− d

dx

(

p(x)
du(x)

dx

)

+ q(x) · u(x) = λ · u(x), x ∈ (Xn,Xn+1), (1)

u(a) = 0, u(b) = 0, (2)

u(x) �≡ 0, x ∈ [a, b], (3)

and, at the same time, at the discontinuity points the conjugation conditions
must be satisfied

u(x)|x=Xn−0= u(x)|x=Xn+0 ,

[

p(x)
du(x)

dx

]∣
∣
∣
∣
x=Xn−0

=
[

p(x)
du(x)

dx

]∣
∣
∣
∣
x=Xn+0

, (4)

(n = 1, . . . ,K).
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Let us introduce the operator L(u). The domain of definition D(L) of the oper-
ator L(u) consists of functions of the class u(x) ∈ C2([Xn,Xn+1])

⋂
C([a, b]),

(n = 1, . . . , K), satisfying conditions (2), (4). The operator L(u) associates each
function u(x) ∈ D(L) with a piecewise-continuous function

L(u) = − d

dx

(

p(x)
du(x)

dx

)

+ q(x) · u(x) ∈ L2(a, b).

This operator has the following properties [2]:

1) the domain of definition of the operator L(u) is dense in L2(a, b);
2) it is self-adjoint with respect to the scalar product of space L2(a, b), i.e. for

all u ∈ D(L) and ν ∈ D(L) the Lagrange identity (Lu, ν) = (u,Lν) is valid;
3) it is positive definite, i.e. the inequality (Lu, u) ≥ γ(u, u) with γ > 0 is valid

for all u ∈ D(L).

Considering these properties of the operator L(u), we construct the energy
space HL. To do this, on the set of functions from D(L) we introduce the energy
scalar product

[u, ν] = (Lu, ν) =

b∫

a

(

p(x) · du(x)
dx

· dν(x)
dx

+ q(x) · u(x) · ν(x)
)

dx

and the energy norm ‖u‖∗ = [u, u]1/2. Let’s replenish D(L) in the norm ‖·‖∗, i.e.
we add to D(L) limit points of all possible fundamental sequences {uk} ∈ D(L)
in the norm ‖ · ‖∗. Given the properties of the operator L(u), we can extend it
to the space HL.

The spectral problem formulated above is equivalent to the following mini-
mization problem (see [2–4]):

a) first eigenvalue: among the functions u(x) ∈ HL, ‖u‖L2 > 0 find the function
u1(x) that minimizes the functional [u,u]

(u,u) , i.e.

λ1 = min
u ∈ HL,

‖ u ‖L2> 0

(Lu, u)
(u, u)

, (5)

b) k-th eigenvalue: among the functions u(x) ∈ HL satisfying the conditions
(u, uj) = 0, (j = 1, . . . , k − 1), ‖u‖L2 > 0, find the function uk(x) that
minimizes the functional [u,u]

(u,u) , i.e.

λk = min
u ∈ HL,

(u, uj) = 0, j < k
‖ u ‖L2> 0

(Lu, u)
(u, u)

. (6)
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3 Variational Algorithm for Solving the Spectral Problem

For the numerical solution of the spectral problem, we will use the variational-
difference method (modified Ritz process [5]). We will look for the minimum
of the functional (5) in a subspace Hh

L of the space HL. We define a subspace
Hh

L as a linear shell stretched over a system of basis functions ϕi(x) ∈ HL,
(i = 1, . . . , N −1). We define basis functions ϕi(x) as follows. Let us introduce a
spatial grid (generally non-uniform). On the segment [a, b] we choose a system of
“reference” points {xi}N

i=0 so that x0 = a, xN = b, xi < xi+1 for all 0 ≤ i < N ,
and each discontinuity point of the functions p(x) and q(x) coincides with one
of the reference points. In this case hi−1/2 is the distance between the reference
points xi−1 and xi, i.e. hi−1/2 = xi −xi−1, i = 1, N . On each segment [xi−1, xi],
i = 1, N we define two auxiliary functions

ωR
i−1/2(x) =

x − xi−1

xi − xi−1
, ωL

i−1/2(x) =
xi − x

xi − xi−1
, x ∈ [xi−1, xi].

Basis functions ϕi(x) ∈ HL, (i = 1, . . . , N − 1) are piecewise linear functions of
the form

ϕi(x) =

⎧
⎪⎨

⎪⎩

ωR
i−1/2(x) = x−xi−1

xi−xi−1
, x ∈ [xi−1, xi],

ωL
i+1/2(x) = xi+1−x

xi+1−xi
, x ∈ [xi, xi+1],

0, x /∈ [xi−1, xi+1].

Then each function can be represented as

u(x) =
N−1∑

i=1

ciϕi(x),

in this case, conditions (2) will be satisfied automatically. The functionals [u, u] =
(Lu, u) and (u, u) are reduced to functions of (N −1) variables c1, . . . , cN−1. Let
us find the form of these functions.

1) [u, u] = (Lu, u) =

(

L
N−1∑

i=1

ciϕi(x),
N−1∑

j=1

cjϕj(x)

)

=
N−1∑

i,j=1

cicj(Lϕi, ϕj).

Taking into account that (Lϕi, ϕj) = 0 for |i − j| ≥ 2, after simple transfor-
mations we obtain

[u, u] = (Lu, u) =

N∑

i=1

⎛

⎝c2i −2cici−1+c2i−1

h2
i−1

2

pi−1
2
+c2i−1qLL

i−1
2
+2ci−1ciq

LR
i−1

2
+c2i qRR

i−1
2

⎞

⎠. (7)

In relation (7), it should be assumed that the following notations are used:

pi−1
2

=

xi∫

xi−1

p(x)dx, qαβ

i−1
2

=

xi∫

xi−1

q(x) · ωα
i−1

2
(x) · ωβ

i−1
2
(x)dx, α, β = (L,R).

(8)
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2) (u, u) =

(

L
N−1∑

i=1

ciϕi(x),
N−1∑

j=1

cjϕj(x)

)

=
N−1∑

i,j=1

cicj(ϕi, ϕj).

By analogy with how it was done for the functional [u, u] = (Lu, u), we get

(u, u) =
N∑

i=1

(
c2i−1q̃

LL
i− 1

2
+ 2ci−1ciq̃

LR
i− 1

2
+ c2i q̃

RR
i− 1

2

)
, (9)

where q̃αβ

i− 1
2
=

xi∫

xi−1

ωα
i− 1

2
(x)·ωβ

i− 1
2
(x)dx is the value qαβ

i− 1
2

calculated at q(x)≡1.

If the functions p(x) and q(x) are given analytically, then it is desirable to
calculate exactly the integrals appearing in expressions (8). In the general case,
to calculate the constants pi− 1

2
, qαβ

i− 1
2

and q̃αβ

i− 1
2

one should use numerical methods
for integrating expressions (8). In this paper, it was assumed that the functions
p(x) and q(x) are approximated by continuous piecewise linear functions so that
their values are known at the “reference” points {xi}N

i=0 of the grid (vectors
{pi}N

i=0 and {qi}N
i=0), and on each segment [xi−1, xi], i = 1, N these functions

are determined by the relations

p(x) = pi−1·ωL
i−1/2(x)+pi·ωR

i−1/2(x), q(x) = qi−1·ωL
i−1/2(x)+qi·ωR

i−1/2(x). (10)

In this case, the constants pi− 1
2

and qαβ

i− 1
2

are defined by the following equalities:

pi− 1
2

=
pi−1 + pi

2
· hi− 1

2
, qLL

i− 1
2

=
3qi−1 + qi

12
· hi− 1

2
,

qRR
i− 1

2
=

qi−1 + 3qi

12
· hi− 1

2
qLR
i− 1

2
=

qi−1 + qi

12
· hi− 1

2
.

After the approximation, the minimization of the functional (5) is reduced
to the minimization of a function F (c1, . . . , cN−1) of the form

F (c1, . . . , cN−1) =

N∑

i=1

(
c2i−2cici−1+c2i−1

h2
i−1

2

pi−1
2
+c2i−1q

LL
i−1

2
+2ci−1ciq

LR
i−1

2
+c2i q

RR
i−1

2

)

N∑

i=1

(
c2i−1q̃

LL
i− 1

2
+ 2ci−1ciq̃LR

i− 1
2

+ c2i q̃
RR
i− 1

2

) . (11)

To minimize the function (11), both the gradient method and the Newton
method were used. The gradient ‖ ∂F

∂ci
‖N−1

i=1 of the function F (c1, . . . , cN−1)

required for these methods and its Hessian matrix ‖ ∂2F
∂ci∂cj

‖N−1
i,j=1 were deter-

mined analytically. When calculating the first eigenvalue and the first eigenfunc-
tion, the problem of unconditional minimization of the function (11) was solved.
When calculating the remaining eigenvalues and eigenfunctions, the minimiza-
tion of function (11) was carried out in a subspace orthogonal to all eigenfunc-
tions found earlier.
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4 Trigonometric Tridiagonal Matrix Algorithm

The trigonometric tridiagonal matrix algorithm is based on the important change
of variables proposed by Prufer [6]. It consists in replacing the differential equa-
tion (1) with an equivalent normal system of first-order differential equations

du(x)
dx

=
1

p(x)
· w(x),

dw(x)
dx

= (q(x) − λ) · u(x) (12)

and in the subsequent transition in the phase plane to polar coordinates. Namely,
we will introduce new functions ϕ(x) and ρ(x) according to the rule:

u(x) = ρ(x) · cos ϕ(x), p(x) · u′(x) = ρ(x) · sin ϕ(x), x ∈ (a, b). (13)

Substitution of expressions (13) into system of equations (12) leads to the
following nonlinear system of differential equations (see [6])

ϕ′(x) =
1

p(x)
· sin2 ϕ(x) + (λ − q(x)) · cos2 ϕ(x) = 0, x ∈ (a, b), (14)

ϕ(a) =
π

2
, ϕ(b) =

π

2
− kπ, (k = 1, 2, 3, . . .), (15)

d ln ρ(x)
dx

=
1
2

(
1

p(x)
+ q(x) − λ

)

· sin 2ϕ(x), x ∈ (a, b). (16)

The importance of the resulting system of differential equations is due to
the fact that Eq. (14) contains only one unknown function ϕ(x). Therefore, the
spectral problem has essentially been reduced to integrating and studying one
first-order equation (14). If a solution to the boundary value problem (14)–(15)
is found, then the function ρ(x) can be obtained by integrating Eq. (16).

To find the k-th eigenvalue λk, one should find a solution to Eq. (14) that
satisfies conditions (15) for a given k. To do this, for fixed λ, the Cauchy problem
is solved for Eq. (14) and the first of the conditions (15). As a result, some
value ϕ(b, λ) of the solution of the problem at the endpoint is obtained. The
condition ϕ(b, λk) = π

2 −kπ is a characteristic equation for determining the k-th
eigenvalue λk. Solving this equation by some method (for example, the method
of dividing the segment in half), we find the k-th eigenvalue λk. To determine
the corresponding k-th eigenfunction uk(x), we solve the Cauchy problem for
Eq. (16) with an arbitrary initial condition, using the first of relations (13) and
the found functions ϕk(x) and ρk(x), construct the function uk(x) and then
normalize it.

Equations (14) and (16) can be integrated using different numerical algo-
rithms. In this work, the integration was carried out using two methods: the 4th
order Runge-Kutta method and the numerical-analytical method. In both cases,
as in the variational algorithm, the segment [a, b] was divided into sub-segments
by reference points {xi}N

i=0.
In the case of the Runge-Kutta method, described in detail in [6], on each

segment [xi−1, xi], (i = 1, N) the functions p(x) and q(x) were approximated by
linear functions according to formulas (10).
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As for the numerical-analytical method, here on each segment [xi−1, xi] these
functions were assumed to be constant pi−1/2 and qi−1/2, the values of which
were equal to the average values of the functions p(x) and q(x) on the segment
[xi−1, xi], i.e.

pi−1/2 · hi−1/2 =

xi∫

xi−1

p(x)dx, qi−1/2 · hi−1/2 =

xi∫

xi−1

q(x)dx.

The constancy of the functions p(x) and q(x) on the interval [xi−1, xi] makes it
possible here to analytically determine the solution of Eq. (14).

Denote by ϕi the value of the desired function ϕ(x) at the point xi, and by
βi−1/2 the next constant βi−1/2 = (λ − qi−1/2) · pi−1/2. Then the value of the
function ϕ(x) on the interval [xi−1, xi] is determined analytically by the follow-
ing formulas:

a) if
[
1 + (βi−1/2 − 1) · cos2 ϕi−1/2

]
= 0, then

ϕ(x) ≡ ϕi−1/2, x ∈ [xi−1, xi];

b) if βi−1/2 = (λ − qi−1/2) · pi−1/2 = 0, then

tan ϕ(x) =
pi−1/2 · tan ϕi−1/2

pi−1/2 + (x − xi) · tan ϕi−1/2
, x ∈ [xi−1, xi];

c) if βi−1/2 = (λ − qi−1/2) · pi−1/2 > 0, then

tanϕ(x)=
√

βi− 1
2

· tan

⎡

⎢⎣−
√

βi− 1
2

pi− 1
2

· (x − xi) + arctan

⎛

⎜⎝
tanϕi− 1

2√
βi− 1

2

⎞

⎟⎠

⎤

⎥⎦ , x ∈ [xi−1, xi];

d) if βi−1/2 = (λ − qi−1/2) · pi−1/2 < 0, then

tan ϕ(x) =
√

−βi− 1
2

· 1 + A

1 − A
, x ∈ [xi−1, xi],

A =
tan ϕi− 1

2
−

√
−βi− 1

2

tan ϕi− 1
2

+
√

−βi− 1
2

· exp

⎛

⎝−
2
√

−βi− 1
2

pi− 1
2

· (x − xi)

⎞

⎠ .

The calculation starts from the interval [x0, x1]. Using one of the above formulas
and condition ϕ0 = 0, the value ϕ1 of the function ϕ(x) at the point x1 is
determined. Taking into account the continuity of the function ϕ(x), we solve
the Cauchy problem for Eq. (14) with the initial condition ϕ(x1) = ϕ1 on the
interval [x1, x2] and find the value ϕ2 of the function ϕ(x) at the point x2, and
so on. As a result, we obtain the value ϕN of the function ϕ(x) at the point
xN = b, and select the parameter λ so that the condition is satisfied for the
fixed k

ϕN = ϕ(xN ) =
π

2
− kπ.

After the eigenvalue λk is found, Eq. (16) is integrated and the eigenfunction
uk(x) is constructed using the first of relations (13).
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5 Results of Numerical Calculations

A large number of computational experiments were carried out concerning the
numerical solution of the spectral problem (1)–(4) with different input data.
The same problem was solved by the variational method (VM), the trigonomet-
ric tridiagonal matrix algorithm (TMRK—version using the 4th order Runge-
Kutta method for the numerical integration of Eq. (12), the numerical-analytical
version—TMNA) and using the standard software package (SSP), which deter-
mines the eigenvalues and eigenvectors of the matrix.

The criterion for comparing the algorithms was the accuracy of calculating
the first eigenvalues. The most characteristic of the results obtained are presented
in this section and are based on two series of calculations.

In the first series of calculations, the following spectral problem was con-
sidered:

−u′′(x) = λ · u(x), x ∈ (0, π),

u(0) = 0, u(π) = 0,

u(x) �≡ 0, x ∈ (0, π).

The solution to this problem is well known:

λk = k2, uk(x) = sin kx, k = 1, 2, 3, . . . .

The segment [0, π] was divided uniformly into N sub-segments, and the cal-
culations were carried out for N = 25, 50, 100, 500, 1000, 2000.

We note at once that the numerical-analytical method of TMNA makes it
possible to obtain the first twenty eigenvalues with relative accuracy ≈ 5·10−12%,
regardless of the number N of partitions of the segment [0, π]. As for other
methods, some of the results obtained for N = 50, 100, 500 are presented in
Tables 1, 2 and 3. The numbers in the table indicate the relative deviation of
the calculated eigenvalues of the spectral problem from the theoretical ones in
percent.

Table 1. The relative deviation of the calculated eigenvalues of the spectral problem
from the theoretical ones in percent, N = 50.

N = 50 λ1 λ2 λ3 λ4 λ5 λ10 λ15 λ20

SSP 3.3 · 10−2 1.3 · 10−1 3.0 · 10−1 5.3 · 10−1 8.2 · 10−1 3.2 · 100 7.2 · 100 1.2 · 101

VM 3.3 · 10−2 1.3 · 10−1 3.0 · 10−1 5.3 · 10−1 8.3 · 10−1 3.3 · 100 7.6 · 100 1.4 · 101

TMRK 0.0 1.2 · 10−3 3.7 · 10−2 3.0 · 10−1 1.1 · 100 5.9 · 101 7.4 · 101 8.4 · 101
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Table 2. The relative deviation of the calculated eigenvalues of the spectral problem
from the theoretical ones in percent, N = 100.

N =100 λ1 λ2 λ3 λ4 λ5 λ10 λ15 λ20

SSP 8.2 · 10−3 3.3 · 10−2 7.4 · 10−2 1.3 · 10−1 2.1 · 10−1 8.2 · 10−1 1.8 · 100 3.3 · 100

VM 8.2 · 10−3 3.3 · 10−2 7.4 · 10−2 1.3 · 10−1 2.1 · 10−1 8.3 · 10−1 1.9 · 100 3.3 · 100

TMRK 0.0 7.8 · 10−5 2.5 · 10−3 2.3 · 10−2 1.1 · 10−1 2.7 · 101 6.4 · 101 7.7 · 101

Table 3. The relative deviation of the calculated eigenvalues of the spectral problem
from the theoretical ones in percent, N = 500.

N=500 λ1 λ2 λ3 λ4 λ5 λ10 λ15 λ20

SSP 3.3·10−4 1.3 · 10−3 3.0 · 10−3 5.3 · 10−3 8.2 · 10−3 3.3 · 10−2 7.4 · 10−2 1.3·10−1

VM 3.3·10−4 1.3 · 10−3 3.0 · 10−3 5.3 · 10−3 8.2 · 10−3 3.3 · 10−2 7.4 · 10−2 1.3·10−1

TMRK 0.0 1.3 · 10−7 4.0 · 10−6 3.8 · 10−5 2.0 · 10−4 2.9 · 10−2 3.0 · 10−1 1.2·101

Analysis of the results showed that the SSP and VM methods behave almost
identically (the difference is observed in 3–4 significant figures). For all consid-
ered N , the qualitative dependence of the relative deviation of the eigenvalue is
preserved. This dependence for N = 100 is shown in Fig. 1.

Fig. 1. The qualitative dependence of the relative deviation of the eigenvalue (SSP
method, N = 100).

As for the TMRK method, in all examples the first eigenvalues (their number
depends on N) are calculated more accurately than in the case of using the
SSP and VM methods, but the remaining eigenvalues are calculated noticeably
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rougher. The dependence of the relative deviation of the eigenvalue at N = 100
is shown in Fig. 2.

Finally, Table 4 shows the dependence on the number N of the maximum
relative deviation (in percent) of the calculated eigenvalues from their theoretical
values for the first 20 eigenvalues.

Judging by the latest results, we can say that the SSP and VM methods turn
out to be preferable when it comes to determining the first 20 eigenfunctions of
the spectral problem. At the same time, it should be recalled that the TMNA
method restores these eigenvalues with an accuracy of ≈5 · 10−12%.

Fig. 2. The qualitative dependence of the relative deviation of the eigenvalue (TMRK
method, N = 100).

Table 4. The dependence on the number N of the maximum relative deviation (in
percent) of the calculated eigenvalues from their theoretical values for the first 20
eigenvalues.

N = 25 N = 50 N = 100 N = 500 N = 1000 N = 2000

SSP 4.3 · 10+1 1.2 · 10+1 3.2 · 100 1.3 · 10−1 3.3 · 10−2 8.2 · 10−3

VM 4.4 · 10+1 1.4 · 10+1 3.3 · 100 1.3 · 10−1 3.3 · 10−2 8.2 · 10−3

TMRK 8.4 · 10+1 8.4 · 10+1 7.7 · 10+1 1.2 · 10+1 2.1 · 10−1 1.5 · 10−2

In the second series of calculations, a more interesting spectral problem
was considered:

−u′′(x) + x · (x − π) · u(x) = λ · u(x), x ∈ (0, π),
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u(0) = 0, u(π) = 0,

u(x) �≡ 0, x ∈ (0, π).

As the “exact” solution of this problem, we chose the solution constructed
by the numerical-analytical version of the trigonometric tridiagonal matrix algo-
rithm for N = 2000. The value N = 2000 was chosen on the basis that a further
increase in this number leads to a change in the eigenvalues in the 9th significant
digit.

As in the previous example, the segment [0, π] was divided evenly into N sub-
segments, and calculations were carried out for N = 25, 50, 100, 500, 1000, 2000
using all the described methods.

Note that in the case of the second example, the numerical-analytical method
of trigonometric tridiagonal matrix algorithm no longer allows obtaining the first
twenty eigenvalues with relative accuracy ≈ 5 · 10−12%, as it was in the case of
the first example.

Some of the results obtained for N = 50, 100, 500 are presented in Tables 5,
6 and 7. As in the first example, the analysis of the results showed that the SSP
and VM methods behave almost the same way. Therefore, Tables 5, 6 and 7
present the results of using only the variational method. In addition, a row with
the results obtained using the TMNA method appeared in these tables. The
numbers in the tables, as before, indicate the relative deviation of the computed
eigenvalues of the spectral problem from the theoretical values in percent.

Table 5. The relative deviation of the computed eigenvalues of the spectral problem
from the theoretical values in percent, N = 50.

N=50 λ1 λ2 λ3 λ4 λ5 λ10 λ15 λ20

VM 1.6·10−2 3.5 · 10−1 4.6 · 10−1 6.8 · 10−1 9.7 · 10−1 3.4 · 100 7.3 · 100 1.3·101

TMRK 5.7·10−2 3.2 · 10−2 5.7 · 10−2 3.5 · 10−1 9.9 · 10−1 5.9 · 101 7.9 · 101 8.5·101

TMNA 1.1 · 10−1 5.9 · 10−2 1.8 · 10−2 9.2 · 10−3 5.6 · 10−3 1.4 · 10−3 6.1 · 10−4 3.5·10−4

The results presented in Tables 5, 6 and 7 allow us to draw the following
conclusions. First, the SSP and VM methods behave almost identically. The
qualitative dependence of the relative deviation of the eigenvalue is also preserved
here and it coincides with the one shown in Fig. 1. Secondly, as in the previous
example, when using the TMRK method, the first eigenvalues (their number
depends on N) are calculated more accurately than in the case of using the
SSP and VM methods, but the remaining eigenvalues are calculated noticeably
rougher. The qualitative behavior of the relative deviation of the eigenvalues is
similar to that shown in Fig. 2. Thirdly, when the relative error of its calculation
by the TMNA method decreases. The dependence of the relative deviation of
the eigenvalue at N = 100 is shown in Fig. 3.
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Table 6. The relative deviation of the computed eigenvalues of the spectral problem
from the theoretical values in percent, N = 100.

N=100 λ1 λ2 λ3 λ4 λ5 λ10 λ15 λ20

VM 4.3·10−3 8.7 · 10−2 1.1 · 10−1 1.7 · 10−1 2.4 · 10−1 8.6 · 10−1 1.9 · 100 3.3·100

TMRK 1.4·10−2 7.6 · 10−3 5.4 · 10−3 2.7 · 10−2 1.2 · 10−1 2.8 · 101 6.4 · 101 7.7·101

TMNA 2.8 · 10−2 1.5 · 10−2 4.5 · 10−3 2.3 · 10−3 1.4 · 10−3 3.3 · 10−4 1.5 · 10−4 8.4·10−5

Table 7. The relative deviation of the computed eigenvalues of the spectral problem
from the theoretical values in percent, N = 500.

N=500 λ1 λ2 λ3 λ4 λ5 λ10 λ15 λ20

VM 7.3·10−4 3.7 · 10−3 4.4 · 10−3 6.8 · 10−3 9.7 · 10−3 3.4 · 10−2 7.5 · 10−2 1.3·10−1

TMRK 5.0·10−4 2.6 · 10−4 8.4 · 10−5 8.3 · 10−5 2.4 · 10−4 3.0 · 10−2 2.9 · 10−1 1.1·101

TMNA 1.1 · 10−3 5.6 · 10−4 1.7 · 10−4 8.6 · 10−5 5.3 · 10−5 1.3 · 10−5 5.5 · 10−6 3.1·10−6

Fig. 3. The dependence of the relative deviation of the eigenvalue at N = 100.

Finally, Table 8 shows the dependence on the number N of the maximum for
the first 20 eigenvalues of the relative deviation (in percent) of the calculated
eigenvalues from their theoretical values.

Table 8. The dependence on the number N of the maximum relative deviation (in
percent) of the calculated eigenvalues from their theoretical values for the first 20
eigenvalues.

N = 25 N = 50 N = 100 N = 500 N = 1000 N = 2000

VM 4.3 · 10+1 1.3 · 10+1 3.3 · 100 1.3 · 10−1 3.3 · 10−2 8.3 · 10−3

TMRK 8.8 · 10+1 8.5 · 10+1 7.7 · 10+1 1.1 · 10+1 2.2 · 10−1 1.6 · 10−2

TMNA 4.5 · 10−1 1.1 · 10−1 2.8 · 10−2 1.1 · 10−3 2.1 · 10−4 0.0
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Recent results show that the SSP and VM methods are preferable to the
TMRK method, but lose to the TMNA method.

In the third series of calculations, an example borrowed from [7] was consid-
ered. In this example, the stationary states of an electron in the simplest rectan-
gular quantum well formed by a three-layer Al0.3Ga0.7As/GaAs heterostructure
are studied. The study of the electron states is reduced to solving the spectral
problem (1)–(4) for the following values of dimensionless parameters

a = −38.4, b = +38.4,

p(x) =
{

0.414128487, 2.8 ≤| x |≤ 38.4,
0.568654042, | x |≤ 2.8,

q(x) =
{

0.23, 2.8 ≤| x |≤ 38.4,
0, | x |≤ 2.8.

Since the functions p(x) and q(x) are piecewise constant, the numerical-
analytical version of the trigonometric tridiagonal matrix method TMNA allows
one to obtain exact eigenvalues for any (N ≥ 3) partition of the segment [a, b],
provided that the break points of the functions p(x) and q(x) coincide with the
reference points.

The segment [−38.4,+38.4] was divided evenly into sub-segments, and the
calculations were carried out using all the methods described.

Some of the results obtained are presented in Table 9. As in the previous
examples, the analysis of the results showed that the VM and SSP methods
behave almost the same. Therefore, Table 9 presents the results of using only
the VM variational method. The numbers in the tables, as before, indicate the
relative deviation of the calculated eigenvalues of the spectral problem from the
theoretical values in percent.

Table 9. The relative deviation of the calculated eigenvalues of the spectral problem
from the theoretical ones in percent, N = 768.

N = 768 λ1 λ2 λ3 λ4 λ5 λ10 λ15 λ20

VM 1.8 · 10−2 1.0 · 10−2 4.7 · 10−5 7.3 · 10−4 2.3 · 10−4 4.2 · 10−3 1.3 · 10−2 3.1 · 10−2

TMRK 1.6 · 10−6 9.5 · 10−5 4.3 · 10−6 1.3 · 10−5 2.1 · 10−5 2.1 · 10−4 4.7 · 10−4 7.1 · 10−4

The results presented in Table 9 allow us to draw the following conclusions.
First, recall that the VM and SSP methods behave almost identically. Secondly,
the trigonometric tridiagonal matrix algorithm using the Runge-Kutta method
(TMRK method) determines the first 20 eigenvalues approximately two orders of
magnitude more accurately than the VM variational method and the SSP matrix
method. Thirdly, there is a non-monotonicity in the accuracy of determining the
eigenvalues both by the VM method and by the TMRK method. But in general,
as the number of the eigenvalue increases, the relative error of its calculation by
the VM, SSP, and TMRK methods increases.
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6 Conclusion

Analysis of the results of the computational experiments, some of which are
presented above, allows us to draw the following conclusions.

When solving the spectral problem (1)–(4) in the case when it is necessary
to obtain several first eigenvalues and eigenfunctions, it is advisable to use the
numerical-analytical version of the trigonometric tridiagonal matrix algorithm.
In this case, to obtain the eigenvalues, one can use a not too detailed partition
of the segment [a, b], since for N ≈ 25−50 the relative error of the calculated
eigenvalues does not exceed 1%. After finding the required eigenvalues, the deter-
mination of the corresponding eigenfunctions is carried out without iteration
by solving Eq. (16) by the Runge-Kutta method on a sufficiently detailed grid
(N ≈ 500−1000).

If we are talking about a multidimensional case, then it seems reasonable to
use the variational method described above.
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Abstract. This paper considers a single-server queueing system with
strategic users in which customers (players) enter the system with pre-
emptive access. As soon as the customer request enters the system, the
server immediately starts the service. But when the next request arrives
in the system, the previous one leaves the system even he has not fin-
ished his service yet. We study the following non-cooperative game for
this service system. Each player decides when to arrive at the queueing
system within a certain period of time. The objective of the player is to
maximize the probability of receiving service. We show that there exists
a unique symmetric Nash equilibrium in this game. Finally, some numer-
ical experiments are carried out to compare the equilibria under different
values of the model parameters.

Keywords: Queueing system · Preemptive access · Strategic users ·
Optimal arrivals · Kolmogorov backward equations · Nash equilibrium

1 Introduction

We consider a single-server queueing system with strategic users. The customers
(players) log into the system with preemptive access during a fixed time interval
[0, T ]. As soon as a customer arrives in the system, the server immediately starts
his service. But when the next customer arrives in the system, the current one
leaves the system even it has not finished its service yet, unlike the model in [2]
where the current request is moved to a queue to resume its service later.

Such service discipline looks strange and unfair, but it is often found in real
life. In nature, animals mark their territory and exchange tags during the mating
season - the last one is the owner until the next one leaves his mark. The situation
is similar with graffiti on the walls. Another example is an access to social shared
objects. For example, observing some kind of an art object the user leaves it to
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make room for the next visitor. Or we can consider an open access webcam (such
as i.g. http://webcam.anw.at/) which can change its angle of view according to
user’s commands. When one user interact with such service, another user can
take a control.

There are data transmission systems in which it is important not the integrity
of the information, but its relevance. Such are audio and video streaming applica-
tions. Data exchange in such applications is implemented on the basis of the UDP
protocol. The transmitted data stream is divided into fragments – data packets,
possibly of different sizes. They are sent over the network asynchronously and
without delivery confirmation. In the process of transmission, packets may be
delayed, and the next packet may not be fully delivered when the next packet is
received. When analysing such systems, it is important to understand that high
outgoing losses are the norm, since UDP traffic does not require acknowledge-
ment. The use of reliable protocols, such as TCP, would inevitably lead to large
delays in data exchange, which is unacceptable when it is necessary to exchange
video and audio information in real time. Therefore, UDP is used, which is an
unreliable data transfer protocol. This means that the party sending the packets
can send as much traffic as the network system can receive without worrying
about losses due to network delays. The addressee processes that part of the
information that was received in a timely manner. Since there are many packets,
successfully delivered packets are sufficient for continuous video playback at the
receiving point. Video quality depends on the percentage of delivery losses. UDP
loss determines the degree of user comfort when working with such applications.
A high percentage of losses leads to severe jitter and delays in audio and video. If
there are several devices (cameras, sensors etc.) sending streaming information,
they compete to provide their packets delivering. This data transmission system
can also be considered as a system with preemptive access.

In conventional queueing theory, the structure of the input process is usually
assumed to be predefined and specified by the input rate of the customers.
However, there exists a different approach to the queueing which is based on the
assumption that the customers logging into the system are strategic [1,3,5–16].
Namely, it is assumed that the user strategy is to select the arrival instant to
the system on a time interval [0, T ]. In this setting, the queue in the system is
determined after each player selects their random arrival instant in the system.
Thus, each user spends some time in the system, and this time is their personal
utility function. As a result, a non-zero-sum game is obtained, in which we need
to find the Nash equilibrium. The paper [6] is the first work that considers the
queue as a result of the user’s behavior. They further formulate a non-cooperative
game in which a Poisson-distributed number of the customers determines their
arrival instances in the queue of a single-server system, over a (limited) admission
interval [0, T ]. The purpose of the customers is to minimize their waiting time
in the system. It is shown in [6] that the symmetric Nash equilibrium strategy
is mixed. In particular, it was revealed that this strategy is the (absolutely
continuous) uniform distribution over time interval [0, T ], except a singularity
at zero, and the density function decreases between zero and T . A similar model

http://webcam.anw.at/
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with m ≥ 1 identical (exponential) servers and the buffer size c ≥ 0 for the
waiting customers is considered in the paper [9]. Note that the arrival times
game with the batch service has been investigated in [7]. A single-server bufferless
system in which the customers have a time-sensitivity function that they want to
minimize, instead of their own waiting costs, has been studied in [14]. A model
where the customers may incur tardiness costs in addition to the waiting costs
is considered in [12]. The paper [11] considers a model combining the tardiness
costs, waiting costs, and restrictions on the opening and closing times. The
paper [2] presents a queueing system where a single server opens and serves
users according to the last-come first-served discipline with preemptive-resume.
A recent paper [4] is devoted to finding an equilibrium in a single-server queueing
system with retrievals and strategic timing of arrivals.

In this paper, we apply a game-theoretic approach to a preemptive single-
server queueing system. The queue is formed by the strategic players. The
player’s strategy is to choose a moment to enter the system. It is possible to
assume that each player tries to maximize the probability to perform his request
completely or maximizes a service time or a degree of completion for his request.
In this paper we use the first form of payoff, the second one is a direction for
the following development. The paper is organized as follows. In Sect. 2, we
describe the generalized model in details. In the Sect. 3 we assume that the
number of players is fixed. We demonstrate that there exists a unique symmet-
ric equilibrium. Finally, some numerical experiments are performed to compare
the equilibria under different values of the model parameters.

2 Description of the Model

2.1 Service System

Now we describe our model in more details in a general setting. We assume that
there exists a single server which serves N +1 customers presented in the system
at the initial instant t = 0. Unlike the conventional queueing theory setting,
these customers use some strategy to choose an instant on a time interval [0, T ]
to enter the server. By a symmetry, this strategy is the same for each user. This
strategy is determined by a distribution function which is the main purpose of
the analysis, and it determines the instant of the attempt to enter the server.

When some customer arrives then he captures server for the exponentially
distributed time with parameter μ. But when the next customer arrives in the
system the current one must leave the system even it has not finished its service
yet. The system has no queues. The server may simultaneously perform only one
request. It may happen that several customers arrive to the system at the same
time. Then the server chooses with equal probability one of the currently arrived
requests for further servicing.

In the queueing theory, the structure of the input process and the service
process are usually assumed to be predefined and specified by the input rate
and service times of the customers. Here the input process is actually formed by
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the strategic customers who like to maximize the probability to be served in the
system.

2.2 Game-Theoretic Model

Consider the optimal request discipline problem in the system as a non-
cooperative game. Here the players are the system users sending their requests
for servicing. Denote by S the player set. The number of players is N + 1 = |S|,
which can be a fixed or a random value. Each player chooses the time to send his
request to the system, seeking to maximize the probability of servicing for his
requests. The pure strategy of player i is the arrival time ti of his request in the
system. The mixed strategy of player i is the distribution function Fi(t) (having
density fi(t)) of the arrival times in the system on the time interval [0, T ]. Let
F = {Fi(t), i ∈ S} be the strategy profile.

All players are identical, independent and demonstrate the selfish behavior
without cooperation. As the optimality criterion we choose the symmetric Nash
equilibrium. In this case, the strategies of all players coincide, i.e., Fi(t) = F (t)
for all i.

Definition 1. A distribution function F (t) of the arrival times t in the system
is a symmetric Nash equilibrium if there exists a constant C such that at any
time t ∈ [0, T ] the probability of service does not exceed C and is equal to C on
the support of F (t).

To find the Nash equilibrium in this game we use the following approach.
Assume that all players {1, 2, ..., N} use the same mixed strategy F (t), t ∈ [0, T ]}.
Then we find the best response of player N + 1 to the described strategy F (t).
As a payoff function of player N + 1, we will consider the probability of servic-
ing of his request. Thus, the objective of player N + 1 is to choose a strategy
that will maximize his payoff function. Due to the symmetry of the problem, in
equilibrium the optimal strategy of player N + 1 must coincide with the chosen
strategy of his opponents. To do this, it is sufficient that the strategy of player
N + 1 is chosen in such a way that the payoff function of player N + 1 takes
a constant value over the support of the distribution function F (t) (see [13]).
It yields that the best response of player N + 1 for the mixed strategies of his
opponents Fi(t) = F (t), i = 1, ..., N coincides with F (t). Thus, F (t) is the Nash
equilibrium in this game.

Lemma 1. The support of the equilibrium strategy contains an atom at the point
t = T , i.e., the equilibrium probability p of request arrivals at the instant T is
strictly positive. In addition, there exists a time interval (te, T ) without receiving
requests in the system.

Proof. Really, the probability of request arrivals in the system at the instant t =
T has a positive value. Assume that it is not true, i.e., no one sends his requests
to the system at this time. Then any player deviating from the equilibrium
and sending his request to the system at the instant T receives servicing with
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probability 1. Consequently, there is a positive probability to arrive at the instant
T in the equilibrium.

Assume that Xp be a random variable that represents the number of requests
received at the instant T . The probability that a request arriving at the instant
T receives service is

E

[
1

Xp + 1

]
= P (Xp = 0) + E

[
1

Xp + 1
|Xp > 0

]
.

Consider the instant t such that there are no arrivals at the interval (t, T ).
The probability that a request arriving at the instant t receives service is

P (Xp = 0) + P (Xp > 0)(1 − e−μ(T−t)) = 1 − P (Xp > 0)e−μ(T−t),

it obviously decreases by t.
Consider the instant t = T−. The probability that a request arriving at the

instant T− receives service is

lim
t→T−

P (Xp = 0) + P (Xp > 0)(1 − e−μ(T−t)) = P (Xp = 0),

which is less than if the request had arrived at instant T .
Thus, the player’s payoff decreases up to the moment T−, and remain less

than at the moment T , provided that no one sent requests to the system dur-
ing this period. This explains the existence of the time interval [te, T ) without
requests coming before the instant T . �

Suppose we know the equilibrium probability p of a request arrival at the
instant T , where 0 < p ≤ 1. We show that the player’s payoff is a decreas-
ing function on the interval (te, T ). Hence, there exists an instant te (perhaps,
negative) when the payoffs at the instants te and T coincide. It yields

E

[
1

Xp + 1

]
= 1 − P (Xp > 0)e−μ(T−t). (1)

Lemma 2. In the queueing game with two players the Eq. (1) defines te that is
independent of p. In game with N + 1 ≥ 3 players the Eq. (1) defines a function
te(p) that strictly increases in p.

Proof. Consider the game with two players, so N = 1. The Eq. (1) is

(1 − p) · 1 + p
1
2

= 1 − p
(
1 − e−μ(T−te)

)
.

It yields

te = T − 1
μ

log 2.

We see that te doesn’t depend on p.
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Let N = n ≥ 2. The Eq. (1) can be presented as

n∑
k=0

1
k + 1

(
n

k

)
pk(1 − p)n−k = 1 − (1 − (1 − p)n)e−μ(T−te). (2)

Rewrite (2) as

e−μ(T−te) =
1 −

n∑
k=0

1
k+1

(
n
k

)
pk(1 − p)n−k

1 − (1 − p)n
. (3)

Differentiating (3) in p we obtain

μe−μ(T−te)
dte
dp

=
(1 − (1 − p)n)2 − n2p2(1 − p)n−1

(n + 1)(1 − (1 − p)n)2p2
. (4)

From the Cauchy inequality

n−1∑
i=0

(1 − p)i

n
≥

(
n∏

i=0

(1 − p)i

) 1
n

= (1 − p)
n−1
2

we obtain

(1 − (1 − p)n)2 = p2

(
n−1∑
i=0

(1 − p)i

)2

≥ n2p2(1 − p)n−1.

Consequently, the right side of (4) is non-negative (in fact it is positive for all
p ∈ [0, 1)). It yields that dte/dp > 0, ∀p ∈ [0, 1). It means that function te(p)
strictly increases in p. �

As follows from the Lemma 2, the higher the probability p of requests entering
the system at the instant T , the larger the interval [0, te] where players send their
requests to the system with a positive density. Also, note that for a given p, the
value of te may even be less than 0. In this case the probability of p should be
increased. Even if te(0) ≤ 0, then the equilibrium strategy is pure, i.e. sending
requests to the system at instant t = T with probability 1. Further, we assume
that te(0) > 0.

Remark 1. The expected value E
[

1
Xp+1

]
decreases in p (see [13]).

The Remark 1 means that with increasing the arrival probability at the
instant T , the probability of loss at this moment increases. It can be explained
by the fact that if more requests arrive in the system at the instant T with
increasing of p, then more requests are lost because only one of them is served.

Lemma 3. If te > 0, then at the interval [0, te] there exists a strictly positive
density function f(t) > 0 of the arrival times in the system. This interval has
no atoms or discontinuities.
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Proof. Consider the interval [0, te] where the players enter to the system. We
show that in equilibrium, the distribution density function is strictly positive
over the entire interval. Let’s assume the opposite, i.e. on the interval [0, te]
there is some interval (t1, t2) where none of the players arrives in the system.
Then, if one of the players decides to come to the system at the instant t1, he
will receive service with probability

1 − e−μ(t2−t1) +

T∫
t2

(1 − e−μ(θ−t1))dP (θ),

where dP (θ) is a probability that another request arrives to the system at the
instant θ. But if this player arrives in the system at the instant t2, he will receive
service with probability

T∫
t2

(1 − e−μ(θ−t2))dP (θ),

which is less than probability to receive service at the instant t1. This means
that the strategy support [0, te] does not contain such discontinuities.

Now, show that the strategy support [0, te] has no atoms. Suppose such an
atom exists at a point t ∈ [0, te] and the probability that a request arrives at
the instant t is p > 0. Consider the instant t+, which is infinitesimally close on
the right to the instant t. Let’s take a certain player who is trying to send his
request to the system at the instant t. Let the random variable Xp represent
the number of his opponents whose requests entered the system at the instant t.
Due to the strict positivity of the probability p, this random variable must also
be positive. The probability that this player receives service at the instant t is

E
1

Xp + 1

T∫
t+

(1 − e−μ(θ−t+))dP (θ),

which is smaller than such probability at the instant t+:

T∫
t+

(1 − e−μ(θ−t+))dP (θ).

In other words, if the distribution of request arrivals before the instant te contains
an atom at some point, it is better to send the request to the system immediately
after this instant. Unlike the instant T (when the system is closed for arrivals
and the player just needs to get a service opportunity), here the service may be
interrupted by another request, and the chance of not being selected reduces the
likelihood of service. �
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3 The Nash Equilibrium in the Queueing Game

Assume that the number of players sending their requests to the system is equal
to N + 1. Each of them has N opponents that can prevent them from receiving
service. For the sake of certainty, let’s consider player N + 1. Let’s assume that
at time t = T each of his N opponents sends his request to the system with
probability p. Denote Xp the number of players who sent their requests to the
server at time T . Then, for player N + 1, the probability of receiving service in
the system at time T is defined as

C(T ) = E

[
1

Xp + 1

]
.

Note that if the number of players is fixed, the random variable Xp obeys
the binomial distribution Bin(N, p). So, the payoff function of player N + 1 at
the instant T is

C(T ) =
N∑

i=0

(
N

i

)
pi(1 − p)N−i 1

i + 1
=

1 − (1 − p)N+1

p(N + 1)
. (5)

The probability that player N + 1 receives a service at the instant te < T in
case there is no customers arriving at the interval (te, T ) is defined by

C(te) = 1 − (1 − (1 − p)N )e−μ(T−te). (6)

So, in the equilibrium p and te must satisfy the equation

1 − (1 − p)N+1

p(N + 1)
= 1 − (1 − (1 − p)N )e−μ(T−te),

implying

te = T − 1
μ

log
p(N + 1)(1 − (1 − p)N )

p(N + 1) − 1 + (1 − p)N+1
. (7)

Our objective now is to find the equilibrium density function f(t) for the
arrival time in the system on the interval [0, te]. Define a Markov process with
system states (i) at each instant t ∈ [0, te], where i ∈ {0, . . . , N} indicates the
number of players who have sent their requests to the system before the time
t. This process is inhomogeneous in time, since the request rate in the system
decreases in jumps as soon as a new request is received from a successive player.
The arrival rate at instant t depends on the chosen strategy and the number k
of customers who have already entered the system up to instant t. These rates
has the following form λk(t) = (N − k) f(t)

1−F (t) . Now we can write down the
corresponding Kolmogorov backward equations for state probabilities pi(t)

p′
0(t) = −λ0(t)p0(t),

p′
i(t) = −λi(t)pi(t) + λi−1(t)pi−1(t) for i = 1, . . . , N − 1,

p′
N (t) = λN−1(t)pN−1(t),

(8)
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which can be resolved to

pi(t) =
(

N

i

)
F (t)i(1 − F (t))N−i for i = 0, . . . , N. (9)

The initial state probabilities are p0(0) = 1 and pi(0) = 0 for i = 1, . . . , N .
Then the payoff function of player N + 1 at the instant t ∈ [0, te] is

C(t) =
N−1∑
i=0

pi(t)CN−i(t) + pN (t),

where Cj(t) is a probability that player N + 1 arriving at the instant t ∈ [0, te]
will be served, provided that j customers have not arrived into the system yet
before the instant t.

For j = 1 let τ1 is an instant of the arriving request to the system. Then

C1(t) = E(1 − e−μ(τ1−t)|t ≤ τ1 ≤ te) + P (τ1 = T )(1 − e−μ(T−t))

=
1

1 − F (t)

(∫ te

t

dF (τ)(1 − e−μ(τ−t) + p(1 − e−μ(T−t))
)

.

For j = 2 let τ1, τ2 be the instants of the two arriving requests to the system.
We obtain

C2(t) = 2E(1−e−μ(τ1−t)|t ≤ τ1 ≤ τ2 ≤ te)+2E(1−e−μ(τ1−t)|t ≤ τ1 ≤ te, τ2 = T )

+P (τ1 = T, τ2 = T )(1 − e−μ(T−t))

=
1

(1 − F (t))2

⎛
⎝2

te∫

t

dF (t1)

te∫

t1

dF (t2)(1 − e−μ(t1−t)) + 2p

te∫

t

dF (t1)(1 − e−μ(t1−t))

+ p2(1 − e−μ(T−t))
)

=
1

(1 − F (t))2

⎛
⎝2

te∫
t

dF (t1)(1 − F (t1))(1 − e−μ(t1−t)) + p2(1 − e−μ(T−t))

⎞
⎠ .

Arguing the same way we obtain for k = 2, ..., N

Ck(t) = kE(1 − e−μ(τ1−t)|t ≤ τ1 ≤ te, τ1 ≤ τj , j = 2, . . . , N)

+P (τj = T, j = 1, . . . , N)(1 − e−μ(T−t))

= 1
(1−F (t))k

(
k

te∫
t

dF (t1)(1 − F (t1))k−1(1 − e−μ(t1−t)) + pk(1 − e−μ(T−t))

)
.

Substituting Cj(t) into C(t) we obtain

C(t) = F (t)N +
N−1∑
i=0

(
N
i

)
F (t)ipN−i(1 − e−μ(T−t))

+
N−1∑
i=0

(
N
i

)
F (t)i(N − i)

te∫
t

(1 − e−μ(s−t))(1 − F (s))N−i−1dF (s).
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The first sum equals to

(F (t) + p)N (1 − e−μ(T−t)) − F (t)N (1 − e−μ(T−t)).

Simplifying the second sum

N−1∑
i=0

(
N
i

)
F (t)i(N − i)

te∫
t

(1 − e−μ(s−t))(1 − F (s))N−i−1dF (s)

= N
N−1∑
i=0

(
N−1

i

)
F (t)i

te∫
t

(1 − e−μ(s−t))(1 − F (s))N−i−1dF (s)

= N
te∫
t

(1 − e−μ(s−t))(F (t) + 1 − F (s))N−1dF (s).

Hence, we obtain

C(t) = (F (t) + p)N (1 − e−μ(T−t)) + F (t)Ne−μ(T−t)

+N
te∫
t

(1 − e−μ(s−t))(F (t) + 1 − F (s))N−1dF (s).
(10)

The equilibrium payoff function must be constant on the interval [0, te], so the
distribution F (t) must satisfy the equation C(t) = C(te) for t ∈ [0, te], that is

(F (t) + p)N (1 − e−μ(T−t))

+N
te∫
t

(1 − e−μ(s−t))(F (t) + 1 − F (s))N−1dF (s) + F (t)Ne−μ(T−t)

= 1 − (1 − (1 − p)N )e−μ(T−te).

(11)

The probability of arrival at the instant t = T can be found from the normal-
ization condition

te∫
0

dF (t) + p = 1. (12)

So, we have established the following:

Theorem 1. The symmetric Nash equilibrium in the N + 1-person queueing
game with preemptive access is described by the distribution function F (t) on
the interval [0, T ], which has the following properties.

1. There is a non-zero probability p of a request entering the system at the instant
T .

2. At the interval [te, T ), where te is determined by (7), the players do not enter
the service system.

3. Let the solution of Eq. (7) be negative for p = 1, then in equilibrium all players
send their requests to the system at instant T . Otherwise, p < 1, and te is
greater than 0; in addition, the PDF f(t) on the support [0, te] is determined
from Eqs. (11).

4. The probability p of a request entering the system at the instant T is deter-
mined from Eq. (12).



Optimal Arrivals to Preemptive Queueing System 179

5. In equilibrium, the probability that a player receives service is equal to C(T ) =
1−(1−p)N+1

p(N+1) .

Lemma 4. The distribution function F (t) representing the solution of (11) with
the boundary condition F (te) = 1 − p, where te is defined by (7), increases in p
at any point of the interval [0, T ].

Proof. Consider two given probabilities 0 < p < q ≤ 1 of request arrival at
the instant T that define the boundary conditions for constructing the two dis-
tribution functions Fp(t) and Fq(t) as the solutions of (11). The corresponding
probabilities of receiving service Cp(t) and Cq(t) are constant on the whole dis-
tribution support. By Remark 1 the function C(·) decreases by the probability
to arrive at the instant T . Then the probability of loss must be smaller for p
than for q on the whole distribution support.

By Lemma 2, we have tq = t(q) > tp = t(p) for the corresponding starting
points of the intervals where the requests again arrive in the system. That is,
the function Fq(t) continues to increase to the value 1 − q at the instant when
Fp(t) becomes the constant 1−p > 1− q. For t ∈ [tp, T ] the lemma is true, since
in this case Fp(t) = 1 − p > 1 − q ≥ Fq(t).

Assume there exists a certain instant s < tp such that Fp(t) < Fq(t) and
Fp(s) = Fq(s). Then fp(s) > fq(s), as both distribution functions do not decrease
in t, and at the point s the function Fp(t) must cross Fq(t) upwards. Hence, the
slope of Fp(t) exceeds that of Fq(t) and therefore fp(s)

1−Fp(s)
>

fq(s)
1−Fq(s)

. This means
that the request rate at the time s is higher for the probability p than for q, while
the service rates are the same in both cases. Then the probability of loss at the
instant s must be greater for p than for q, which obviously contradicts the fact
that the probability of loss is smaller for p than for q on the whole distribution
support. �
Theorem 2. The symmetric equilibrium distribution F of the arrival times that
is defined by Theorem 1 actually exists and is unique.

Proof. The uniqueness of the equilibrium follows from Lemma 4. The equilibrium
condition (12) represents an equation whose left-hand side increases monotoni-
cally in p. For p ≈ 0, the left-hand side equals the probability of request arrival
on the interval [0, te], which does not exceed 1. For p = 1, the left-hand side is not
smaller than 1. Therefore, there exists the unique solution p that is associated
with the unique value te and density function f(t) on [0, te]. �
Example 1. Let T = 4, μ = 0.25. Here the average service time is 1/μ = T .
The computations gives the optimal values in the equilibrium for different N
which are given in Table 1. The PDFs for the optimal arrival time at the interval
[0, te] are presented at Fig. 1a.

Example 2. Let T = 4, μ = 2. Here the average time to serve request is small
comparing with T . The computations give the optimal values in the equilibrium
for different N which are given in Table 1. The PDFs for the optimal arrival time
at the interval [0, te] are presented at Fig. 1b.
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Table 1. Optimal p, te and payoff T = 4.

µ = 0.25 µ = 2

N Payoff C(t) p te Payoff C(t) p te

2 0.43916 0.74669 1.95199 0.80403 0.21078 3.67268

5 0.25996 0.63972 2.82015 0.62724 0.19150 3.71850

10 0.15600 0.58271 3.32223 0.46092 0.17274 3.77238

20 0.08718 0.54618 3.63511 0.30191 0.15289 3.83874

100 0.01918 0.51629 3.92255 0.07662 0.12923 3.96014

Fig. 1. Equilibrium PDF f(t) for T = 4.

4 Conclusion

This paper has studied a game-theoretic model for a single-server queueing sys-
tem with strategic users in which customers (players) enter the system with
preemptive access on a time interval [0, T ]. As it has been demonstrated, there
exists a unique symmetric equilibrium with the following features. The non-zero
density function of the arrival times is defined at the time interval [0, te]. On
a time interval [te, T ] there are no arrivals. At the instant T the players send
their requests to the system with a certain positive probability p. Some numer-
ical experiments have been performed to compare the equilibria under different
values of the model parameters.

For our future work, we plan to incorporate this approach for the model
with unknown (random) number of players and make a comparison between
competitive and cooperative behavior in the service system based on the concept
of price of anarchy.
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Abstract. We consider a multistage inventory model. At each stage,
a company determines order quantities of several products to satisfy a
demand. The demand is described by a discrete random process. If the
demand on a product is more than inventory level of this product, the
company has to make additional ordering by market price. Otherwise,
the company has to hold the rest of this product by a known price.
The company can use a storage. The capacity of the storage is bounded.
We consider two objective functions in this model. The first objective
function is the probability that the losses are less or equal to a desirable
level. The second one is the quantile of losses. To solve the considered
problem we reduce them to mixed integer linear programming problems.
This reduction is based on introducing auxiliary variables. We suggest
conditions ensuring the equivalence of the original problems and the
reduced ones. Also, we consider the problems when the distribution of
the random process is unknown. For this case, we prove the convergence
of the sample approximation method. Numerical results are discussed.

Keywords: Stochastic programming · Multistage problem · Inventory
model · Sample approximation · Quantile criterion · Probabilistic
criterion

1 Introduction

Stochastic programming problems are optimization problems with loss function
depending on random parameters. In these problems, the objective function is
defined as a functional of the random loss function. The theory of stochastic
programming is described in [1–3]. The most widely used case of the objective
function in stochastic programming is the expectation of losses. To take into
account risks, the probabilistic and quantile criteria are used [4]. The probabilis-
tic objective function is defined as the probability that the losses are less than
or equal to a desirable level. The quantile objective function is the losses that
cannot be exceeded with a fixed probability.

To model sequential decisions based on realizations of several random param-
eters, multistage stochastic programming problems are used. In these problems,
the decision of each stage depends on realizations of random parameters on
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previous stages. For solving multistage problem with expectation criterion, the
Bellman Principle can be applied (see, e.g., [2]). It can be shown that the Bellman
Principle is not valid for multistage stochastic problems with quantile criterion.
For this reason, other methods should be developed for these problems. By using
auxiliary variables, these problems can be reduced to mixed integer programming
problems [5,6].

In this paper, a multistage inventory model is considered. The model is based
on the model described in [3]. The review on inventory models can be found in
[7]. Unlike the model in [3], we consider probabilistic and quantile objective
functions. Also, we take into account the capacity of the storage. Based on
ideas suggested in [3,8,9] for single-stage and two-stage problems, we suggest a
method to reduce the considered problems to mixed integer linear programming
problems. We solve these problems by using Gurobi solver [10].

In practice, the distribution of random parameters can be unknown. To
solve problems with unknown distribution, sample approximation method can
be applied [3]. The method was suggested for expectation optimization problems
in [11], for problems with probabilistic constraints in [12], and for problems with
probabilistic and quantile criteria in [13]. Application of the sample approxima-
tion method for multistage problems with expectation criterion is described in
[14]. The convergence of approximations of multistage problems with expecta-
tion criterion is proved in [15,16]. In this paper, the convergence of the sample
approximation method is proved for the considered problems with discrete dis-
tribution of random process.

2 Problem Statement

We consider a company that has to satisfy demand on n types of products. The
demand is described by a random process X = (Xt), t = 1, T , taking values in
X ⊂ R

n for each t. In this paper, we assume that the set X is finite. At each
stage t, the company determines order quantities ut ∈ R

n of n products. The
unit prices of ordering are known and given by a vector c (ci > 0). If the demand
on the i-th product is more than inventory level of this product, the company
has to make additional ordering by market unit price bi > 0, b = (b1, . . . , bn). If
the demand on the i-th product is less than inventory level of this product, the
company has to hold the rest of this product by price hi > 0, h = (h1, . . . , hn).
The inventory level is equal to

zt = [ut − xt + zt−1]+, t = 1, T . (1)

where [a]+ ∈ R
n is a vector such that ([a]+)i = max{ai, 0}, xt is the realization

of the random vector Xt. The initial values of the inventory level z0 ∈ R
n is

known. Let us define the loss function

Φ(u1, . . . , uT , x) =
T∑

t=1

(
c�ut + b�[xt − ut − zt−1]+ + h�zt

)
.

We take into account a constraint on the capacity of the storage:

(ut + zt−1)�v ≤ V, (2)
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where V is the capacity of the storage, v = (v1, . . . , vn) is the vector consisting
of the volumes of the product units.

The decision vector of each stage is considered as a function of realizations
of the random process Xt on previous stages. Let us denote this function by
ut : X t−1 → R

n, t = 2, T . Note that the first stage strategy is deterministic
because this is selected before the realization of the demand X1 is known. Let
us introduce the notation

X[t] = (X1, . . . , Xt), x[t] = (x1, . . . , xt), u = (u1,u2, . . . ,uT ).

Let us introduce the probability function:

Pϕ(u) = P
{
Φ

(
u1,u2(X[1]), . . . ,uT (X[T−1]),X

) ≤ ϕ
}

, (3)

where P is a probability, ϕ ∈ R is a fixed value of losses. Notice that the prob-
ability function is the probability that the losses are less than or equal to the
value ϕ.

The quantile function is defined by

ϕα(u) = min {ϕ ∈ R | Pϕ(u) ≥ α} ,

where α ∈ (0, 1) is a fixed value of probability. The quantile function shows the
minimal value of losses that cannot be exceeded with probability α.

The set of feasible strategies U is defined as the set of u with non-negative
values such that constraints (1) and (2) are satisfied for ut = ut(x[t−1]), t = 2, T ,

Thus, the probability maximization problem

Pϕ(u) → max
u∈U

(4)

and the quantile minimization problem

ϕα(u) → min
u∈U

(5)

are considered.
Let us notice that problems (4) and (5) can be considered for the random

process X with arbitrary distribution of the random parameters. In the next
section these problems will be rewritten for the discrete distribution.

3 Equivalent Mixed Integer Problems

We suppose that each random vector Xt has a finite number of realizations
belonging to the set X =

{
x1, . . . , xM

}
. Then we can use the notation u

i1...it−1
t =

ut(xi1 , . . . , xit−1), t = 2, T . To simplify the notation, we denote by It the tuple
of indices (i1, . . . , it). Thus,

u
It−1
t = u

i1...it−1
t = ut(xi1 , . . . , xit−1), It ∈ {1, . . . , M}t.
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We use the notation uI0
1 = u1, zI0

0 = z0. Let us denote by u the tuple consist-
ing of the variable u1, M variables ui1

2 , M2 variables ui1i2
3 ,. . . , MT−1 variables

u
i1...iT−1
T . Let U be the set of tuples u. Let us denote by pI = pi1...iT the prob-

ability of the realization xI =
(
xi1 , . . . , xiT

)
of the random process X, where

I = IT . Also, we introduce variables zIt
t = zi1...it

t corresponding to inventory
levels for known realizations of the random process X[t], t = 1, T .

Let us notice that the objective functions in problems (4) and (5) can be
considered as functions of u:

Pϕ(u) = P̃ϕ(u) = P
{

Φ̃(u,X) ≤ ϕ
}

,

ϕα(u) = ϕ̃α(u) = min
{

ϕ ∈ R | P̃ϕ(u) ≥ α
}

,

where

Φ̃(u, x) = Φ
(
u1, u

i1
2 , . . . , u

i1...iT−1
T , xI

)
if x = xI , I ∈ {1, . . . , M}T .

This allows us to replace problems (4) and (5) by problems

P̃ϕ(u) → max
u∈U

, (6)

ϕ̃α(u) → min
u∈U

(7)

subject to

zIt
t =

[
u

It−1
t − xit

t + z
It−1
t−1

]

+
, t = 1, T , (8)

(uIt−1
t + z

It−1
t−1 )�v ≤ V, (9)

u
It−1
t ≥ 0, I ∈ {1, . . . , M}T . (10)

Constraints (8) and (9) follow from (1) and (2).
We will reduce problems (6) and (7) to mixed integer programming prob-

lems by using a method described in [8] for the discrete distribution. Let us
introduce variables δI , I ∈ {1, . . . ,M}T , corresponding to realizations of the
random process X. The value δI = 1 if Φ̃(u, xI) ≤ ϕ, otherwise δI = 0.

The ordered set of δI is denoted by δ. Then the probability maximization
problem (6) can be reduced to the problem:

∑

I∈{1,...,M}T

pIδI → max
u,δ

(11)

subject to
Φ̃(u, xI) ≤ ϕ + L(1 − δI), I ∈ {1, . . . ,M}T ,

where L is a sufficiently large constant.
The quantile minimization problem (7) is reduced to the problem:

ϕ → min
ϕ,u,δ

(12)
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subject to

Φ̃(u, xI) ≤ ϕ + L(1 − δI), I ∈ {1, . . . , M}T ,
∑

I∈{1,...,M}T

pIδI ≥ α. (13)

Let z be the vector consisting of zIt
t . Then, it follows from (11) that proba-

bility maximization problem (6) is equivalent to the problem:
∑

I∈{1,...,M}T

pIδI → max
u,z,δ

(14)

subject to

T∑

t=1

(
c�u

It−1
t + b�

[
xit

t − u
It−1
t − z

It−1
t−1

]

+
+ h�zIt

t

)
≤ ϕ + L(1 − δI), (15)

and (8)–(10).
By using the variables z, we obtain from (12) that problem (5) is equivalent

to the problem
ϕ → min

ϕ,u,z,δ
(16)

subject to (8)–(10), (15), and (13).
Let us introduce an auxiliary vector y consisting of auxiliary variables yIt

t ∈
R

n to transform the considered problems into linear ones. Under the conditions
given bellow in Theorem 1, yIt

t is equal to the vector whose i-th coordinate is
equal to the additional ordering quantity of the i-th product. Let us consider
the problem ∑

I∈{1,...,M}T

pIδI → max
u,z,y,δ

(17)

subject to

T∑

t=1

(
c�u

It−1
t + b�yIt

t + h�zIt
t

)
≤ ϕ + L(1 − δI), (18)

xit
t − u

It−1
t − z

It−1
t−1 ≤ yIt

t , t = 1, T , (19)

u
It−1
t − xit

t + z
It−1
t−1 ≤ zIt

t , (20)

(uIt−1
t + z

It−1
t−1 )�v ≤ V, (21)

u
It−1
t ≥ 0, zIt

t ≥ 0, yIt
t ≥ 0, δI ∈ {0, 1}, I ∈ {1, . . . , M}T . (22)

Here and below, we write a ≤ b, were a and b are vectors, if and else if ai ≤ bi

for all i. Problem (17) contains (n + 2nM)(1 + M + . . . + MT−1) real variables,
MT integer variables, and MT + (2nM + 1)(1 + M + . . . + MT−1) constraints.

Theorem 1. Suppose that b ≤ h, each random vector Xt has a finite number of
realizations. Then problems (4) and (17) are equivalent.
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Proof. It has been proved above that problem (14) is equivalent to prob-
lem (6). Let us notice that a solution to (14) is feasible in problem (17) for
yIt

t =
[
xit

t − u
It−1
t − z

It−1
t−1

]

+
because zIt

t =
[
u

It−1
t − xit

t + z
It−1
t−1

]

+
. Since the

objective functions (14) and (17) are the same, the optimal objective value in
(17) is more than or equal to the optimal one in (14).

Now, we show that there exists a solution to (17) satisfying the equalities

zIt
t =

[
u

It−1
t − xit

t + z
It−1
t−1

]

+
, (23)

yIt
t =

[
xit

t − u
It−1
t − z

It−1
t−1

]

+
. (24)

From this, it will follow that the optimal objective value in (17) cannot be more
than the optimal one in (14) because in this case the values of zIt

t and u
It−1
t are

feasible in (14).
Suppose that (24) is not valid, i.e., yIt

t >
[
xit

t − u
It−1
t − z

It−1
t−1

]

+
. Then replac-

ing yIt
t by

ỹIt
t =

[
xit

t − u
It−1
t − z

It−1
t−1

]

+

does not reduce the optimal objective value in problem (17). Thus, we can con-
sider that constraint (24) is valid. Now, suppose that (23) is not valid. Let us
replace zIt

t by z̃It
t = zIt

t − Δ, where

Δ = zIt
t −

[
u

It−1
t − xit

t + z
It−1
t−1

]

+
.

Then, due to (19), we need to change y
It+1
t+1 by ỹ

It+1
t+1 = y

It+1
t+1 +Δ. Since b ≤ h, from

(18) it follows that this changing does not reduce the optimal objective value in
problem (17). Therefore, it is proved that there exists a solution to problem (17)
satisfying the equalities (23) and (24). Thus, the theorem is proved.

Remark 1. If the condition b ≤ h is not satisfied, we cannot guarantee that
equality (23) is true. In this case, zIt

t is not equal to the inventory level. This
implies that the solution to problem (17) is not feasible in problem (11).

In the same way, the quantile minimization problem (5) can be reduced to
the mixed integer linear programming problem

ϕ → min
ϕ,u,z,y,δ

(25)

subject to (18)–(22) and (13).
Compared to problem (17), problem (25) has one additional variable ϕ and

one additional constraint (13).

Theorem 2. Suppose that b ≤ h, each random vector Xt has a finite number of
realizations. Then problems (5) and (25) are equivalent.
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Proof. We have shown that problem (5) is equivalent to problem (16). Unlike
Theorem 1, minimization problems are considered. Since problems (17) and (25)
have the same constraints (18)–(19), we conclude that the optimal objective
value in (25) is less than or equal to the optimal one in (16). As in the proof of
Theorem 2, it can be noticed that there exists a solution to (25) satisfying the
equalities (23) and (24). This proves Theorem 2.

4 Sample Approximation

Suppose that the probabilities pI are unknown, but there is a sample X(1),. . . ,
X(N) of realizations of the random process X. By using the sample, the prob-
abilities pI can be estimated:

p̂N
I =

mI

N
,

where N is the sample size, mI is number of realization xI in the sample, I ∈
{1, . . . , M}T . Then the probability function (3) can be estimated by the function

PN
ϕ (u) =

1
N

N∑

ν=1

χ(−∞,ϕ]

(
Φ

(
u1,u2(X[1](ν)), . . . ,uT (X[T−1](ν)),X(ν)

))
,

where

χA(a) =

{
1 if a ∈ A,

0 if a /∈ A.

The estimator of the quantile function is defined by the rule:

ϕN
α (u) = min

{
ϕ ∈ R | PN

ϕ (u) ≥ α
}

.

Let us consider the sample approximation of the probability maximization
problem

PN
ϕ (u) → max

u∈U
(26)

and the sample approximation of the quantile minimization problem

ϕN
α (u) → min

u∈U
. (27)

From Theorem 1 and Theorem 2, it follows that problems (26) and (27) can
be reduced to mixed integer problems if h ≥ b. Thus problem (26) is reduced to
the problem ∑

I∈{1,...,M}T

p̂N
I δI → max

u,z,y,δ
(28)

subject to (18)–(22).
By Theorem 2, problem (27) is equivalent to the problem

ϕ → min
ϕ,u,z,y,δ

(29)



Multistage Inventory Model with Probabilistic and Quantile Criteria 189

subject to (18)–(22) and
∑

I∈{1,...,M}T

p̂N
I δI ≥ α.

Let us notice that the number of variables in the approximation problems
(28) and (29) is equal to the number of variables in the mixed integer problems
(17) and (25). This number does not depend on the sample size.

5 Convergence of Sample Approximations

Let Uϕ be the set of solutions to problem (6), and let Vα be the set of solutions to
problem (7). Let us denote by UN

ϕ and V N
α the sets of solutions to approximation

problems (28) and (29), respectively. The optimal objective values of problems
(6), (7), (28), (29) are denoted by α∗, ϕ∗, α∗

N , ϕ∗
N , respectively. Let

D(A,B) = sup
a∈A

inf
b∈B

‖a − b‖

be the deviation of the set A from the set B.

Theorem 3. Suppose that each random vector Xt has a finite number of real-
izations. Then

lim
N→∞

α∗
N = α∗,

lim
N→∞

D(UN
ϕ , Uϕ) = 0

almost surely.

Proof. It easily seen that the function Φ̃ is continuous. From this, it follows
[4] that there exists a solution to problem (6). Since lim‖u‖→∞ Φ(u, x) = +∞,
we can suppose that the set of feasible strategies is compact. It was proved
in [13] that, under these conditions, the statement of Theorem 3 is valid. The
convergence of the set deviations is proved in [17].

Theorem 4. Suppose that each random vector Xt has a finite number of real-
izations. Let maxu∈U Pϕ∗(u) > α; then

lim
N→∞

ϕ∗
N = ϕ∗,

lim
N→∞

D(V N
α , Vα) = 0.

almost surely.

Proof. As in the proof of Theorem 3, we can consider the U being compact.
Since the function Φ̃ is continuous and maxu∈U Pϕ∗(u) > α, the conditions of
the convergence given in [13] are satisfied for the sample approximations.
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Let us notice that the condition maxu∈U Pϕ∗(u) > α is satisfied if

α 	=
∑

i∈I

pI

for all I ∈ {1, . . . , M}T . This means that the conditions of Theorem 4 are not
satisfied only for a finite number of values α.

6 Numerical Results

Let us consider the model for 5 types of products with the following data:

c = (1.0, 1.5, 2.0, 1.9, 2.1)�,

b = (1.2, 1.7, 2.2, 2.4, 2.6)�,

h = (1.3, 1.8, 3.0, 2.7, 3.1)�,

v = (1, 3, 1, 2, 3)�, V = 80

z0 = (5, 7, 0, 4, 0)�.

The number of stages is equal to 2. We assume that random vectors X1 and
X2 are independent and identically distributed. The probability maximization
problem and the quantile minimization problems have been solved for different
number of realizations of the random vectors X1, X2. Let us notice that the
random process X has M2 realizations, where M is the number of realizations
of X1. We studied the dependence of the solution on the number M . We con-
sidered the following values of M : 5, 7, 9, 12, 13, 15. Realizations are given in
Table 1. All realizations are assumed to be equiprobable.

Table 1. Realizations of X1, X2.

x1 = (5.14, 7.78, 12.87, 8.28, 9.23)� x2 = (8.88, 8.97, 11.83, 5.14, 14.51)�

x3 = (9.77, 10.11, 11.07, 10.96, 11.51)� x4 = (8.88, 10.60, 6.48, 10.38, 11.63)�

x5 = (12.01, 14.22, 12.38, 10.48, 12.63)� x6 = (11.78, 5.21, 14.06, 10.48, 10.87)�

x7 = (14.81, 10.67, 14.20, 10.94, 8.37)� x8 = (9.27, 6.84, 13.08, 10.86, 10.89)�

x9 = (10.44, 11.28, 5.47, 14.43, 10.53)� x10 = (11.12, 14.64, 13.62, 6.86, 12.46)�

x11 = (13.33, 7.22, 8.67, 6.48, 14.83)� x12 = (11.34, 7.97, 9.99, 14.62, 7.74)�

x13 = (9.84, 10.28, 9.78, 13.64, 10.20)� x14 = (5.57, 6.33, 14.18, 11.03, 13.83)�

x15 = (11.54, 10.10, 6.99, 5.13, 9.00)�

For the computations we used M first values x1, . . . , xM . The computations
were made on computer with Intel Core i9-10900 (16 GB RAM, 2.80 GHz) by
using Gurobi optimization solver.
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Table 2. Probability maximization.

M u∗
1 α∗ τ

5 (0.140000, 0.000000, 6.885221, 2.120427, 10.047668) 0.88 0.04

7 (3.880000, 1.233714, 9.026856, 2.141001, 8.370000) 0.8367347 0.06

9 (3.880000, 0.000000, 5.740765, 4.859966, 8.886434) 0.8765432 0.27

12 (6.0023178, 0.2528767, 6.9803990, 3.0925865, 7.7400000) 0.8680556 0.87

13 (5.076347, 0.000000, 5.470000, 3.010110, 9.027598) 0.8757396 1.24

15 (2.690324, 0.000000, 6.640171, 2.963143, 8.454006) 0.8711111 212.59

Results of solving the probability maximization problem with ϕ = 180 are
given in Table 2. We present the optimal objective values α∗, optimal solutions
of the first stage u∗

1, and computation time τ (seconds).
We can see that the probability maximization problem can be successfully

solved for 225 realizations of the random process X. Notice that the equivalent
mixed integer problem (17) has 2642 constraints and 2706 variables.

Results for the quantile minimization problem with α = 0.9 are given in
Table 3, where ϕ∗ is the optimal objective value, u∗

1 is an optimal solution of the
first stage, τ is computation time in seconds.

Table 3. Quantile minimization.

M u∗
1 ϕ∗ τ

5 (3.880000, 0.000000, 10.046562, 3.484375, 8.368229) 182.0202 0.11

7 (3.880000, 0.000000, 10.491562, 6.224718, 6.393000) 183.5875 0.25

9 (3.8800000, 0.1189006, 6.1382983, 5.2575000, 8.3700000) 181.2283 2.01

12 (5.245558, 0.000000, 6.076668, 3.742764, 8.370000) 181.7486 6.20

13 (5.245558, 0.000000, 6.076668, 3.616778, 8.370000) 181.8116 223.22

15 (3.694711, 0.000000, 7.327970, 2.601477, 8.385202) 181.3834 3739.25

Comparing the results for the two problems, we can see that the quantile
minimization requires more computations. It can be noticed that the structure
of the optimal solutions are similar for different number of realizations.

Also, the problem of expected losses minimization [3] was solved for these
data. The results of solving the problem are presented in Table 4, where m∗ is
the minimal expectation of the losses, u∗

1 is an optimal solution of the first stage.
The problem of expected losses minimization is reduced to a linear programming
problem [3], and it does not require such complex calculations as the quantile and
probability ones. From Table 4, it can be seen that the solution differs slightly
from the solution of probabilistic and quantile problems. However, the minimal
expected losses is less than the minimal quantiles of losses.
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Table 4. Expected losses minimization.

M u∗
1 m∗

5 (0.14, 0.78, 6.48, 1.14, 9.23) 164.754

7 (0.14, 0.00, 6.48, 4.28, 8.37) 170.2391

9 (3.88, 0.00, 5.47, 4.28, 9.23) 169.6113

12 (3.88, 0.00, 5.47, 2.48, 8.37) 170.4867

13 (3.88, 0.00, 5.47, 2.86, 8.37) 170.7813

15 (3.88, 0.00, 5.47, 2.48, 9.00) 168.6431

7 Conclusion

We suggested a method to solve optimization problems with probabilistic and
quantile criteria in the multistage inventory level problem. For the case of dis-
crete distribution, the problem was reduced to a mixed integer problem. How-
ever, due to the large dimension of the equivalent problem, the problems are
hard for numerical solving. The growth of size is exponential with the number of
stages. The numerical results have shown that the problem can be solved for 225
realizations of the process. Therefore, approximation methods for solving these
problems can be a topic of additional research. The convergence of the sample
approximation method was proved for the discrete distribution of the random
parameters, although the continuous distribution is more common for the ran-
dom demand. Unfortunately, the case of arbitrarily distribution is more compli-
cated because this requires research on the convergence in functional spaces of
strategies. This can be studied in future research. Also, the suggested methods
can be applied for a wider class of multistage stochastic programming problems.
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3. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming.

Modeling and Theory, SIAM, Philadelphia (2014)
4. Kibzun, A.I., Kan, Y.S.: Stochastic Programming Problems with Probability and

Quantile Functions. Wiley, Chichester (1996)
5. Kibzun, A.I., Khromova, O.M.: On reduction of the multistage problem of stochas-

tic programming with quantile criterion to the problem of mixed integer linear
programming. Autom. Remote Control 75(4), 688–699 (2014). https://doi.org/10.
1134/S0005117914040092

https://rscf.ru/project/22-21-00213/
https://doi.org/10.1007/978-1-4614-0237-4
https://doi.org/10.1134/S0005117914040092
https://doi.org/10.1134/S0005117914040092


Multistage Inventory Model with Probabilistic and Quantile Criteria 193

6. Kibzun, A.I., Ignatov, A.N.: Reduction of the two-step problem of stochastic opti-
mal control with bilinear model to the problem of mixed integer linear program-
ming. Autom. Remote Control 77(12), 2175–2192 (2016). https://doi.org/10.1134/
S0005117916120079

7. Zipkin, P.H.: Foundations of Inventory Management. McGrow-Hil (2000)
8. Kibzun, A.I., Naumov, A.V., Norkin, V.I.: On reducing a quantile optimiza-

tion problem with discrete distribution to a mixed integer programming prob-
lem. Autom. Remote Control 74(6), 951–967 (2013). https://doi.org/10.1134/
S0005117913060064

9. Norkin, V.I., Kibzun, A.I., Naumov, A.V.: Reducing two-stage probabilistic opti-
mization problems with discrete distribution of random data to mixed-integer pro-
gramming problems*. Cybern. Syst. Anal. 50(5), 679–692 (2014). https://doi.org/
10.1007/s10559-014-9658-9

10. Gurobi Optimization. https://www.gurobi.com/. Accessed 27 Feb 2022
11. Artstein, Z., Wets, R.J.-B.: Consistency of minimizers and the SLLN for stochastic

programs. J. Convex Anal. 2, 1–17 (1996)
12. Pagnoncelli, B.K., Ahmed, S., Shapiro, A.: Sample average approximation method

for chance constrained programming: theory and applications. J. Optim. Theory
Appl. 142, 399–416 (2009) https://doi.org/10.1007/s10957-009-9523-6

13. Ivanov, S.V., Kibzun, A.I.: On the convergence of sample approximations for
stochastic programming problems with probabilistic criteria. Autom. Remote Con-
trol 79(2), 216–228 (2018). https://doi.org/10.1134/S0005117918020029

14. Shapiro, A.: Inference of statistical bounds for multistage stochastic programming
problems. Math. Methods Oper. Res. 58, 57–68 (2003). https://doi.org/10.1007/
s001860300280

15. Pennanen, T.: Epi-convergent discretizations of multistage stochastic programs.
Math. Oper. Res. 30(1), 245–256 (2005). https://doi.org/10.1287/moor.1040.0114

16. Pennanen, T.: Epi-convergent discretizations of multistage stochastic programs via
integration quadratures. Math. Program. Ser. B. 116, 461–479 (2009) https://doi.
org/10.1007/s10107-007-0113-9

17. Ivanov, S.V., Ignatov, A.N.: Sample approximations of bilevel stochastic program-
ming problems with probabilistic and quantile criteria. In: Pardalos, P., Khachay,
M., Kazakov, A. (eds.) MOTOR 2021. LNCS, vol. 12755, pp. 221–234. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-77876-7 15

https://doi.org/10.1134/S0005117916120079
https://doi.org/10.1134/S0005117916120079
https://doi.org/10.1134/S0005117913060064
https://doi.org/10.1134/S0005117913060064
https://doi.org/10.1007/s10559-014-9658-9
https://doi.org/10.1007/s10559-014-9658-9
https://www.gurobi.com/
https://doi.org/10.1007/s10957-009-9523-6
https://doi.org/10.1134/S0005117918020029
https://doi.org/10.1007/s001860300280
https://doi.org/10.1007/s001860300280
https://doi.org/10.1287/moor.1040.0114
https://doi.org/10.1007/s10107-007-0113-9
https://doi.org/10.1007/s10107-007-0113-9
https://doi.org/10.1007/978-3-030-77876-7_15


Pricing in Two-Sided Markets
on the Plain with Different Agent Types

Elena Konovalchikova1,3(B) and Anna Ivashko2,3

1 Laboratory of Digital Technologies in Regional Development,
Karelian Research Centre of the Russian Academy of Sciences,

Pushkinskaya Street, 11, Petrozavodsk 185910, Russia
konovalchikova en@mail.ru

2 Institute of Applied Mathematical Research, Karelian Research Centre of the
Russian Academy of Sciences, Pushkinskaya Street, 11, Petrozavodsk 185910, Russia

aivashko@krc.karelia.ru
3 Petrozavodsk State University, 33, Lenina Street, Petrozavodsk 185910, Russia

Abstract. The article investigates the price equilibrium in two-sided
markets of platforms with cross-side network effects for users from dif-
ferent groups. The focus is on the problem of optimal pricing in two-sided
markets where the location of platforms for different types of agents is
taken into account.

The model deals with agents belonging to two groups, who are evenly
distributed on the plane of the circle. Agents from both groups choose
between two platforms, their rationale being the utility they can derive
from visiting the platforms. The agents’ utility function is constructed
with Hotelling’s specification involved, and therefore includes the value
of the network effect from the interaction of one group with members of
the other and the total costs of visiting the platforms, including trans-
port costs. The payoff of each platform depends on the number of agents
of both groups on the platform, the entry fee, and the costs of servicing
the users.

We find the optimal two-sided market pricing strategies for symmet-
rically located platforms for two scenarios. In the first case agents from
both groups can join only one platform, whereas in the second case mem-
bers of the second group can join both platforms simultaneously. Numer-
ical results for different parameters of the problem are compared.

Keywords: Two-sided platform market · Network externalities ·
Pricing · Hotelling’s duopoly · Nash equilibrium · Optimal location of
platforms

1 Introduction

The papers [1,3,9] have drawn much attention to the study of two-sided markets
involving platforms. Interest in such studies has been growing lately as digital
technologies develop and spread, and as digital platforms emerge as a new busi-
ness model. The platforms in such studies are firms that act as mediators facili-
tating interactions between members of two or more different groups present in
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the market. A key feature of two-sided markets involving platforms is that inter-
actions between members of different groups on a platform are accompanied by
network externalities, i.e., an increase in the number of members of one group
on the platform causes an increase in the individual utility of members of the
other group. Platforms are common in many markets. In media markets, e.g.,
the platforms are the various media services (Netflix, Okko, etc.), which bring
together two groups of users: content viewers and advertisers, who gain the
viewer’s contact information. The platforms in the medical services market are
medical insurance companies - intermediaries between customers and providers
of medical services. Computer operating systems, payment card systems, super-
markets, dating services, taxi and food delivery services, media outlets - this is
an incomplete listing of platforms existing in two-sided markets.

A fundamental challenge in two-sided markets is to attract members of dif-
ferent groups to the platform. The main tool for attracting users to a platform is
the user fee. Proper pricing in a platform is a key to its successful development
The literature considers two approaches to setting the fee for the use of platform
services. Thus, the price of using a payment card platform is proportional to the
number of transactions made, and the price of using the platform in the case
of supermarkets and dating services is proportional to the number of agents on
the platform. A thing to remember when studying the pricing strategies on plat-
forms is that members of groups in the market may be able to use the services
of two or more platforms simultaneously. Agents who join only one platform are
commonly referred to as single-homing agents, while those joining two or more
platforms at a time are called multi-homing agents. Depending on the type of
market group members, platforms can apply different pricing schemes, which are
analyzed in [2,4], and the papers [5,8,10] specifically deal with discriminative
pricing strategies. The above papers assume the market to be linear. Hotelling’s
duopoly model with the Euclidian distance where the market lies on the plane
of the circle is considered in [7].

The two-sided market model in this paper is a generalization of the well-
known Armstrong model under the assumption that the market lies on the plane.
Agents’ utility is determined including Hotelling’s specification with Euclidian
metric. Members of one group are supposed to be single-homing, and members
of the other group can be either single-homing or multi-homing. Assuming that
the market size is fixed and agents from both groups take part in transactions,
we find the optimal pricing strategies and compare the results for two cases. In
the first case agents in both groups are single-homing, and in the second case
agents from the second group can be multi-homing.

The article below is structured as follows. The second section describes the
basic model for a two-sided market on the plane of the circle. The third section
analyzes the price equilibrium for a model with platforms symmetrically located
on the plane under the assumption that members of both groups are single-
homing. Analysis of the model where agents from the second group can enter
both platforms simultaneously and comparison of the results are given in the
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fourth section. The Conclusions give the general takeaway and the possible vec-
tors for further research.

2 Basic Setting

We consider a model of a duopoly in a two-sided market where two non-intersec-
ting groups of agents interact. Suppose group 1 consists of customers and group
2 — consists of sellers. Agents from both groups are distributed evenly over
the circle S and their location is defined by the points Ai(xi, yi), where xi, yi ∈
[−1, 1], i = 1, 2. The sellers and the customers interact on the platforms I and
II, which are located, respectively, in the points (a, 0) and (b, 0), where −1 �
b < a � 1 (see Fig. 1). In choosing the platform, agents of both groups are
governed by the utility they can derive from joining one or the other platform.
The utility of agents depends on cross-side network externalities, i.e., an increase
in the size of one group of agents on the platform leads to an increase in the
individual utility of agents in the other group on the platform, and vice versa.
The Hotelling’s specification is taken into account when determining the agents’
utility function.

Fig. 1. Two-sided platform market on a plane.

The following notations are introduced: n
(j)
i is the size of the group i on the

platform j (i = 1, 2, j = I, II); p
(j)
i is the price that an i-th group agent pays to

visit the platform j (i = 1, 2, j = I, II); α, β is the degree to which the number
of agents in the second (first) group present on the platform influences the payoff
of the first (second) group; ti is the strength of the effect of the transport costs
of visiting both platforms by i-th group agents (i = 1, 2).

The utility function for customers visiting the platform I located in the point
(a, 0) has the form:
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u
(I)
1 = α · n

(I)
2 − p

(I)
1 −

√
(x1 − a)2 + y2

1 · t1, (1)

and the utility of visiting the platform II in the point (b, 0) has

u
(II)
1 = α · n

(II)
2 − p

(II)
1 −

√
(x1 − b)2 + y2

1 · t1. (2)

The utility function for sellers visiting the platforms I and II is determined
similarly, being, respectively

u
(I)
2 = β · n

(I)
1 − p

(I)
2 −

√
(x2 − a)2 + y2

2 · t2, (3)

u
(II)
2 = β · n

(II)
1 − p

(II)
2 −

√
(x2 − b)2 + y2

2 · t2. (4)

Observe that the formulas (1)–(4) are true for the case where all agents are single-
homing. In other words, each agent joins only one of the platforms. This means
that if the market size is fixed, the following equality takes place n

(I)
i +n

(II)
i = π,

where i = 1, 2. There is, however, another variant of agent interaction with
platforms. In some cases, agents can join different platforms simultaneously. Such
agents are usually referred to as multi-homing. For customers, multi-homing is
obviously disadvantageous as it increases their costs of visiting two platforms
simultaneously. Hence, we will assume in the following that only sellers can join
both platforms. Considering that part of the sellers can be single-homing, and
another part multi-homing, the following applies to the sellers group: n

(I)
2 +

n
(II)
2 � π. The utility derived by multi-homing agents from group 2 from joining

the platforms I and II will have the form:

u
(I+II)
2 = β ·

(
n
(I)
1 + n

(II)
1

)
− p

(I)
2 − p

(II)
2 −

(√
(x2 − a)2 + y2

2 +
√

(x2 − b)2 + y2
2

)
· t2.

With all agents in the buyers group being single-homing, the utility of multi-
homing sellers can be written in the following form:

u
(I+II)
2 = β · π − p

(I)
2 − p

(II)
2 −

(√
(x2 − a)2 + y2

2 +
√

(x2 − b)2 + y2
2

)
· t2. (5)

Setting the fees p
(I)
i and p

(II)
i (i = 1, 2) for agents from both groups, the

platforms I and II wish to maximize the profit, which is calculated from the
formulas:

H(I)
(
p
(I)
1 , p

(I)
2

)
= n

(I)
1

(
p
(I)
1 − g1

)
+ n

(I)
2

(
p
(I)
2 − g2

)
, (6)

H(II)
(
p
(II)
1 , p

(II)
2

)
= n

(II)
1

(
p
(II)
1 − g1

)
+ n

(II)
2

(
p
(II)
2 − g2

)
, (7)

where g1 and g2 are the platform’s costs of servicing users belonging to the
respective groups.

A similar problem was solved in [6], where equilibrium in a pricing game
was found for the case of a market lying on the plane of the square and with
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members of both groups being single-homing agents. The current paper solves
the optimal pricing problem for a market lying on the plane of the circle and
analyzes equilibria for the cases where members of both groups are single-homing
agents and where members of only one group can be multi-homing.

3 Model with Single-Homing Agents

We assume that the platforms are situated in points located symmetrically rel-
ative to the center of the circle S. For definiteness, the platforms I and II are
said to be located in the points (a, 0) and (−a, 0), respectively. Suppose that
members of both groups are single-homing agents and join one of the platforms,
i.e., the number of agents of groups 1 and 2 meets the condition n

(I)
i +n

(II)
i = π,

i = 1, 2. Thus, according to (1) and (2), the utility of agents from group 1 from
visiting the platforms I and II has the form

u
(I)
1 = α · n

(I)
2 − p

(I)
1 −

√
(x1 − a)2 + y2

1 · t1,

and
u
(II)
1 = α · n

(II)
2 − p

(II)
1 −

√
(x1 + a)2 + y2

1 · t1.

Similarly, (3) and (4) indicate that the utility of agents from group 2 from visiting
both platforms I and II is

u
(I)
2 = β · n

(I)
1 − p

(I)
2 −

√
(x2 − a)2 + y2

2 · t2,

u
(II)
2 = β · n

(II)
1 − p

(II)
2 −

√
(x2 + a)2 + y2

2 · t2.

When i-th group agents choose one of the platforms, the boundary between
market regions for this group is shaped by the set of its agents who have equal
utilities from visiting the platforms I and II. Hence, the market boundary for
the i-th group is found from the equation u

(I)
i = u

(II)
i , i = 1, 2, from which we

get that
x2

i

s2i
− y2

i

a2 − s2i
= 1, (8)

where

s1 =
πα − 2αn

(I)
2 + p

(I)
1 − p

(II)
1

2t1
, (9)

s2 =
πβ − 2βn

(I)
1 + p

(I)
2 − p

(II)
2

2t2
. (10)

We further assume for definiteness that the market boundary coincides with
the right-hand branch of the hyperbola (8) (see Fig. 2). Considering the market
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boundaries for both groups, the number of i-th group agents visiting the plat-
forms I (the area of the shaded region of Fig. 2) and II is calculated from the
formulas:

n
(I)
i =

π

2
− 2

⎡
⎣si

di∫

0

√
1 +

y2
i

a2 − s2i
dyi +

1∫

di

√
1 − y2

i dyi

⎤
⎦ , (11)

n
(II)
i = π − n

(I)
i , (12)

where di = di (si) =

√
1 − s2i (1 + a2 − s2i )

a2
, and si are derived from (9) and (10).

Fig. 2. The distribution of 2nd group users between the two platforms.

While symmetric location of platforms in the market implies they are iden-
tical, the platforms I and II presumably also have identical costs g1 = g2 = g of
servicing agents of both groups. Let us consider a case where customers and sell-
ers have different parameters of influence on each other. In this case, it suffices to
find the optimal solution for one (e.g., the first) platform. The price equilibrium

can be obtained from the first order optimality condition
∂H(I)

∂p
(I)
i

= 0, i = 1, 2,

which gives us
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∂H(I)

∂p
(I)
1

=
∂n

(I)
1

∂p
(I)
1

(
p
(I)
1 − g

)
+ n

(I)
1 +

∂n
(I)
2

∂p
(I)
1

(
p
(I)
2 − g

)
= 0,

∂H(I)

∂p
(I)
2

=
∂n

(I)
1

∂p
(I)
2

(
p
(I)
1 − g

)
+

∂n
(I)
2

∂p
(I)
2

(
p
(I)
2 − g

)
+ n

(I)
2 = 0.

(13)

The derivatives
∂n

(I)
1

∂p
(I)
i

and
∂n

(I)
2

∂p
(I)
i

(i = 1, 2) are taken from the Eqs. (9)–(12)

and are
∂n

(I)
1

∂p
(I)
1

=
1

2t1

∂n
(I)
1

∂s1

(
1 − αβ

t1t2

∂n
(I)
1

∂s1

∂n
(I)
2

∂s2

)−1

, (14)
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∂n
(I)
2

∂p
(I)
1

= − β

2t1t2

∂n
(I)
1

∂s1

∂n
(I)
2

∂s2

(
1 − αβ

t1t2

∂n
(I)
1

∂s1

∂n
(I)
2

∂s2

)−1

, (15)
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1
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(I)
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= − α

2t1t2

∂n
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1

∂s1

∂n
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t1t2
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2
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, (16)
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2

∂p
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=
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2t2

∂n
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2
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The platforms being symmetrically located relative to the center of the circle
S, in equilibrium, the platforms are to set identical prices for each group: p

(I)
1 =

p
(II)
1 = p1 and p

(I)
2 = p

(II)
2 = p2. Furthermore, both groups must have the same

number of agents, i.e., n
(I)
1 = n

(II)
1 =

π

2
and n

(I)
2 = n

(II)
2 =

π

2
.

Hence,

∂n
(I)
1

∂s1
=

∂n
(I)
2
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= −2

1∫

0

√
1 +

y2

a2
dy = −2I,

where I =
1∫
0

√
1 +

y2

a2
dy. Then, (14)–(17) take the following form
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Substituting these derivatives into the system of Eq. (13), we find the equilibrium
prices, which are {

p1 = g + πt1
2I − πβ,

p2 = g + πt2
2I − πα.

(18)

Test the sufficient conditions for the maximum of the function
H(I)

(
p
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1 , p

(II)
2

)
. To this end, find the following expressions
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∂p
(I)
1

,

C =
∂2 H(I)

∂2p
(I)
2

=
∂2n

(I)
1

∂2p
(I)
2

(p1 − g) +
∂2n

(I)
2

∂2p
(I)
2

(p2 − g) + 2
∂n

(I)
2

∂p
(I)
2

.
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Considering the symmetry of the problem we have

A = 2
∂n

(I)
1

∂p
(I)
1

= −2I

t1

(
1 − 4αβI2

t1t2

)−1

,

B =
∂n

(I)
1

∂p
(I)
2

+
∂n

(I)
2

∂p
(I)
1

= −2I2(α + β)
t1t2

(
1 − 4αβI2

t1t2

)−1

,

C = 2
∂n

(I)
2

∂p
(I)
2

= −2I

t2

(
1 − 4αβI2

t1t2

)−1

.

Since the expression

AC − B2 =
4I2

t1t2

(
1 − 4αβI2

t1t2

)−2 (
1 − I2(α + β)2

t1t2

)
> 0

when
αβ

t1t2
<

1
4I2

and since A < 0 the function H(I)
(
p
(I)
1 , p

(II)
2

)
has a maximum

at (p1, p2), where p1 and p2 are found from (18).
Thus, for identical platforms and for single-homing agents of both groups

which have different parameters of influence on each other and different transport
costs of visiting the platforms the following theorems are true.

Theorem 1. In the pricing problem for a two-sided market with platforms lo-
cated symmetrically on the plane, competitive service will take place given that
αβ

t1t2
<

1
4I2

, where I =
1∫
0

√
1 +

y2

a2
dy and the equilibrium prices of visiting

platforms for heterogeneous single-homing agents are (18).

In a particular case, where agents of both groups are identical, i.e., α = β
and t1 = t2 = t, the price of visiting the two platforms coincides for both groups,
so the payoffs of the platforms I and II are equal. Competitive servicing in the

case of identical agents is possible if
α

t
<

1
2I

. Note that the value of I depends
on the location of the platforms and, as demonstrated in the Table 1, the closer
the platforms are to the center of the circle S, the closer the ratio

α

t
is to zero.

Tables 2 and 3 show the payoffs of the platforms and the prices of visiting the
platforms depending on their location on the plane for different α, given that the
transport costs are t = 1 and the costs of servicing are zero (g = 0). Numerical
modeling results show that a decrease in the parameter α causes the platforms’
payoff and the price of visiting to increase for both groups. Where the value of
α is the same, the payoffs of both platforms decline with decreasing distance to
the center of the circle S, and there are some positions that are disadvantageous
for both platforms for their payoffs will be negative.
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Table 1. The value of
1

2I
depending on the location of the platforms.

a 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
1
2I

0.4356 0.4243 0.4100 0.3919 0.3685 0.3381 0.2984 0.2466 0.1798 0.0966

Table 2. Platforms’ payoff values for different α for t = 1, g = 0.

a 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

α = 0.4 0.3515 0.2398 0.0990 <0 0 <0 <0 <0 <0 <0

α = 0.3 1.3385 1.2267 1.0859 0.9066 0.6757 0.3758 <0 <0 <0 <0

α = 0.2 2.3255 2.2137 2.0729 1.8936 1.6627 1.3628 0.9710 0.4596 <0 <0

α = 0.1 3.3124 3.2006 3.0599 2.8806 2.6497 2.3498 1.9579 1.4465 0.7877 <0

α = 0.01 4.2007 4.0889 3.9481 3.7688 3.5380 3.2380 2.8462 2.3348 1.6759 0.8549

α = 0 4.2994 4.1876 4.0468 3.8675 3.6367 3.3367 2.9449 2.4335 1.7746 0.9536

4 Model with Single-Homing and Multi-homing Agents

Suppose agents from one of the groups can join two platforms simultaneously,
i.e., the agents are multi-homing. The assumption in our model is that sellers are
multi-homing, and customers are single-homing. Importantly, this assumption
is aligned with reality since in situations where sellers can be present in two
platforms simultaneously the utility of customers, which depends on the number
of sellers on the chosen platform, will not increase significantly if they visit the
other platform at the same time. We assume that the platforms apply the same
pricing to both single-homing and multi-homing agents. This means that the
platforms are either unaware of the type of agents of both groups or do not care
whether an agent is multi-homing or single-homing.

It is obvious in these settings that the utility of group 1 agents (customers)
from visiting the platforms I and II located symmetrically relative to the center
of the circle S is derived from (1) and (2). The number of agents of this group
on both platforms is

Table 3. Prices of services for different α for t = 1, g = 0.

a 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

α = 0.4 0.1119 0.0763 0.0315 <0 <0 <0 <0 <0 <0 <0

α = 0.3 0.4261 0.3905 0.3457 0.2886 0.2151 0.1196 <0 <0 <0 <0

α = 0.2 0.7402 0.7046 0.6598 0.6028 0.5293 0.4338 0.3091 0.1463 <0 <0

α = 0.1 1.0544 1.0188 0.9740 0.9169 0.8434 0.7479 0.6232 0.4604 0.2507 <0

α = 0.01 1.3371 1.3015 1.2567 1.1997 1.1262 1.0307 0.9060 0.7432 0.5335 0.2721

α = 0 1.3685 1.3330 1.2881 1.2311 1.1576 1.0621 0.9374 0.7746 0.5649 0.3035
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n
(I)
1 =

π

2
− 2

[
s1

d1∫
0

√
1 +

y2
1

a2 − s21
dy1 +

1∫
d1

√
1 − y2

1 dy1

]
,

n
(II)
1 = π − n

(I)
1 ,

where s1 is calculated from (9) and d1 =
√

1 − s2
1(1+a2−s2

1)
a2 .

In platform selection by group 2 agents (sellers) it may happen so that some
agents benefit more from single-homing while other agents gain more from joining
both platforms simultaneously. Hence, the utilities from visiting both platforms
are given by (3) and (4) for single-homing agents from group 2, and by (5) for
its multi-homing agents. Where the platforms apply uniform pricing for group
2, market-boundary positions will be occupied by the agents whose utility from
joining one platform or joining both platforms is zero. Thus, the set of multi-
homing agents from group 2 is determined from the system of inequalities{

u
(I)
2 � u

(I+II)
2 ,

u
(II)
2 � u

(I+II)
2 ,

solving which we get the equations for the 2 group’s market boundaries between
the platforms I and II (see Fig. 3):

(x2 − a)2 + y2
2 = (s21)2,

(x2 + a)2 + y2
2 = (s22)2,

where s21 = β·n(I)
1 −p

(I)
2

t2
and s22 = β·n(II)

1 −p
(II)
2

t2
; we assume for definiteness that

s21 � s22. Note that if s21 + s22 < 2a that the set of multi-homing agents is
empty.

Where the price of visiting the platforms prevents group 2 agents from joining
both platforms simultaneously, the market is divided by the right-hand branch
of the hyperbola (8) (see Fig. 3), the equation for which takes the form:

x = s2

√
1 +

y2

a2 − (s2)2
,

where s2 = πβ−2βn
(I)
1 +p

(I)
2 −p

(II)
2

2t2
. The relationship between the parameters s2,

s21 and s22 is
s2 =

s22 − s21
2

� 0,

which implies that the market boundary in the case where all agents in the group
2 are single-homing intersects the market boundaries for the case where agents
can be multi-homing in points with the coordinates

x =
s2(s2 + s21)

a
,

k = y = ±
√

(s21)2 −
(

s2(s2 + s21)
a

− a

)2

.
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Fig. 3. The distribution of 2nd group users between the two platforms.

Consider the case, where |k| ≤ 1. In this case, s21 �
√

a2 + 1 and the market
division for the group 2 if there are multi-homing agents is mapped in Fig. 3,
where multi-homing agents are situated in the shaded region. Considering the
market boundaries for the group 2, the numbers of agents visiting the platforms
I (the area of the shaded region of Fig. 3) and II are, respectively,

n
(I)
2 = 2

⎡
⎣

d2∫

0

√
1 − y2 dy+

k∫

0

(√
(s21)2 − y2 − a

)
dy −

d2∫

k

s2

√
1 +

y2

a2 − (s2)2
dy

⎤
⎦ , (19)

n
(II)
2 = π−2

⎡
⎣

d2∫

0

√
1 − y2dy +

d2∫

k

s2

√
1+

y2

a2 − (s2)2
dy +

k∫

0

(√
(s22)2 − y2 − a

)
dy

⎤
⎦, (20)

where k =

√
(s21)2 −

(
s2(s2 + s21)

a
− a

)2

and d2 =

√
1 − s22(1 + a2 − s22)

a2
.

The locations of the platforms I and II being symmetrical, equilibrium in
the pricing game with multi-homing agents on one side of the market can be
found by simply studying the first-order conditions for the payoff function for
one platform. First-order conditions for the payoff function for the platform I
have the form (13), where the derivatives are obtained from the formulas

∂n
(I)
1

∂p
(I)
1

=
1

2t1

∂n
(I)
1

∂s1

(
1 +

αβ

t1t2

∂n
(I)
1

∂s1

(
∂n

(I)
2

∂s21
− ∂n

(I)
2

∂s2

))−1

, (21)

∂n
(I)
2

∂p
(I)
1

=
β

2t1t2

∂n
(I)
1

∂s1

(
∂n

(I)
2

∂s21
− ∂n

(I)
2

∂s2

) (
1 +

αβ

t1t2

∂n
(I)
1

∂s1

(
∂n

(I)
2

∂s21
− ∂n

(I)
2

∂s2

))−1

, (22)
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∂n
(I)
1

∂p
(I)
2

=
α

t1t2

∂n
(I)
1

∂s1
·
(

∂n
(I)
2

∂s21
− 1

2

∂n
(I)
2

∂s2

)
·
(

1 +
αβ

t1t2

∂n
(I)
1

∂s1

(
∂n

(I)
2

∂s21
− ∂n

(I)
2

∂s2

))−1

,

(23)
∂n

(I)
2

∂p
(I)
2

= − 1

t2

(
∂n

(I)
2

∂s21
− 1

2

∂n
(I)
2

∂s2

) (
1 +

αβ

t1t2

∂n
(I)
1

∂s1

(
∂n

(I)
2

∂s21
− ∂n

(I)
2

∂s2

))−1

. (24)

The symmetry of the problem suggests that, in equilibrium, the prices for
the same group of agents should be the same on each of the platforms, i.e.,
p
(I)
1 = p

(II)
1 = p1 and p

(I)
2 = p

(II)
2 = p2, and the size of each group should be the

same on the two platforms, i.e., n
(I)
1 = n

(II)
1 =

π

2
and n

(I)
2 = n

(II)
2 = n2 > π

2 .
Hence, we have

s2 = 0, s21 = s22 =
βπ − p2

2t2
.

The price p1 and the value of s21 can be found by solving the system of Eq.
(13), which, after the substitution of the derivatives (21)–(24) into it, will take
the form

⎧⎪⎨
⎪⎩

− I

t1
(p1 − g) − βI(D−C)

t1t2
(p2 − g) +

1
A

n1 = 0,

−2αI

t1t2

(
D − 1

2
C

)
(p1 − g) − 1

t2

(
D − 1

2
C

)
(p2 − g) +

1
A

n2 = 0,

where
∂n

(I)
1

∂s1
= −2I,

A =

(
1 + αβ

t1t2

∂n
(I)
1

∂s1

(
∂n

(I)
2

∂s21
− ∂n

(I)
2

∂s2

))−1

=
(
1 − 2αβ

t1t2
I (D − C)

)−1

,

D =
∂n

(I)
2

∂s21
= 2

[
k∫
0

s21√
(s21)2 − y2

dy + k′
s21

(√
(s21)2 − k2 − a

)]
,

C =
∂n

(I)
2

∂s2
= 2

[
k′

s2(
√

(s21)2 − k2 − a) −
d2∫
k

√
1 +

y2

a2
dy

]
,

k =
√

(s21)2 − a2, k′
s21 = k′

s2 =
s21√

(s21)2 − a2
, d2 = 1.

The result will be the optimal prices for each group of users:

p1 = g +
t1
I

n1 − β(D − C)
D − 1

2C
n2, (25)

p2 = g +
t2

D − 1
2
C

n2 − 2αn1. (26)
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Observe that the Eq. (26) for calculating the price p2 depends on the param-
eter s21, which is equal to βπ−2p2

2t2
. It follows that

p2 =
βπ

2
− s21t2. (27)

Hence, the parameter s21 can be found from the equation

βπ

2
− t2s21 = g +

t

D − 1
2
C

n2 − 2αn1.

In the case |k| > 1 (or s21 >
√

1 + a2), the market division for the group 2 if
there are multi-homing agents is mapped in Fig. 4, where multi-homing agents
are situated in the shaded region.

Fig. 4. The distribution of 2nd group users between the two platforms.

The numbers of agents visiting the platforms I and II are, respectively,

n
(I)
2 =

π

2
+ 2

⎡
⎣

d21∫

0

(√
(s21)2 − y2 − a

)
dy +

1∫

d21

√
1 − y2 dy

⎤
⎦ , (28)

n
(II)
2 =

π

2
+ 2

⎡
⎣

d22∫

0

(√
(s22)2 − y2 − a

)
dy +

1∫

d22

√
1 − y2 dy

⎤
⎦ , (29)

where d21 =

√
1 −

(
1−(s21)2+a2

2a

)2

, d22 =

√
1 −

(
(s22)2−a2−1

2a

)2

.
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In a similar way, we get that the optimal prices for each group of users are

p1 = g +
πt1
2I

− βn2, (30)

p2 = g +
n2t2
D1

− απ, (31)

where the parameter s21 can be found from the equation

βπ

2
− t2s21 = g +

n2t2
D1

− απ

and n2 = n
(I)
2 = n

(II)
2 , D1 =

∂n2

∂s21
.

Thus, the following theorem is true for a symmetric arrangement of platforms
relative to the center of the circle S with multi-homing agents on one side of the
market.

Theorem 2. In the pricing problem for a two-sided market with platforms sym-
metrically located on the plane, the equilibrium price of visiting the platforms
for the group with single-homing agents with different parameters is (25) for
a � s21 �

√
a2 + 1 (or (30) for s21 >

√
1 + a2), and that for the group with

multi-homing agents is (26) for a � s21 �
√

a2 + 1 (or (31) for s21 >
√

1 + a2).

Numerical simulation shows that platforms set equal prices for agents within
the same group, but the fee for the group with multi-homing agents is lower than
for groups with single-homing agents. Given certain parameters of the degree
of influence and the transport costs, platforms may choose to set a negative
price of visiting for groups with multi-homing agents, which can be interpreted
as discount offers. Platforms benefit from offering discounts to the group with
multi-homing agents only if the profit gained from the other side of the market
offsets the costs of these offers and the platform’s total profit is therefore non-
negative (see Table 4).

Table 4. Platforms’ payoff values for different s21 for a = 1, t1 = 1, t2 = 0.5 and g = 0.

s21 α n1 n2 p1 p2 H(I) = H(II)

1.1 0.2237 1.5708 1.6325 0, 8514 −0.1986 1.0131

1.2 0.2281 1.5708 1.7509 0.8743 −0.2418 0.9500

1.3 0.2378 1.5708 1.9116 0.8627 −0.2765 0.8265√
2 0.2523 1.5708 2.1416 0.8281 −0.3107 0.635

1.5 0.2732 1.5708 2.3301 0.7320 −0.3209 0.4021

1.6 0.3007 1.5708 2.5420 0.6040 −0.3276 0.1161

1.7 0.3345 1.5708 2.7398 <0 <0 <0
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E.g., when α = 0.25, platforms set negative prices for the group with multi-
homing agents and gain positive profit when occupying the positions a > 0.4.
Starting from the position a = 0.4, the profit of both platforms becomes negative
(see Table 4).

Similarly to the case of single-homing agents on both sides of the market, if α
is the same, the platforms’ profit declines in positions closer to the center of the
circle, the reasons being either lowering of the price of visiting for both groups
of agents or lowering of the price for the group with single-homing agents and
an increased discount for the group with multi-homing agents. It is noteworthy
that the platforms’ profit decreases where there are multi-homing agents on one
side of the market.

Table 5. The price of visiting the platforms and their payoffs depending on the location
of the platforms for t1 = 1, t2 = 0.5, α = 0.25 and g = 0.

a s21 n1 n2 p1 p2 H(I) = H(II)

1 1.3973 1.5708 2.1045 0.8343 −0.3059 0.6667

0.9 1.3637 1.5708 2.2288 0.7758 −0.2888 0.5750

0.8 1.3216 1.5708 2.3338 0.7047 −0.2694 0.4782

0.7 1.2821 1.5708 2.4433 0.6202 −0.2483 0.3675

0.6 1.2415 1.5708 2.5491 0.5203 −0.2281 0.2359

0.5 1.2011 1.5708 2.6533 0.3988 −0.2078 0.0750

0.4 1.1607 1.5708 2.7558 0.2484 −0.1876 −0.1268

5 Conclusion

The paper has investigated the structure of prices in equilibrium in a two-sided
market of platforms for different agent types in the presence of external network
effects. Assuming that the market has a fixed size and lies on the plane of the
circle, we studied a duopoly model with the platforms located symmetrically
in relation to the center of the circle. Two cases were analyzed: 1) members of
both groups are single-homing agents, i.e., join only one of the platforms; 2) one
group consists of single-homing agents and the other group - of multi-homing
agents, i.e., ones capable of joining both platforms. The platforms were assumed
to apply the same pricing to different types of agents, i.e., the platforms were
unaware whether an agent was single- or multi-homing. We solved the optimal
pricing problem for the platforms and produced the analytical expressions for
equilibrium prices, which depend on the structure of costs and the external
network effects. The output of numerical simulation of the values of equilibrium
prices and the platforms’ profit functions for agents with different parameters is
presented.

Analysis of the problem of optimal pricing in a two-sided market of platforms
showed that when the platforms applied uniform pricing for different groups of
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agents, their profit decreased if multi-homing agents appeared on one side of the
market. Hence, the platforms need to apply other pricing methods to raise their
profit, e.g., differentiated pricing for single-homing and multi-homing agents. We
found also that when the platforms were situated close to the center of the circle,
their profit declined, and could become negative at some values of network effect
parameters.

In the future, we plan to study the optimal pricing problem for non-symmetric
location of platforms on the plane with different metrics. Having found that the
presence of multi-homing agents is disadvantageous for the platforms, we shall
also study the pricing problem for the case where different types of agents are
charged different prices for using the platforms’ services.
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Abstract. The fuzzy core is widely used in theoretical economics for
modeling perfect competition. However, in modern literature, the proof
of its existence is presented indirectly and applies a cumbersome con-
struction. It usually is based on the idea of replicated economies, via
standard core existence, followed by passing to the limits, allowing the
number of replicas tends to infinity. The result is also proved under addi-
tional restrictive assumptions. We present a direct proof based on two
well-known theorems: Michael’s theorem on the existence of a continuous
selector for a point-to-set mapping and Brouwer’s fixed point theorem.
This new direct proof is efficient and shortest among others. Moreover,
now the existence of a fuzzy core is stated under other weakest assump-
tions: agent preferences can be incomplete, non-transitive, satiated, and
so on.

Keywords: Fuzzy core · Edgeworth equilibria · Perfect competition ·
Existence theorems

1 Introduction

The concept of the core of the economy is one of the key equilibrium notions of
modern economic theory, closely related to the concept of competitive (Wal-
rasian) equilibrium. The core embodies the idea of a cooperatively stable
resources allocation: such that no group of individuals has clear incentives to
change it (does not dominate). It has long been known that the Walrasian allo-
cation is always an element of the core and, thus, besides the market balance of
interests, it implements a purely cooperative principle of stability. Since the time
of Edgeworth, there appeared a hypothesis, first formally proved many years later
by Debreu and Scarf, that in conditions of perfect competition, the core and the
equilibria coincide. In the work of Debreu and Scarf, a model of a replicated econ-
omy was proposed, in which economic agents function as copies of themselves,
and their number tends to infinity. In their famous theorem, Debreu and Scarf
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showed that the core of a replicated economy shrinks towards equilibria. So, the
first model of perfect competition appeared in the theory. Subsequently, follow-
ing [1], allocations from the limit core of replicated economies were called the
Edgeworth equilibria. If one allows the participation of the agents in a coalition
with a rate belonging to the rational interval [0, 1], an Edgeworth equilibrium
can also be defined as a feasible allocation that cannot be blocked by a coalition
with rational rates of participation. A fuzzy coalition is a coalition whose rates
of participation can take any value in the real interval [0, 1]. The fuzzy core (first
introduced in [4]) is the set of all attainable allocations which cannot be blocked
by a fuzzy coalition.

Nowadays due to Debreu–Scarf theorem on limit coincidence of core and
equilibria in the replicated economy1 the fuzzy core is widely used in theoretical
economics not only to model the conditions of perfect competition but also to
state the existence of competitive equilibrium, e.g. see [2,9]. This notion plays
a key role in modern economic theory and the conditions under which it exists
have a high theoretical meaning. The problem of the non-emptiness of a fuzzy
core was a subject of a variety of studies, but by now the most advanced results
still are presented in [5,6] (proved in the context of an economy with an infinite-
dimensional commodity space via passing to limits). The idea of the proof was
based on the theorem on the non-emptiness of the ordinary core and the consider-
ation of the asymptotic limit of the core of replica economics that coincides with
the fuzzy core. By enlarging the feasible payoff sets for coalitions, [10] provides
an alternative proof of the non-emptiness of the fuzzy core. Notwithstanding the
novelty of this approach, the result still relies on a conventional limit argument.
Only in [3] there is first appeared the proof based on fixed point arguments (Fans
coincidence theorem is applied), but the result was stated under rather strong
model assumptions: preferences are presented via utility functions, and so on. In
this paper I fill this gap: the problem of the non-emptiness of the fuzzy core in
the exchange economy is stated under very weak conditions, even weaker of [6]
(we do not need agents’ upper preference sections to be open). The proof of the
result is based on two well-known theorems, they are Michael’s theorem on the
existence of a continuous selector for a point-to-set mapping and Brouwer’s fixed
point theorem. So, though the non-emptiness of the fuzzy core is a well-known
fact, however, we present a new direct efficient, and shortest proof among others.
This result can be efficiently incorporated in the proving of Edgeworth’s con-
jecture [2] or even to state the existence of Walrasian equilibrium in economies
with infinite-dimensional commodity spaces [9].

1 Using the density of rational numbers among real ones, one can easily prove, under
weak assumptions (one needs the set of preferred consumption bundles to be open
for each agent and every allocation), that the elements of the fuzzy core coincide with
the Edgeworth equilibria. So the non-domination via fuzzy coalition with rational
rates of participation is equivalent to non-domination for coalition with real rates of
participation.
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2 An Economic Model, Definitions, and Fuzzy Core

I consider a typical exchange economy in which L denotes the (finite-
dimensional) space of commodities. Let I = {1, . . . , n} be a set of agents (traders
or consumers). A consumer i ∈ I is characterized by a consumption set Xi ⊂ L,
an initial endowment ei ∈ L, and a preference relation described by a point-to-
set mapping Pi : X ⇒ Xi where X =

∏
j∈I Xj and Pi(x) denotes the set of all

consumption bundles strictly preferred by the i-th agent to the bundle xi rela-
tive to allocation x ∈ X. It is also can be applied the notation yi �i xi which is
equivalent to yi ∈ Pi(x) (to simplify notations; preferences can indirectly depend
on other agents consumption xj ∈ Xj j ∈ I, j �= i). So, the pure exchange model
may be represented as a triplet

E = 〈I, L, (Xi,Pi, ei)i∈I〉.
Let us denote by e = (ei)i∈I the vector of initial endowments of all traders of
the economy. Denote X =

∏
i∈I Xi and let

A(X) = {x ∈ X |
∑

i∈I
xi =

∑

i∈I
ei }

be the set of all feasible allocations. Now let us recall some definitions.
A pair (x, p) is said to be a quasi-equilibrium of E if x ∈ A(X) and there

exists a linear functional p �= 0 onto L such that

〈p,Pi(x)〉 ≥ pxi = pei, ∀i ∈ I.

A quasi-equilibrium such that x′
i ∈ Pi(x) actually implies px′

i > pxi is a Wal-
rasian or competitive equilibrium.

An allocation x ∈ A(X) is said to be dominated (blocked) by a nonempty
coalition S ⊆ I if there exists yS ∈ ∏

i∈S Xi such that
∑

i∈S yS
i =

∑
i∈S ei and

yS
i ∈ Pi(x) ∀i ∈ S.

The core of E , denoted by C(E), is the set of all x ∈ A(X) that are blocked
by no (nonempty) coalition.

One more important notion, fruitfully working in the theory of economic
equilibrium, is the concept of the fuzzy core. Recall that any vector

t = (t1, . . . , tn) �= 0, 0 ≤ ti ≤ 1, ∀i ∈ I
maybe identified with a fuzzy coalition, where the real number ti is interpreted
as the measure of agent i participation in the coalition. A coalition t is said to
dominate (block) an allocation x ∈ A(X) if there exists yt ∈ ∏

I Xi such that
∑

i∈I
tiy

t
i =

∑

i∈I
tiei ⇐⇒

∑

i∈I
ti(yt

i − ei) = 0 (1)

and
yt

i�i xi, ∀i ∈ supp(t) = {i ∈ I | ti > 0}. (2)
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The set of all feasible allocations which cannot be dominated by fuzzy coalitions
is called the fuzzy core of the economy E and is denoted by Cf (E).

Everywhere below, we assume that model E satisfies the following assump-
tion.

(A) For each i ∈ I, Xi ⊂ L is a convex closed subset, ei ∈ Xi, and for every
x = (xj)j∈I ∈ A(X) the set Pi(x) ⊂ Xi is convex and xi /∈ Pi(x).

Notice that due to (A) preferences may be satiated, i.e., Pi(x) = ∅ is possible
for some agent i and x ∈ X.

For the existence of objects we are interested in, we apply the following
weakest requirement of preferences continuity.

(C) For each i ∈ I for every x ∈ A(X), ∀yi ∈ Pi(x) the set

P−1
i (yi) = {z ∈ X | yi ∈ Pi(z)}

is open in X .

2.1 Fuzzy Core Specification

We begin with a study of the specific properties of the fuzzy core allocations. The
elements of fuzzy core are defined via conditions (1), (2) which for non-satiated
preferences, i.e., when Pi(x) �= ∅, ∀i ∈ I, may be equivalently rewritten in the
form2

0 /∈
∑

i∈I
ti(Pi(x) − ei).

Thus, in this case, condition x ∈ Cf (E) is equivalent to3

0 /∈ co[∪
I
(Pi(x) − ei)], (3)

that, after applying the separation theorem, allows concluding that the elements
of the fuzzy core are quasi-equilibria. Below we describe another useful in appli-
cations characterization (first proposed in [8]) of fuzzy core points presented in
“geometrical” terms. Let us consider the sets

Υi(x) = co(Pi(x) ∪ {ei}), i ∈ I.

Due to the convexity of Pi(x), for Pi(x) �= ∅, conclude

co(Pi(x) ∪ {ei}) = ∪
0≤λ≤1

[λPi(x) + (1 − λ)ei] = ∪
0≤λ≤1

λ(Pi(x) − ei) + ei, i ∈ I.

This implies that the condition z + e ∈ ∏
I Υi(x), where e = (e1, . . . , en), is

equivalent to the existence of 0 ≤ λi ≤ 1 and [yi ∈ Pi(x) �= ∅ and yi = ei, if
Pi(x) = ∅], i ∈ I such that

z = (λ1(y1 − e1), . . . , λn(yn − en)).
2 Admitting some inaccuracy in formulas here and below, we identify a vector with a

one-element set containing it.
3 Clearly, for a dominating fuzzy coalition t one may always think that

∑
i∈I ti = 1.
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Hence, due to (1), (2)

x ∈ Cf (E) ⇐⇒ � z ∈ LI , z �= 0 : z + e ∈
∏

I
Υi(x) &

∑

i∈I
zi = 0

⇐⇒
∏

I
Υi(x)

⋂
A(LI) = {e}, (4)

where A(LI) is a subspace defined by the balance constraints of a pure exchange
economy:

A(LI) = {(z1, . . . , zn) ∈ LI |
∑

i∈I
zi =

∑

i∈I
ei}.

Notice that characterization (4) is also valid for satiated preferences. In doing
so, we have proven the following

Proposition 1. An allocation x ∈ A(X) is the element of fuzzy core if and only
if relation (4) is true.

In the case of a 2-agent economy with autonomous preferences, condition (4)
may be rewritten in the form

Υ1(x1) ∩ (ē − Υ2(ē − x1)) = {e1}, ē = e1 + e2.

Hence,

(x1, x2) /∈ Cf (E) ⇐⇒ ∃ray starting at the point e1, which intersects

both sets, P1(x1) and ē − P2(ē − x1) = P̃2(x2).

Figure 1 presents a graphic illustration of conducted analysis in Edgeworth’s box
for a 2-goods economy. In this case, an allocation x lying in the fuzzy core is
equivalent to the convex hulls of P1(x1) ∪ {e1} and of [ē − P2(ē − x1)] ∪ {e1}
having only one point, e1, in common. In modern literature, allocations from the
fuzzy core are interpreted as Edgeworth’s equilibria and served as a technical
tool more than an economic concept. Moreover, the fact that every element of
the fuzzy core is a quasi-equilibrium (this is why the fuzzy core is so popular in
existence theory) can be also easily derived from formula (4).

3 The Result: Non-emptiness of Fuzzy Core

The existence of an ordinary and a fuzzy core in an economy can be estab-
lished by applying Brouwer fixed point theorem and Michael theorems [7] on the
existence of a continuous selector. Our main result is presented below.

Theorem 1. Under imposed assumptions (A), (C) and if A(X) is bounded,
fuzzy core is non-empty, i.e. Cf (E) �= ∅.
Remark 1. An analysis of the proof below shows that the assumption of (C)
that Pi(x), x ∈ A(X) are convex can be replaced by the standard and a formally
weaker one xi /∈ co Pi(x) ∀x = (xj)j∈I ∈ A(X).

Now I am presenting proofs.
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Fig. 1. Specification of (x̄1, x̄2) as a fuzzy core point.

3.1 Proof

For the analysis, we need the following auxiliary lemmas. Let Ω be a subset of
A(X) consisting of the points x ∈ A(X) for which (4) is false. Now I study the
properties of these allocations.

Let x ∈ Ω. Consider the set ϕ(x) of all contracts that fuzzily block this
allocation:

ϕ(x) = {(vi, ti)I ∈ (L × [0, 1])I |
∑

I
vi = 0, v �= 0 : ∀i ∈ I Pi(x) �= ∅

⇒ ∃gi(x) ∈ Pi(x) : vi = ti(gi(x) − ei) & Pi(x) = ∅ ⇒ vi = 0, ti = 0.} (5)

The following lemma presents crucial properties of the point-to-set mapping
ϕ(·). First, I recall the definition of lower hemicontinuous4 point-to-set mapping.

Definition 1. Let Y , Z be topological spaces. A point-to-set mapping ψ : Y ⇒ Z
is called lower hemicontinuous (l.h.c.) iff

ψ−1(V ) = {y ∈ Y | ψ(y) ∩ V �= ∅}

is open for every open V ⊂ Z. For a metric spaces Y , Z a l.h.c. mapping can be
equivalently characterized as follows:

4 According to the modern views, the term semi-continuous mapping is specifically
applied for a function—point-to-point map—and hemicontinuous for a correspon-
dence.
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For every y ∈ Y , z ∈ ψ(y) ⊂ Z and every sequence ym → y there is a
subsequence ymk

, m, k ∈ N and a sequence zk ∈ ψ(ymk
) such that zk → z for

k → ∞.

Lemma 1. Let x ∈ A(X). The set ϕ(x) is convex, and ϕ(x) �= ∅ if (4) is false.
Moreover, the point-to-set mapping ϕ : Ω ⇒ (L × [0, 1])I is lower hemicontinu-
ous.

Proof. To show the convexity of ϕ(x) one takes any (w′, t′), (w′′, t′′) ∈ ϕ(x)
and α ∈ (0, 1). Now for i ∈ I such that Pi(x) �= ∅ & (t′i, t

′′
i ) �= 0 one has:

∃g′
i, g

′′
i ∈ Pi(x) such that

αw′
i + (1 − α)w′′

i = αt′i(g
′
i − ei) + (1 − α)t′′i (g′′

i − ei)

= [αt′i + (1 − α)t′′i ]
[

αt′i
αt′i + (1 − α)t′′i

g′
i +

(1 − α)t′′i
αt′i + (1 − α)t′′i

g′′
i − ei

]

.

Thus, for ti = αt′i + (1 − α)t′′i and

gi =
αt′i

αt′i + (1 − α)t′′i
g′

i +
(1 − α)t′′i

αt′i + (1 − α)t′′i
g′′

i ∈ Pi(x)

we have wi = ti(gi − ei) = αw′
i + (1 − α)w′′

i . If t′i = t′′i = 0 one has w′
i = w′′

i = 0
and we obtain the same result for any gi ∈ Pi(x). Therefore, for α ∈ [0, 1] relative
to t = αt′ + (1 − α)t′′ contract w = αw′ + (1 − α)w′′ is so that (w, t) ∈ ϕ(x), as
we wanted to prove.

Further, we show that the point-to-set mapping ϕ(·) defined in (5) is lower
hemicontinuous. Indeed, let (v, t) ∈ ϕ(x) and let xm ∈ A(X), xm → x for
m → ∞. Due to (C) for every i ∈ I preferences Pi have open low sections in X
and hence for sufficiently large m we have xm ∈ P−1

i (gi(x)) ∀i ∈ I: Pi(x) �= ∅. If
Pi(x) = ∅ for some i then vi = 0, ti = 0 and ti(gi(xm)−ei) = 0 for any gi(xm) ∈
Pi(xm). So, via (5) one concludes (v, t) ∈ ϕ(xm) for all m ∈ N big enough. This
proves, by definition, ϕ(·) is lower hemicontinuous in x ∈ Ω ⊂ A(X). ��

In the proof of the lemma below I apply the following Michael theorem (see
[7] p. 368, Th 3.1′′′, (c)) on the existence of a continuous selector in its simplified
finite-dimensional presentation.5

Theorem 2 (Michael, 1956). Let Y and Z be subsets of finite-dimensional
linear spaces. Then every l.h.c. point-to-set mapping ψ : Y ⇒ Z having nonempty
convex images ψ(y) ⊂ Z ∀y ∈ Y has a continuous selector.

Lemma 2. There is a continuous function h : Ω → A(X) such that for every
x ∈ Ω and ∀i ∈ I hi(x) ∈ co(Pi(x) ∪ {ei}) with hj(x) ∈ Pj(x) for some j ∈ I.

5 Note that in original paper item (c) has a typo for the range of φ : X → K(Y ).
Author denoted K(Y ) as a set of all convex subsets of Y , but speak and prove the
result for a narrower class of sets D(Y ) ⊂ K(Y ), see p. 372. Here I present a less
general result, to avoid a cumbersome specification of D(Y ).
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Proof. According to assumptions and Lemma 1, the correspondence ϕ(·) speci-
fied in (5) obeys requirements of Michael’s theorem on the existence of continuous
selector: a lower hemicontinuous correspondence having domain Ω ⊂ A(X), and
with convex non-empty images. Thus, there is a continuous mapping satisfying

(v, t)(·) : Ω → (L × [0, 1])I such that (v(x), t(x)) ∈ ϕ(x) ∀x ∈ Ω.

By construction one has
∑

I vi(x) = 0, v(x) �= 0 and ∀i ∈ I vi(x) = ti(x)(gi(x)−
ei), ti(x) ∈ [0, 1] and gi(x) ∈ Pi(x) �= ∅. Now one specifies

η(x) = max
i∈I

ti(x) > 0

and due to (A) (gi(x) ∈ Pi(x) ⊂ Xi, Xi is convex and ei ∈ Xi ∀i ∈ I) one
concludes

hi(x) =
vi(x)
η(x)

+ ei ∈ Xi ∀i ∈ I ⇒ h(x) = (h1(x), . . . , hn(x)) ∈ A(X).

So, by construction we have h(x) �= e, hi(x) = ti(x)
η(x) (gi(x)−ei)+ei with tj(x)

η(x) = 1
for some j ∈ I and h(·) is a function that we needed to find. ��
Proof of Theorem 1. Assume (4) is false for every x ∈ A(X), i.e. Ω = A(X) and
therefore Cf (E) = ∅. Now applying Lemma 2 one can find a continuous function
h : A(X) → A(X) such that for every x ∈ A(X) one has hj(x) ∈ Pj(x) for some
j ∈ I. Since A(X) is a convex compact set then due to Brouwer’s fixed point
theorem, this function has to have a fixed point x̄ ∈ A(X). At this point, there
is j ∈ I for which one has x̄j = hj(x̄) ∈ Pj(x̄) that is impossible. So supposition
Ω = A(X) is false and therefore there is a point x ∈ A(X) such that (4) is true
and Cf (E) �= ∅. ��
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Abstract. The paper studies a linear-quadratic pollution control model
for which a term named value of cooperation (VC) subordinated to value
of information (VI) is introduced. Namely, the quantification of possi-
ble benefit or loss occurring under the circumstance where the players
choose to play the game in a cooperative way or refuse to act as a coali-
tion is being presented. In the paper, the construction of VC consists of
the Shapley value involving four various types of characteristic functions
which steer the performance of normalized value of cooperation (NVC)
toward quite similar direction and an elaborate analysis related to the
actual scenario is ensuing. Both of characteristics (VC and NVC) are
new in the field of game theory and can be further applied to a wide
class of problems. Theoretical results are demonstrated with a numer-
ical example on the basis of pollution data contributed by three local
enterprises in Penza (City of Russia).

Keywords: Differential game · Pollution control · Value of
cooperation · Value of information

1 Introduction

In retrospect, we have been prominently investing our enthusiasm into the field
of value of information since recent years. So far, the value of information (VI)
regarding the possible changes of structure of model which cover the feasible
adjustment of the boundary of control and the existence of terminal cost in
[1], the estimation of initial stock in [5] has been explored. While we are still
deep into the research of the current knowledge, expanding the width of the
application of VI is also underway. In this paper, we would like to present value
of cooperation (VC) which is fresh in the field of game theory. On the level of
subordination, we take VC as a subset of VI.
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When it comes to the definition of VC, the meaning has already told us by
itself, i.e., the potential benefit or loss through the cooperation. As we know,
the player is always able to obtain higher payoff when they opt to cooperate
instead of acting solo. Therefore, the ’loss’ here does not refer to the case we
just mentioned. The highlight is encircled in the difference between the payoff
which player could achieve in the cooperative case and the Nash equilibrium case.
A description of the model considered in this paper can be found in [6,7]. The
methods for constructing characteristic functions during the process of finding
the Shapley value under the cooperative condition are described in [2–4,8,10,
11,15].

As to the reason of bringing game theory into the environmental manage-
ment is that the environmental problem is one of the most striking topic in
the contemporary world. Obviously, there are many factors which contribute to
it, in particular, the radical development of high-polluted industry which could
be shown in the way of reckless exploitation of natural resources and lack of
environmental protection measures. Meanwhile, one of the most important envi-
ronmental regulations for the whole society is to keep a robust balance between
the volume of pollution and the profit. In this paper, we will consider three lead-
ing enterprises in Penza. The relevant production data of three enterprises in
2016 can be found in the sources [16–18].

The structure of this paper is well organized in the following way. In Sect. 2,
we formulate our main problem and determine our objective. The theoretical
part concerning the selection of characteristic functions and construction of the
Shapley value [13] are demonstrated in Sect. 3. The detailed procedure for for-
malizing value of cooperation is explained in Sect. 4 and a numerical example
with support of actual production data is added in Sect. 5. In the end, we make
our conclusion in Sect. 6.

2 Problem Formulation

Let us consider a pollution control model formulated in a linear-quadratic way
over the time interval [t0, T ] in correlation with [6,7]. It is assumed that there are
n stationary pollution contributors within a targeted region, i.e., the game has
n players (firms) who fulfill their regular production at their own pace. Suppose
the volume of pollutant ui generated by player i at instant time t is proportional
to the amount of its production,

ui ∈ [0, bi], bi > 0, i = 1, n, (1)

where bi symbolizes the rate of total production income of the player i corre-
sponding to its total pollution amount. Then the strategy of player i can be
described as the plan of the pollution rate per unit time.

The total pollution level is given by x(t) with the initial condition x(t0) = x0

so that the dynamics of pollution volume can be expressed by the differential
equation
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ẋ(t) =
n∑

i=1

ui(t), t ∈ [t0, T ]. (2)

The purpose of the player is to choose the control path ui in an optimal way.
Generally, we assume that the player has the objective functional

Ki(x0, T − t0, u) =
∫ T

t0

((bi − 1
2
ui(t))ui(t) − dix)dt, (3)

where the cost of the player i to eliminate a unit of pollution is represented
by di ≥ 0. Each player in the game is expecting to maximize the functional as
indicated in (3), i.e.,

Ki(x0, T − t0, u1(t), u2(t), . . . , un(t)) → max (4)

In the paper, the game under the cooperative cases will be explored
which means the players multilaterally agree on the use of optimal control
u∗(t) = (u∗

1(t), u
∗
2(t), . . . , u

∗
n(t)) which satisfies (1) while conforming to the sys-

tem dynamics (2) and the initial condition to realize

n∑

i=1

Ki(x0, T − t0, u1(t), u2(t), . . . , un(t)) → max
u∗
1 ,u∗

2 ,...,u∗
n

. (5)

Subsequently, the optimal trajectory x∗(t) can be obtained by integrating (1)
with optimal control u∗.

3 Construction of the Shapley Value

3.1 Characteristic Functions

It is known that there are assorted types of characteristic functions. In gen-
eral, we pay our attention to α-, δ-, ζ-, η-characteristic functions whose detailed
descriptions of their constructions are explained in [3,15].

α- characteristic Functions. The classical approach formulated by J. Neu-
mann and O. Morgenstern in 1944 in [8] is used in the construction of α-
characteristic function. According to this approach, V (S) refers to the maximally
guaranteed gain of the coalition S and the value of V (S) can be calculated on
the basis of an auxiliary antagonistic game between the coalition S and the anti-
coalition N\S. Thus, the coalition S acts as the maximizing module and the
coalition N\S as the minimizing module:

V α(x0, t0, T, S) =

⎧
⎪⎪⎨

⎪⎪⎩

0, S = {∅},
max min
ui,i∈Suj
j∈N\S

∑
i∈S

Ki(x0, T − t0, uS , uN\S) S ⊂ N,

max
u1,...,un

∑n
i=1 Ki(x0, T − t0, u1, . . . , un) S = N.

(6)
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It is proved in [10] that V α(x0, t0, T, S) is a superadditive function, i.e. it satisfies
the following property:

V (x0, t0, S1 ∪ S2) ≥ V (x0, t0, T, S1) + V (x0, t0, T, S2),
∀S1, S2 ∈ N,S1 ∩ S2 = ∅.

(7)

However, this type of characteristic function has significant computational diffi-
culties.

δ- characteristic Functions. In the work of L.A. Petrosyan, G. Zaccour [11],
another constructive approach for the build of δ-characteristic function) was
proposed.

V (x0, t0, T, S) can be calculated as follows: The players from S maximize
their total gain Ki(uS , uN

N\S) while the remaining players from the set N\S take
strategies from Nash equilibrium uN

N\S = {uN
j }j∈N\S . Thus, we have a 2-step

procedure for constructing the characteristic function:
1) find the Nash equilibrium {uN

i } for all players i ∈ N ;
2) stick the strategies from the Nash equilibrium uN

j for player j ∈ N\S and for
players from the coalition S we find the maximum of their total gain through
uS = {ui}i∈S . Then the formal definition is as follows:

V α(x0, t0, T, S) =

⎧
⎪⎪⎨

⎪⎪⎩

0, S = {∅},
max min
ui,i∈Suj
j∈N\S

∑
i∈S

Ki(uS , uN\S) S ⊂ N,

max
u1,...,un

∑n
i=1 Ki(x0, T − t0, u1, . . . , un) S = N.

(8)

The characteristic function made in this way has the following advantages. First
of all, it requires less computational effort. Secondly, the calculated value of V δ

is based on the already calculated Nash equilibrium, which greatly simplifies
further calculations. What’s more, the definition of δ characteristic function has
a clear economic interpretation, namely that players who do not join coalition
S will not form anti-coalition N\S, which corresponds to their non-aggressive
behaviour.

In general, the δ-characteristic function is not superadditive, i.e., it does not
satisfy condition (7) in contrast to (6). The question of existence and uniqueness
of the Nash equilibrium also becomes relevant in this case.

ζ- characteristic Functions. A two-step procedure is also being applied in
order to build ζ characteristic function. We choose a set of optimal rules that
maximize the total payoff of all players. Next, we utilize the optimal rules
obtained in the previous step for the players in the coalition S, while the players
in the set N\S minimize the payoff of players in the coalition S. Then we have

V ζ(x0, t0, T, S) =

⎧
⎪⎪⎨

⎪⎪⎩

0, S = {∅},
min

uj ,j∈N\S

∑
i∈S

Ki(x0, T − t0, u
∗
S , uN\S) S ⊂ N,

max
u1,...,un

∑n
i=1 Ki(x0, T − t0, u1, . . . , un) S = N.

(9)
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It is confirmed [4] that V ζ is a superadditive characteristic function compared
with (6). Also ζ-characteristic function can be calculated in two stages by using
expressions for optimal control, which dramatically simplifies the calculation
process with comparison to the construction of α-characteristic function.

η- characteristic Functions. This type of characteristic function [2] has a
benefit that the computational process is succinct because the players from the
coalition S use the previously formed optimal strategies u∗

S = {u∗
i }i∈S , while the

players from N\S act similarly to the δ-characteristic function, i.e., using uNE
i ,

V η(x0, t0, T, S) =

⎧
⎪⎪⎨

⎪⎪⎩

0, S = {∅},∑
i∈S

Ki(x0, T − t0, u
∗
S , uNE

N\S) S ⊂ N,

max
u1,...,un

∑n
i=1 Ki(x0, T − t0, u1, . . . , un) S = N.

(10)

3.2 The Shapley Value

Given the Shapley value as a cooperative principle of optimality in a game,

Shi(x0, t0, T ) =
∑

s⊂N,i∈S

(n − s)!(s − 1)!
n!

(V (S, x0, t0, T ) − V (S\{i}, x0, t0, T )).

(11)
It represents a division that satisfies the properties of individual and collective
rationality. For a game of three participants, the Shapley value is as follows:

Sh1(x0, t0, T ) =
1
3
[V (·, {1, 2, 3}) − V (·, {2, 3})] +

1
3
V (·, {1})

+
1
6
[V (·, {1, 2}) − V (·, {2}) + V (·, {1, 3}) − V (·, {3})],

Sh2(x0, t0, T ) =
1
3
[V (·, {1, 2, 3}) − V (·, {1, 3})] +

1
3
V (·, {2})

+
1
6
[V (·, {1, 2}) − V (·, {1}) + V (·, {2, 3}) − V (·, {3})],

Sh3(x0, t0, T ) =
1
3
[V (·, {1, 2, 3}) − V (·, {1, 2})] +

1
3
V (·, {3})

+
1
6
[V (·, {1, 3}) − V (·, {1}) + V (·, {2, 3}) − V (·, {2})].

(12)

4 Construction of Value of Cooperation

4.1 Cooperative Solution to the Model

Let us discuss a game-theoretic model with 3 players, i.e., n = 3 and the initial
condition x(t0) = x0. The Pontryagin maximum principle [9] is being applied
to solve the problem (5). Out of this purpose, it is necessary to construct the
Hamiltonian function:

H(x, u, ψ) =
3∑

i=1

((bi − 1
2
ui)ui − dix) + ψ(t)(u1 + u2 + u3) → max .
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In accordance with derivative rule, we could determine u∗ where the max-
imal value of Hamiltonian function can be reached. Furthermore, we have the
canonical system {

ẋ = ∂H
∂ψ

ψ̇ = −∂H
∂x

(13)

Since there is no terminal cost in this case, then ψ(T ) = 0. Combined with
ψ̇ = −∂H

∂x = ds which is obtained from (13), we present d1 + d2 + d3 = ds,
b1 + b2 + b3 = bs, therefore

ψ(t) = ds(t − T ). (14)

Correspondingly, the optimal control goes:

u∗(t) =

⎛

⎝
b1 − ds(T − t)
b2 − ds(T − t)
b3 − ds(T − t)

⎞

⎠ (15)

The additional condition on the parameters of the model under which the optimal
controls are admissible ui ∈ [0 : bi]:

di ∈ [0,
min{b1, b2, b3}

T
− ds], (16)

Now turning to optimal trajectory, from (2), (15) and the initial condition
x(0) = x0, naturally

x∗(t) =
3ds

2
(t2 − t20) + (bs − 3Tds)(t − t0) + x0. (17)

4.2 Nash Equilibrium Case

Similar to the case above, the Hamiltonian function is

Hi(x, u, ψ) = (bi − 1
2
ui)ui − dix + ψ(t)(u1 + u2 + u3), (18)

The general method of pinpointing the optimal control through the derivative
in this case proceeds in the same way. Hence, the optimal control:

uNE
i = bi − di(T − t), i = 1, 2, 3.

The optimal trajectory:

xNE(t) =
ds

2
(t2 − t20) + (bs − Tds)(t − t0) + x0. (19)
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4.3 Expressions for Characteristic Functions

Replying on definitions (6)-(10) we generate expressions for all types of charac-
teristic functions in the frame of a 3-player model above.

Construction of the α-characteristic Function. Let us construct an α-
characteristic function for the grand coalition S = N. In this case, each player
uses a control that maximizes the total payoff of all players, i.e., the controls are
defined by expression (15). Thus,

V α(N,T − t0) =
3∑

i=1

Ki(t0, u∗
1, u

∗
2, u

∗
3)

=
1
2
(T − t0)3d2s +

1
2
(T − t0)(B2

s − 2dsx0)−

− 1
2
(T − t0)2bsds

(20)

where B2
s = b21 + b22 + b23, d

2
s = (d1 + d2 + d3)2.

For constructing V α({i}, T − t0), i = 1, 3, we use definition (6). In advance,
we need to find such controls uj , uk, i 
= j 
= k ∈ N which lead to
min
uj ,uk

Ki(t0, ui, uj , uk) by means of the Pontryagin maximum principle [14]. They

will take the form:
uj = bj , uk = bk.

Later, utilizing the same method, it is expected to find the control ui under
which max

ui

min
uj ,uk

Ki(t0, ui, uj , uk) is achieved. It will take the form:

ui = bi − di(T − t),

The characteristic function for single player

V α({i}, T − t0) =
1
6
(T − t0)3d2i − 1

2
(T − t0)2bsdi +

1
2
(T − t0)b2i

− (T − t0)dix0.
(21)

For constructing V α({i, j}, T − t0), it is necessary to find a control uk, i 
=
j 
= k ∈ N with which we get min

uk

(Ki(t0, ui, uj , uk) + Kj(t0, ui, uj , uk)). In

this case, uk = bk. Thereafter, the ui, uj have to be determined by making
max
ui,uj

lim
uk

(Ki(t0, ui, uj , uk) + Kj(t0, ui, uj , uk)),

ui = bi − (di + dj)(T − t).

Then the characteristic function for coalition S = {i, j} is

V α({i, j}, T − t0) =
1
3
(T − t0)3d2ij − 1

2
(T − t0)2bsdij

+
1
2
(T − t0)(b2i + b2j ) − (T − t0)dijx0.

(22)
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where dij = di + dj , d
2
ij = (di + dj)2.

Construction of the δ -characteristic Function. Hinging on definition (8),
we can decide δ-characteristic function. The procedure is succinct because the
players who do not belong to the coalition S use Nash equilibria as strategies.
Then, we will have the problem of finding controls uS , S ∈ N that maximize∑

i∈S Ki(t0, uS , uN\S).

V δ({i}, T − t0) =
1
6
(T − t0)3(2dsdi − d2i ) − 1

2
(T − t0)2bsdi +

1
2
(T − t0)b2i

− (T − t0)x0di.
(23)

V δ({i, j}, T − t0) =
1
3
(T − t0)3(dkdij + d2ij) − 1

2
(T − t0)2bsdij

+
1
2
(T − t0)(b2i + b2j ) − (T − t0)dijx0.

(24)

Construction of the ζ -characteristic Function. As presented in definition
(9), the ζ-characteristic function in our case can be formulated with the opti-
mal controls which are mentioned in (15) used as us∈N , and uS\N to satisfy

min
uj ,j∈S\N

(
∑

i∈S Ki(t0, u∗
S , uS\N ).

V ζ({i}, T − t0) =
1
6
(T − t0)3(2dids − d2s) − 1

2
(T − t0)2bsdi

+
1
2
(T − t0)b2i − (T − t0)x0di.

(25)

V ζ({i, j}, T − t0) =
1
3
(T − t0)3(2dijds − d2s) − 1

2
(T − t0)2bsdij

+
1
2
(T − t0)(b2i + b2j ) − (T − t0)dijx0.

(26)

Construction of the η -characteristic Function. By definition (10), the
computational process for the η-characteristic function is the most simplified
compared with the characteristic functions described previously, there is no addi-
tional calculations required after finding u∗(t), uNE(t).

V η({i}, T − t0) =
1
6
(T − t0)3(2di(ds + djk) − d2s) − 1

2
(T − t0)2bsdi

+
1
2
(T − t0)b2i − (T − t0)x0di.

(27)

where djk = dj + dk.

V η({i, j}, T − t0) =
1
3
(T − t0)3(2dijds + dkdij − d2s) − 1

2
(T − t0)2bsdij

+
1
2
(T − t0)(b2i + b2j ) − (T − t0)dijx0.

(28)
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4.4 Value of Cooperation

Definition 1. The value of cooperation referring to the cooperative case and
Nash equilibrium one is defined as

V Ci = Shi − Ki(x0, T, uNE). (29)

Furthermore, we define the normalized value of cooperation for player i as

NV Ci =
V Ci

Shi
=

Shi − Ki(x0, T, uNE)
Shi

× 100%. (30)

The Shapley value with respect to player i is determined by expression (11).
To find the vector of the Shapley we can use a characteristic function of any
type. We take the construction of the Shapley value regarding α-characteristic
function as an example, V Cα

i and NV Cα
i can be expressed as

V Cα
i = Shα

i − Ki(x0, T, uNE),

NV Cα
i =

V Cα
i

Shα
i

=
Shα

i − Ki(x0, T, uNE)
Shα

i

× 100%.

4.5 Value of Information

Now suppose that the information about the initial level of pollution x0 is not
available to the players, and they overestimate the initial level of pollution, i.e.,
x̂0 > x0 and the initial condition will be altered to x(t0) = x̂0.

In this case, apart from the change of initial level of pollution, the rest pro-
cedure will be identical to what we describe in Subsect. 4.1. Therefore, we have
our new optimal control û(t),

û(t) =

⎛

⎝
b1 − ds(T − t)
b2 − ds(T − t)
b3 − ds(T − t)

⎞

⎠ (31)

And the optimal trajectory x̂(t) and the total payoff of three players under this
condition are

x̂(t) =x̂0 + (t − t0)bs − 3(t − t0)Tds +
3ds

2
(t2 − t20)

= x̂0 + (t − t0)(bs − 3Tds) +
3ds

2
(t2 − t20),

(32)

3∑

i=1

Ki(t0, ûi) =
1
2
(T − t0)3d2s +

1
2
(T − t0)(B2

s − 2dsx̂0)

− 1
2
(T − t0)2bsds.

(33)
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Definition 2. The value of information here referring to the estimation of the
initial pollution level is defined as

V I =
3∑

i=1

Ki(t0, u∗) −
3∑

i=1

Ki(t0, û) (34)

where
∑3

i=1 Ki(t0, u∗) can be taken from (20). Furthermore, we define the nor-
malized value of information for players as

NV I =
∑3

i=1 Ki(t0, u∗) − ∑3
i=1 Ki(t0, û)

∑3
i=1 Ki(t0, u∗)

× 100%. (35)

5 Numerical Example of Actual Scenarios in Penza

In this paper, the three leading enterprises which we take into account are spe-
cialist in different realms in Penza and Penza Oblast. With currently available
data [16–18], we formalize the problem and formulate a differential game of three
players named as Foton, Penzadieselmash and Penza Bread Plant.

5.1 Parameters of the Model

To calculate the parameters of model - bi, di, we will look for the data on pollution
sources. The coefficient bi > 0 equals the ratio of the total income from the
production of the i-th company (Pi) to the total amount of pollution by the
right company (Vi):

bi =
Pi

Vi
. (36)

The parameter di > 0 defines the costs of the player i to eliminate a unit of total
pollution:

di =
Li

V1 + V2 + V3
. (37)

The consequent values of bi, di are indicated in Table 1. Besides, for better
demonstration, we assume that t0 = 0, x0 = 0, T ∈ [1, 10] in the game.

Table 1. Real value of bi, di for three enterprises

Company bi di

Foton 148534, 48 421, 61

Penzadieselmash 1619303, 9 426, 29

Penza Bread Plant 1752944, 9 876, 62
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5.2 Analysis of Value of Information and Cooperation

Value of Cooperation. Applying the production data and combining the
result we get in Figs. 1 and 2, the first point we would like to discuss is whether
the player should cooperate or not and which kind of characteristic functions
the player ought to choose if cooperation is ongoing. In Fig. 1, it’s crystal clear
that the cooperation is beneficial to all players especially to the player - ’Foton’,
although the magnitude of NVC is not larger than 10−3, we have to take the
total amount of profit into account. Therefore, it’s reasonable for them to take
cooperative solution.

Fig. 1. The performance of NVC for three players i, j, k varied in α characteristic
function(cf) with changing terminal time T . (Since the performances of NVC varied in
four characteristic functions are approximately same, only one of them shown here)

Now suppose the cooperation is settled, then what’s the comparatively best
choice of characteristic functions for each player? In fact, the result shows in
Fig. 2 that there is no unanimous selection of characteristic function for all three
players to attain their optimal goal. In this case, we believe there’s further dis-
cussion need to be made.

Value of Information. Suppose x̂0 = x0 + θ, x0 = 0, θ ∈ [−0, 5, 0, 5], as
shown in Fig. 3, We can observe that when θ = 0, the decision-making players
have accurate information about the original pollution and are not willing to
pay anything to improve this knowledge. However, as the information becomes
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Fig. 2. The performance of NVC corresponding to four characteristic functions(cf)
with changing terminal time T for each player i, j, k, up-left: Foton - i, up-right: Pen-
zadieselmash - j, bottom-left: Penza Bread Plant - k.

increasingly inaccurate, the value of the information increases. And the more
θ deviates from zero, the more value NVC takes on. This is true both in the
case of overestimation of the initial contamination level x0 and in the case of
underestimation.

Fig. 3. The performance of NVI corresponding to different terminal time T = 1, 2, 3
with varied estimation of initial pollution stock.
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6 Conclusion

The limelight of the paper is the comparison of payoff between the cooperative
and Nash equilibrium case. With help of four different types of characteristic
function, we separately construct the Shapley value which is used to evaluate the
outcome of NVC and an actual example is being brought to vividly demonstrate
our intention. The result informs the enterprises of the benefit of cooperation
and the explicit proportion of the benefit the player will get if he comply with the
strategies, which we think would greatly reduce their risk of making unprofitable
decision. In addition, the analysis of the impact of estimation of initial stock is
being provided to the enterprises to complement their knowledge over incomplete
information.
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Abstract. We derive a non-cooperative and cooperative strategies and
state trajectories for a finite-horizon multistage game of renewable
resource extraction with asymmetric players. Assuming transferable util-
ity we extend the subgame perfect core concept introduced for extensive-
form games to the class of n-person multistage games and specify an
algorithm for choosing a unique payoff distribution procedure from the
core in a two-player game. This quasi proportional payment schedule
satisfies several good properties and could be applied to implement a
cooperative solution based on the maximization of the relative benefit
from cooperation (or the value of cooperation). We provide a numerical
example to demonstrate the properties of the obtained solutions and the
algorithm implementation.

Keywords: Multistage game · Subgame-perfect equilibrium · Payoff
distribution procedure · Cooperative solution · Renewable resource
extraction · Fishery-management model

1 Introduction

In the paper, we consider a competitive model of renewable resource extraction
as a finite-horizon multistage game with feedback information structure. This
model, in particular, could be interpreted as a fishery-management model (see,
e.g., seminal paper [18] on the so-called fish wars, the related papers [1–3,12,20–
23,28,29]) and the review [30]. We adopt a rather general assumption that each
player’s stage performance criterion is log of the current extraction level and
focus on the finite-horizon game when the players value differently the resource
residual stock after the extraction process ends. This is the only source for asym-
metry of the players accepted in the paper (see, e.g., [2,5,23,29] for other reasons
and aspects of the players’ asymmetry).
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As it is known, the non-cooperative (selfish) behavior in dynamic models of
renewable resource extraction under fairly general assumptions leads to worse
results (in particular, more extensive resource exploitation) than the cooperative
behavior (see, e.g. [2,3,12,20–23,29], bearing in mind the possible exceptions
[9,19]). Hence, a problem how to guarantee the sustainability of cooperation
(especially, from the long-term perspective) arises. In the paper, we assume that
the payoffs are transferable (between the players) and explore the payoff distribu-
tion procedure (PDP) based approach to reach and implement the cooperative
agreement. Such approach was firstly introduced in [25] for differential games
and then was successfully applied to different classes of dynamic games (see,
e.g., [4,5,11,13–16,21,26,27,30,32]).

To derive non-cooperative and cooperative feedback strategies we use stan-
dard dynamic programming method. Then we extend the novel β- subgame per-
fect core (β-S-P Core) concept (see [6,7,17]) to the class multistage games under
consideration. Further, we introduce a refinement of the β-S-P Core based on
maximization of the relative benefit from cooperation (see [17]) and constructing
a specific PDP meeting several advantageous properties. Finally, we provide a
numerical example of the two-person multistage game to demonstrate the prop-
erties of the obtained solutions. The contributions of the paper is twofold:

– we derive analytical solution for specific finite-horizon multistage game of
renewable resource extraction with asymmetric players;

– we extend the β-S-P Core concept to n-person multistage games with trans-
ferable utility and provide an algorithm for the constructing of quasi propor-
tional PDP which belongs to non-empty β-S-P Core of a two-player game.

The remainder of the paper is organized as follows. In Sect. 2, we intro-
duce the model and derive non-cooperative solution (subgame perfect feedback-
equilibrium strategies). In Sect. 3, we obtain a cooperative strategy and trajec-
tory and define the β-S-P Core for multistage games. An algorithm for selecting
a unique PDP from β-S-P Core is specified in Sect. 4. We provide a numerical
example in Sect. 5 and briefly conclude in Sect. 6.

2 The Model Non-cooperative Behavior

We consider the following finite-horizon discrete time model of renewable
resource extraction. Suppose that n players exploit a common renewable
resource. Let x(t) be a measure of the resource at time t = 0, 1, . . . , T (state
variable), while uj(t) denote player j’s extraction level in that period (control
variable). Player j ∈ N = {1, . . . , n} aims to maximize an objective function or
performance criterion of the form

Hj(·) =
T−1∑

τ=0

δτ ln uj(τ) + Kj δT ln x(T ), (1)
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where δ ∈ (0, 1) is a discount factor, and Kj > 0 is a parameter that specifies the
player j’s valuation of the resource residual stock after the extraction process
ends.

As it was noted in [2,5,23,29] there are several sources of the players asym-
metry in the renewable resource extraction models (in particular, fishery man-
agement models) as well as in dynamic environmental models. The players may
have different costs, different discount rates, they may value the residual stock
differently, e.t.c. We focus in the paper on the case when the players have the
same discount factor δ, and the only source for asymmetry is that the play-
ers value differently the resource residual stock (after the fishery process ends).
Namely, we assume that coefficients Kj in (1) could be different. Note that
similar assumption is accepted in [5,11,17].

We adopt in the paper the linear dynamics of the resource stock evolution
when there is exploitation, namely:

x(t + 1) = α · x(t) −
n∑

j=1

uj(t), x(0) = x0, (2)

where α ≥ 1 denotes the natural growth rate, and the feedback information
structure, i.e. uj(·) = uj(t, x(t)), j = 1, . . . , n; t = 0, . . . , T − 1.

Denote by G0(n, x0, T ) multistage n-player game starting at time instant t =
0 with discrete dynamics (2), objective functions (1) and feedback information
structure. Each intermediate state x(t), t = 0, . . . , T − 1 determines a subgame
Gt(n, x(t), T ) starting at time instant τ = t and initial state x(t) with the
subgame objective functions

Ht
j(·) =

T−1∑

τ=t

δτ−t ln uj(τ) + Kj δT−t ln x(T ), j = 1, . . . , n. (3)

The concept of subgame perfect equilibrium [31] is now accepted as a stan-
dard non-cooperative solution in a dynamic game.

Definition 1. A feedback strategy profile u(t, x) = (u1(t, x), . . . , un(t, x)) con-
stitutes a Nash equilibrium (NE) in G0(n, x(0), T ), if

Hj(vj(·), u−j(·)) � Hj(uj(·), u−j(·))

for any admissible feedback strategy vj(·) of every player j = 1, . . . , n.

Definition 2. A feedback strategy profile u forms a subgame perfect equilibrium
(SPE) in G0(n, x(0), T ) if for each intermediate time instant t = 1, . . . , T − 1
and state x(t) the restriction of u in the subgame Gt(n, x(t), T ) still constitutes
a NE in that subgame.

We employ the dynamic-programming algorithm to determine the feedback-
equilibrium strategies of the players in multistage game G0(n, x(0), T ).
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Let (uSPE
j (t, x), uSPE

−j (t, x)), t = 0, 1, . . . , T − 1, denote a feedback SPE
solution. Then the (present-valued) value function for player j in the subgame
Gt(n, x(t), T ) takes the form

Vj(t, x) = max
uj

{ln uj + δ · Vj(t + 1, αx − uj −
∑

i�=j

uSPE
i (t, x))}, (4)

Vj(T, x) = Kj · ln x(T ). (5)

For the sake of simplicity hereinafter we will consider a game of two play-
ers (denoted j and −j) to derive equilibrium and cooperative solutions. It is
worth noting that the same approach is applicable for n-player multistage game,
implying that one can obtain similar results for the case n > 2.

We guess the following functional form of the value functions:

Vj(t, x) = Aj(t) ln x + Bj(t), t = 0, 1, . . . , T, j = 1, 2. (6)

Proposition 1. A multistage finite-horizon game G0(n = 2, x(0), T ) possesses
a unique SPE

uj(x) = α
A−j(t + 1)
ϕ(t + 1)

· x, j = 1, 2; t = 0, . . . , T − 1, (7)

where ϕ(t+1) = Aj(t+1)+A−j(t+1)+ δAj(t+1)A−j(t+1), while coefficients
Aj(t) satisfy the recurrence formula

Aj(t) = 1 + δAj(t + 1), Aj(T ) = Kj . (8)

The SPE state trajectory is

x(t + 1) =
αδAj(t + 1) · A−j(t + 1)

ϕ(t + 1)
· x(t), t = 0, . . . , T − 1. (9)

The value functions (6) represent the SPE payoffs in the subgame Gt(n =
2, x(t), T ), t = 0, . . . , T − 1, while coefficients Bj(t) satisfy the recurrence for-
mula

Bj(t) = Φj(α, δ,Aj(t + 1), A−j(t + 1), Bj(t + 1)) = ln
αA−j(t + 1)

ϕ(t + 1)

+ δ[Aj(t + 1) · ln
αδAj(t + 1) · A−j(t + 1)

ϕ(t + 1)
+ Bj(t + 1)], Bj(T ) = 0. (10)

Proof (Proof Sketch). We use the standard technique based on the dynamic
programming (see, e.g., [11] for details) and the value functions in the form (6).
Substituting value functions (6) in (4) we get

Vj(t, x) = Aj(t) ln x + Bj(t)

= max{ln uj + δ(Aj(t + 1) · ln(αx − uj − uSPE
−j (t, x)) + Bj(t + 1))}. (11)
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Using first order conditions for the interior solution we obtain linear system

1
uj

= δ
Aj(t + 1)

αx − (uj + u−j)
, j = 1, 2,

which has a unique solution (7). Hence, corresponding state trajectory is given
by (9).

Further, we substitute functions (7) in (11) and compare the coefficients in
the left- and right-hand sides. Straightforward calculation yields the recurrence
formulae (8) and (10), that could be used to compute (backward in time) all the
characteristics of the SPE scenario. �

Remark 1. One can prove that multistage finite-horizon game G0(n, x(0), T ),
n > 2, still possesses a unique SPE, and moreover, the feedback equilibrium
strategies uj(x) are proportional to x.

Remark 2. Recurrence formulae (8) and (10) are sufficient and convenient to
calculate all the value functions (6) coefficients. However, we can provide explicit
formulae for Aj(t) and Bj(t), t = 0, 1, . . . , T, j = 1, 2. Namely,

Aj(t) = δT−t · Kj +
T∑

τ=t+1

δT−τ , t = 0, 1, . . . , T − 1, Aj(T ) = Kj . (12)

To simplify (10) we’ll use the following notations:

L1(t + 1) = ln
αA−j(t + 1)

ϕ(t + 1)
, L2(t + 1) = ln

αδAj(t + 1) · A−j(t + 1)
ϕ(t + 1)

.

Then, having all the coefficients Aj(t), t = 0, 1, . . . , T, j = 1, 2, one can
use the following explicit formulae to calculate Bj(t):

Bj(t) =
T∑

τ=t+1

δτ−(t+1) ·[L1(τ)+δAj(τ)·L2(τ)], t = 0, . . . , T −1, Bj(T ) = 0. (13)

3 Cooperative Behavior β-S-P Core

Given nonempty coalition S ⊂ N , the induced multistage game G0
S(n − |S| +

1, x(0), T ) describes the case when coalition S becomes a new player, i.e. all the
players in S fully coordinate their strategies to maximize the total payoff of S

HS(·) =
T−1∑

τ=0

δτ ln
∑

j∈S

uj(τ) +
∑

j∈S

Kj · δT ln x(T ). (14)

Denote by γ(S, t, x) the SPE payoff of coalition S in the induced subgame
Gt

S(n − |S| + 1, x(t), T ), t = 0, . . . , T − 1. Note that for n = 2 the values
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γ({j}, t, x), j = 1, 2; t = 0, . . . , T−1 are given by (6), (8) and (10) in accordance
to Prop. 1.

Now consider the fully cooperative solution when all the players cooperate
to reach the maximal total payoff

HN (·) =
T−1∑

τ=0

δτ ln u(τ) + K · δT ln x(T ), (15)

where
u(τ) =

∑

j∈N

uj(τ), K =
∑

j∈N

Kj .

Again we suppose the log-linear form of the value function:

V (t, x) = A(t) · ln x + B(t), t = 0, 1, . . . , T. (16)

Proposition 2. A multistage finite-horizon game G0(n = 2, x(0), T ) possesses
a cooperative solution

u(x) =
α

1 + δA(t + 1)
· x, t = 0, . . . , T − 1, (17)

while coefficients A(t) satisfy recurrence formula

A(t) = 1 + δA(t + 1), A(T ) = K. (18)

The cooperative state trajectory is

x(t + 1) =
αδA(t + 1)

1 + δA(t + 1)
· x(t), t = 0, . . . , T − 1. (19)

The value function (16) determines the cooperative payoff in the subgame
Gt(n = 2, x(t), T ), t = 0, . . . , T − 1, while coefficients B(t) are given by the
recurrence formula

B(t) = ln
α

1 + δA(t + 1)
+δA(t+1) ln

αδA(t + 1)
1 + δA(t + 1)

+δB(t+1), B(T ) = 0. (20)

The proof based on the dynamic-programming method is similar to the proof
of Prop. 1.

Note that the explicit formulae for A(t) and B(t) similar to (12) and (13)
could be provided, although recurrence formulae (18) and (20) are more conve-
nient to calculate value functions (16).

Remark 3. By construction, the cooperative payoff in any subgame Gt(n =
2, x(t), T ), t = 0, . . . , T − 1, is greater than or equal to the sum of players’
SPE payoffs in this subgame.
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We assume in the paper the transferable utility case, i.e., any payoff trans-
fers between the players are allowed. Let ω̄ = (x(0) = x̄(0), . . . , x̄(t), . . . , x̄(T ))
denote a cooperative trajectory (19) whereas ū(x̄(t)) denote a cooperative total
extraction level in period t which is determined by (17), (18).

A vector (pt
1, . . . , p

t
n) such that

∑

i∈N

pt
i = V (t, x̄(t)) (21)

specifies a possible sharing rule to distribute the total cooperative (subgame)
payoff between the players and could be considered as a cooperative solution for
the subgame Gt(n, x̄(t), T ).

Definition 3. Vectors βi(ω̄) = (βi(x̄(τ))), τ = 0, . . . , T ; i = 1, . . . , n denote
the Payoff Distribution Procedure (PDP) for cooperative solution (p01, . . . , p

0
n) if

p0i =
T∑

τ=0

δτβi(x̄(τ)). (22)

The PDP based approach firstly introduced in [25] for differential games
implies that all the players have agreed to distribute the total cooperative payoff
in G0(n, x(0), T ) according to vector (p01, . . . , p

0
n) and, in addition, to allocate

each player’s cooperative payoff p0i along the cooperative trajectory ω̄ in accor-
dance with some payment schedule (namely, PDP β). Then, βi(x̄(τ)) denotes
the actual current payment that the i-th player should get at time τ when the
players use PDP β under cooperative scenario.

We adopt in the paper the following assumptions about the players non-
cooperative behavior if a cooperative agreement is broken down at some inter-
mediate time constant t = 0, . . . , T − 1, because of some coalition S deviation
from cooperative scenario (17):

– all the players j ∈ N \S form singletons and switch (immediately and forever)
to non-cooperative (that is, SPE) behavior scheme in a subgame Gt(n, x̄(t), T )
- see, e.g. [7,10] for discussion;

– the maximal guaranteed payoff a coalition S could expect in Gt(n, x̄(t), T ) in

case of its deviation equals to γ(S, t, x̄(t)) instead of
T∑

τ=t
δτ−tβS(x̄(τ)), where

βS(x̄(τ)) =
∑

j∈S βj(x̄(τ)).

Definition 4. A PDP β = (βi(x̄(τ))), i = 1, . . . , n; τ = 0, . . . , T belongs to
the β-Subgame-Perfect Core (β-S-P Core) of the multistage finite-horizon game
G0(n, x(0), T ) if for each nonempty coalition S ⊂ N and each intermediate time
instant t = 0, . . . , T − 1 the following inequality holds

T∑

τ=t

δτ−tβS(x̄(τ)) � γ(S, t, x̄(t)). (23)
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Inequality (23) means that no coalition S ⊂ N has an incentive to deviate
from cooperative agreement (i.e. cooperative strategies (17) and PDP β) at each
subgame Gt(n, x̄(t), T ), t = 0, . . . , T − 1 along the cooperative trajectory ω̄.
Moreover, as it follows from (21), (22) and Prop. 2 constraint (23) is binding for
S = N , and

T∑

τ=t

δτ−tβN (x̄(τ)) = V (t, x̄(t)) = A(t) ln x̄(t) + B(t), (24)

where coefficients A(t), B(t) meet (18), (20).
Remark 3 implies that the following proposition holds (at least for two-person

game).

Proposition 3. β-Subgame-Perfect Core of a multistage finite-horizon game
G0(2, x(0), T ) is non-empty.

Remark 4. The n × (T + 1) components βj(x̄τ ) of the PDP β from β-S-P Core
have to satisfy a system of non-strict linear inequalities (23) and linear equa-
tions (22). Hence, a non-empty β-S-P Core for multistage finite-horizon game
G0(n, x(0), T ) is a convex closed polytope Δ in Rn×(T+1).

The next advantageous property ensures that PDP β could be implemented
without any loans or credits since at each stage the players redistribute exactly
what they have gained at this stage in accordance with the cooperative scenario
(see, e.g., [13,16,26]).

Definition 5. A payoff distribution procedure β satisfies the strict balance con-
straints if

∑

j∈N

βj(x̄(τ)) = ln ū(x̄(τ)), τ = 0, . . . , T −1;
∑

j∈N

βj(x̄(T )) = K · ln x̄(T ). (25)

4 An Algorithm for Choosing Unique PDP from β-S-P
Core

To choose a unique PDP β from the β-S-P Core one can adopt, for instance,
maxmin relative benefit from cooperation (maxmin RBC) approach introduced
in [17].

If we apply this approach to multistage finite-horizon game G0(n, x(0), T )
and focus on the case when γ({i}, 0, x̄(0)) > 0, i ∈ N , we need to solve the
following optimization problem

max
β∈Δ

min
i∈N

p0i − γ({i}, 0, x̄(0))
γ({i}, 0, x̄(0))

(26)

and then distribute each player i’s cooperative payoff p0i =
T∑

τ=0
δτβi(x̄(τ)) along

the cooperative trajectory in such a way that PDP β meets (23) and (25). One
can use the relative benefit from cooperation in (26) to measure the so-called
Value of Cooperation (see, e.g., [8]).
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Remark 5. Note that for two-player game problem (26) takes the following sim-
ple form

p01 − γ({1}, 0, x̄(0))
γ({1}, 0, x̄(0))

=
p02 − γ({2}, 0, x̄(0))

γ({2}, 0, x̄(0))
. (27)

Vector (p01, p
0
2) implies that both players reach maximal (in a sense of (26))

and equal relative benefit from the cooperation.
To determine a distribution of the players’ cooperative payoff along ω̄ in a

2-person game G0(2, x(0), T ) let us specify the following algorithm.
Algorithm (quasi proportional PDP from β-S-P Core):

1. Using Prop. 2 find a cooperative trajectory ω̄ = (x̄(0), x̄(1), . . . , x̄(T −
1), x̄(T )) and corresponding sequence of cooperative extraction levels
ū(x̄(t)), t = 0, . . . , T − 1.

2. Calculate γ({j}, t, x̄(t)), t = 0, . . . , T − 1; j = 1, 2 using (6), (8) and (10)
in accordance with Prop. 1.

3. Solve (27) and (21) to obtain p01 and p02.
4. Using strict balance constraints (25) and inequalities (23) write the system of

double inequalities for
T∑

τ=t
δτ−tβ1(x̄(τ)), t = T − 1, T − 2, . . . , 1 in the form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

cT−1
1 � β1(x̄(T − 1)) + δ · β1(x̄(T )) � CT−1

1
...
ct
1 � β1(x̄(t)) + δ · β1(x̄(t + 1)) + . . . + δT−t · β1(x̄(T )) � Ct

1
...

c11 �
T∑

τ=1
δτ−1 · β1(x̄(τ)) � C1

1

, (28)

where ct
1 � Ct

1, for all t = 1, . . . , T − 1.
5. Denote by μ the first player’s part of the total cooperative payoff p0

1
p0
1+p0

2
. Then

p0
2

p0
1+p0

2
= 1 − μ. Accept β1(x̄(T )) = μ · K · ln x̄(T ).

6. Solve (28) in series assuming that in each subgame Gt(2, x̄(t), T ), t = T −
1, T −2, . . . , 1, player 1 receives exactly part μ of the admissible range (Ct

1−ct
1)

of the subgame payment. Namely,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β1(x̄(T − 1)) = cT−1
1 + μ(CT−1

1 − cT−1
1 ) − δβ1(x̄(T ))

...

β1(x̄(1)) = c11 + μ(C1
1 − c11) −

T∑
τ=2

δτ−1β1(x̄(τ))

. (29)

7. Take

β1(x̄(0) = p01 −
T∑

τ=1

δτβ1(x̄(τ)). (30)

8. Calculate β2(x̄(t)), t = 0, . . . , T , from the strict balance constraints (25).
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Remark 6. Payoff distribution procedure β specified above satisfies the following
properties:

– it belongs to the β-S-P Core of multistage game G0(2, x̄(0), T );
– the resulting cooperative solution (p01, p

0
2) maximizes the relative benefit from

cooperation (26) of the least winning player;
– it meets the strict balance constraints (25);
– PDP β implements a reasonable and subgame-consistent sharing rule in a

sense that in each intermediate state x̄(t), t = 1, . . . , T , the first player receives
the same share of the current range (Ct

1 − ct
1) of the admissible subgame

Gt(2, x̄(t), T ) payment
T∑

τ=2
δτ−1β1(x̄(τ)) as she/he is expected to obtain in the

whole game G0(2, x̄(0), T ) in accordance with cooperative solution (p01, p
0
2).

5 Numerical Example

To demonstrate the above theoretical results with a simple numerical example
let us consider a two-player multistage game of renewable resource extraction
with the following parameters values: T = 2 (t = 0, 1, 2), α = 1.5, δ = 0.95,
K1 = 1, K2 = 0.5, K = K1 + K2 = 1.5. The SPE strategies of the players are
given by formulae (7) and (8). Cooperative strategy ū is defined by (17) and (18).
All strategies linearly depend on the initial state x0 (see Table 1). The relative
values of these strategies at time instants t = 0 and t = 1 (current extraction
levels divided by x̄0) are presented in Fig. 1 and connected by a dashed lines for
visual clarity. The state trajectory generated by the subgame perfect equilibrium
and the cooperative state trajectory are calculated using formulae (9) and (19),
respectively. The results (current values of the resource divided by x0) are given
in Table 2 and presented in Fig. 2.

Table 1. SPE strategies and cooperative strategy

t uSPE
1 uSPE

2 uCoop

0 0.3593 · x0 0.475 · x0 0.454 · x0

1 0.2528 · x0 0.5056 · x0 0.647 · x0

To compare the sum of the players’ SPE payoffs (6) and the cooperative payoff
(16) in the whole game G0(2, x̄(0), T ) and in the subgames Gt(2, x̄(t), T ), t = 1, 2,
along the cooperative trajectory we fix initial state x0 = e1.5 ≈ 4.4817. The
results are presented in Table 3.
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Fig. 1. SPE strategies – for the first player (red), for the second player (green), coop-
erative strategy (blue). (Color figure online)

Table 2. SPE trajectory and cooperative trajectory

t xSPE/x0 xCoop/x0

0 1 1

1 0.6656 1.046

2 0.2401 0.922

Table 3. Sum of the players’ SPE payoffs versus cooperative payoff along cooperative
trajectory

t V1(t, x̄(t)) + V2(t, x̄(t)) V (t, x̄(t))

0 2.227 3.642

1 2.595 3.086

2 2.128 2.128

Following the algorithm and using (21) and (27) we receive conditions on
p01, p

0
2:

p01 − 0.66
0.66

=
p02 − 1.56

1.56
, p01 + p02 = 3.64,

from where we get p01 = 1.08, p02 = 2.56. Then, system of inequalities (28) takes
the following form:

1.076 � β1(x̄(1)) + 0.95 · β1(x̄(2)) � 1.567.
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Fig. 2. SPE (red) and cooperative (blue) state trajectories. (Color figure online)

Coefficient μ is equal to 0,297 for this game. Further, using (29), (30) and the
strict balance constraints (25) we obtain quasi proportional PDP from β-S-P
Core:

βi(x̄(0)) βi(x̄(1)) βi(x̄(2))

i = 1 −0.079 0.621 0.632

i = 2 0.789 0.443 1.496

Note that a negative payment to some player in accordance with (30) can
only arise in the initial state of a multistage game (when the players just enter
into a cooperative agreement).

6 Concluding Remarks

It is worth noting that if we multiply both sides of inequality (23) by δt and

then add
t−1∑
τ=0

δτβS(x̄(τ)), the LHS of the resulting inequality represents the total

payoff of coalition S (estimated at the initial time instant t = 0 under assump-
tion that all the players will use cooperative strategies and implement PDP
β throughout the game evolution). Whereas the RHS is an estimation of the
coalition S payoff that corresponds to the specific combined type of the players’
behavior (namely, all the players cooperate from the beginning till some inter-
mediate time instant t and then switch to non-cooperative mode in the induced
subgame Gt

S(n − |S| + 1, x̄(t), T )). Hence, inequalities (23) in the β-S-P Core
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definition for multistage games could be considered a condition for subgame
consistency (see,e.g., [14,16,26,32]) of cooperative agreement as well as of this
agreement implementation process via PDP β.

A novel quasi proportional PDP introduced in the paper always belongs
to the β-S-P Core and has several good properties. However, it is surely of
interest to consider other approaches for the β-S-P Core refinement as well as to
study and compare properties of these cooperative solutions. An open question
is whether the β-S-P Core concept could be adapted to the analysis of formalized
dynamic models of ideological controversy and conflicts.
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Abstract. In the presented paper, we consider dynamic network games
with partner sets in which players cooperate to get the best outcomes.
Using the game structure the two-level cooperative scheme is introduced.
On the first level, the partner sets are considered as players, and the
cooperative behavior is used in the game with partner sets, it is assumed
that partners intend to maximize their joint payoff and then distribute
it using a given optimality principle as usual in cooperative game theory.
On the second level, the gain obtained by each player (partner set) is
distributed among members of this partner set. The distribution of this
gain is also made based on solution concepts from classical cooperative
game theory. Since the game is dynamic the problem of time-consistency
(dynamic stability) of the proposed two-level solution arises. To simplify
the calculations the new characteristic function is introduced based on
the possibility of cutting connections by players outside the coalition.
Also, this newly defined characteristic function allows construction of
time-consistent (dynamically stable) solutions.

Keywords: Dynamic network game · Partner set · Shapley value

1 Introduction

Dynamic network games with partner sets in which players cooperate to get
the best outcomes is a topic of ongoing research (see Cao at al. (1963) [2],
Pai (2010) [7], Zhang at al. (2018) [18], Meza and Lopez-Barrientos (2016) [5],
Bulgakova, Petrosyan (2019) [1]). Cooperation in dynamic network games and
deferent solutions of cooperative dynamic network games are also considered
in papers Petrosyan (2010) [9], Gao and Pankratova (2017) [3], and the papers
of Petrosyan and Yeung (2016), (2020) [15,17] where the new characteristic
function in differential cooperative network game was introduced in a special
case when the payoffs of players depend only upon their actions and actions
of neighbors in the network. Different properties of the cooperative solutions of
dynamic network games are investigated in [13,14,16]. In the paper [19], the
differential games on networks with partner sets are considered. In such games,
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player’s payoff depend upon the payoffs of players from his partner set. It is
supposed that one player can belong to many partner sets.

In this paper, we consider the differential network game with a new coop-
eration structure, namely the two-level cooperative scheme. On the first level,
the partner sets are considered as players. It is assumed that partners intend
to maximize their joint payoff and then distribute it using a given optimality
principle. On the second level, the gain obtained by each player (partner set) is
distributed among members of this partner set. We find the Shapley value on
both levels of the game. Based on this the new solution concept is introduced.

2 Class of Differential Network Games

Consider a class of n-person differential games on network with game horizon
[t0, T ]. The players are connected in a network system. We use N = {1, 2, · · · , n}
to denote the set of players in the network. The nodes of the network are used to
represent the players from the set N . We also denote the set of nodes by N and
denote the set of all arcs in network N by L. The arcs in L are the arc (i, j) ∈ L
for players i, j ∈ N , i �= j. For notational convenience, we denote the set of
players connected to player i as K̃(i) = {j : arc(i, j) ∈ L}, for i ∈ N .

We suppose also that a family of subsets M1, . . . ,Mk, . . . ,Ml, k = 1, . . . , l,
Ml ∩ Mr = ∅, r �= l of the set N is given. It is supposed that |Mk| ≥ 2, and
for all i ∈ N there exist l ∈ N , such that i ∈ Ml. Also for each two nodes
z1 ∈ Mk, z2 ∈ Mk there exist a path connecting z1 and z2 in Mk. The sets
M1, . . . ,Mk, . . . ,Ml are called “partner” sets.

Let xi(τ) ∈ Rm be the state variable of player i ∈ N at time τ , and ui(τ) ∈
U i ⊂ Rk the control variable of player i ∈ N .

Every player i ∈ N can cut the connection with any other player from the
set Mk at any instant of time.

The state dynamics of the game is

ẋi(τ) = f i(xi(τ), ui(τ)), xi(t0) = xi
0, for τ ∈ [t0, T ] and i ∈ N. (1)

The function f i(xi, ui) is continuously differentiable in xi and ui.
The payoff function of player i depends upon his state variable, his own

control variable and the state variables of players from the sets K̃(i).
In particular, the payoff of player i is given as

Hi(x1
0, . . . , x

n
0 , u1, . . . , un)

=
∑

j∈K̃(i)

∫ T

t0

hj
i (x

i(τ), xj(τ))dτ. (2)

The term hj
i (x

i(τ), xj(τ)) is the instantaneous gain that player i can obtain
through network links with player j ∈ K̃(i) (note that the pair (i, i) /∈ L).
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The functions hj
i (x

i(τ), xj(τ)), for j ∈ Mk are non-negative. For notational
convenience, we use x(t) to denote the vector (x1(t), x2(t), · · · , xn(t)).

Since the set N is finite the sum in (2) contains a finite number of summands
≤ |N |.

2.1 Game with Players (Partner Sets) M = (M1, . . . ,Mk, . . . ,Ml)

In this section, we consider the game between players Mk ⊂ N (subsets of
players from the player set N , or partner sets), where Mk ∩ Mj = ∅, k �= j and
∪l
k=1Mk = N .

Consider the cooperative version of this game. The control variable of player
Mk, k = 1, . . . , l is defined as vector ui(t) = (ui(t), i ∈ Mk), and the state
variable of Mk is defined as

xk(t) = (xi(t), i ∈ Mk). (3)

The payoff function of Mk is given as

Hk(x1
0, . . . , x

n
0 , u1, . . . , un) =

∑

i∈Mk

Hi(x1
0, . . . , x

n
0 , u1, . . . , un)

=
∑

i∈Mk

⎛

⎝
∑

j∈K̃(i)

∫ T

t0

hj
i (x

i(τ), xj(τ))dτ

⎞

⎠

To achieve group optimality, the players maximize their joint payoff

l∑

k=1

∑

i∈Mk

⎛

⎝
∑

j∈K̃(i)

∫ T

t0

hj
i (x

i(τ), xj(τ))dτ

⎞

⎠ (4)

subject to dynamics (1).

Denote by x̄(t) = (x̄1(t), x̄2(t), · · · , x̄n(t)) and by ū(t) = (ū1(t), ū2(t), · · · ,
ūn(t)) the optimal cooperative trajectory and the optimal cooperative control in
the problem of maximization (4) subject to (1). The maximized joint cooperative
payoff V (x0, t0, N) involving all players can then be expressed as

l∑

k=1

∑

i∈Mk

⎛

⎝
∑

j∈K̃(i)

∫ T

t0

hj
i (x̄

i(τ), x̄j(τ))dτ

⎞

⎠

= max
u1,u2,··· ,un

l∑

k=1

∑

i∈Mk

⎛

⎝
∑

j∈K̃(i)

∫ T

t0

hj
i (x

i(τ), xj(τ))dτ

⎞

⎠ (5)

subject to dynamics (1).
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Next, we consider distributing the cooperative payoff to the participating
partner sets (M1, . . . ,Mk, . . . ,Ml) under an agreeable scheme. Given that the
contributions of an individual player to the joint payoff through linked players
can be diverse, the Shapley value (1953) [11] provides one of the best solutions
in attributing a fair gain to each player in a complex network. One of the con-
tentious issues in using the Shapley value is the determination of the worth of
subsets of players (characteristic function).

In this section, we present a new formulation of the worth of coalition S ⊂
M = {M1, . . . ,Mk, . . . ,Ml}. Let L = {1, . . . , k, . . . , l} and S ⊂ L. In computing
the values of characteristic function for coalitions, we evaluate contributions of
the players in the process of cooperation and maintain the cooperative strategies
for all players along the cooperative trajectory. In particular, we evaluate the
worth of the coalitions (S ⊂ L) along the cooperative trajectory as

V (S;x0, T − t0) =
∑

k∈S

∑

i∈Mk

⎛

⎝
∑

j∈K̃(i)∩(∪k∈SMk)

∫ T

t0

hj
i (x̄

i(τ), x̄j(τ))dτ

⎞

⎠ . (6)

Note that the worth of coalition S is measured by the sum of payoffs of the players
Mk in the coalition in the cooperation process with the exclusion of the gains
from players outside coalition S. Thus, the characteristic function reflecting the
worth of coalition S in (6) is formulated along the cooperative trajectory x̄(t).

Similarly, the characteristic function at time t ∈ [t0, T ] can be evaluated as

V (S; x̄(t), T − t) =
∑

k∈S

∑

i∈Mk

⎛

⎝
∑

j∈K̃(i)∩(∪k∈SMk)

∫ T

t

hj
i (x̄

i(τ), x̄j(τ))dτ

⎞

⎠ . (7)

Proposition 1. The characteristic function defined by (6) and (7) is convex.

The proof is similar to one in [19,20] This also means that the core of the
game is not empty and the Shapley value belongs to the core.

From (6), (7) we get

V (S;x0, T − t0) =
∑

k∈S

∑

i∈Mk

∑

K̃(i)∩(∪k∈SMk)

∫ t

t0

hj
i (x̄

i(τ), x̄j(τ))dτ

+
∑

k∈S

∑

i∈Mk

(
∑

j∈K̃(i)∩(∪k∈SMk)

∫ T

t

hj
i (x̄(τ), x̄j(τ))dτ)

=
∑

k∈S

∑

i∈Mk

(
∑

j∈K̃(i)∩(∪k∈SMk)

∫ t

t0

hj
i (x̄

i(τ), x̄j(τ))dτ)) + V (S; x̄(t), T − t) (8)

The Eq. (8) can be interpreted as time-consistency property of introduced char-
acteristic function.
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In our case, the worth of coalitions is measured under the process of cooper-
ation instead of under min-max confrontation or Nash non-cooperative stance.
And, any individual player or coalition attempting to act independently will
have the links to other players in the network being cut off.

Because of this players outside S in worst case will cut connection with players
from S, and players from S will get positive payoffs only interacting with other
players from S.

3 Dynamic Shapley Value

In this section, we develop a dynamic Shapley value imputation using the defined
characteristic function.

Now, we consider allocating the grand coalition cooperative network gain to
individual players according to the Shapley value imputation. Player i’s payoff
under cooperation would become

Shi(x0, T − t0) =
∑

S⊂N,
S�i

(|S| − 1)!(n − |S|)!
n!

× [V (S;x0, T − t0) − V (S\{i};x0, T − t0)], (9)

for i ∈ N .
Invoking (6), in our case, we can obtain the cooperative payoff of player

i ∈ L = {1, . . . , k, . . . , l} under the Shapley value as

Shi(x0, T − t0) =
∑

S⊂L
S�i

(|S| − 1)!(n − |S|)!
n!

×
⎧
⎨

⎩
∑

m∈S

∑

k∈Mm

⎛

⎝
∑

j∈K̃(k)∩(∪m∈SMm)

∫ T

t0

hj
k(x̄

k(τ), x̄j(τ))dτ

⎞

⎠

−
∑

m∈S\{i}

∑

k∈Mm

⎛

⎝
∑

j∈K̃(k)∩(∪m∈S\{i}Mm)

∫ T

t0

hj
k(x̄

k(τ), x̄j(τ)]dτ

⎞

⎠

⎫
⎬

⎭ , S ⊂ L.

(10)
However, in a dynamic framework, the agreed upon optimality principle for

sharing the gain has to be maintained throughout the cooperation duration
(see Yeung and Petrosyan (2004 and 2016) [14,15]) for a dynamically consistent
solution. Applying the Shapley value imputation in (11) to any time instance
t ∈ [t0, T ], we obtain:

Shi(x̄(t), T − t) =
∑

S⊂L
S�i

(|S| − 1)!(n − |S|)!
n!
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×
⎧
⎨

⎩
∑

m:∈S

∑

k∈Mm

⎛

⎝
∑

j∈K̃(k)∩(∪m∈SMm)

∫ T

t

hj
k(x̄

k(τ), x̄j(τ))dτ

⎞

⎠

−
∑

m∈S\{i}

∑

k∈Mm

⎛

⎝
∑

j∈K̃(k)∩(∪m∈S\{i}Mm)

∫ T

t

hj
k(x̄

k(τ), x̄j(τ)]dτ

⎞

⎠

⎫
⎬

⎭ (11)

The Shapley value imputation in (10)–(11) is based on characteristic func-
tion evaluates along the optimal cooperative trajectory, and it attributes the
contributions of the players under the optimal cooperation process. Indeed, it
can be regarded as optimal trajectory dynamic Shapley value. In addition, this
Shapley value imputation (10)–(11) fulfils the property of time consistency.

Proposition 2. The Shapley value imputation in (10)–(11) satisfies the time
consistency property.

Proof. By direct computation we get.

Shi(x0, T − t0) =
∑

S⊂L
S�i

(|S| − 1)!(n − |S|)!
n!

×
⎧
⎨

⎩
∑

m∈S

∑

k∈Mm

⎛

⎝
∑

j∈K̃(k)∩(∪m∈SMm)

∫ t

t0

hj
i (x̄

i(τ), x̄j(τ))dτ

⎞

⎠

−
∑

l∈S\{i}

l∑

k=1

⎛

⎝
∑

j∈K̃(k)∩(∪m∈S\{i}Mm)

∫ t

t0

hj
k(x̄

k(τ), x̄j(τ)]dτ

⎞

⎠

⎫
⎬

⎭

+Shi(x̄(t), T − t) = i ∈ N,

which exhibits the time consistency property of the Shapley value imputation
Shi(x̄(t), T − t), for t ∈ [t0, T ].

We see that a Shapley value measure itself in a dynamic framework fulfils
the property of time consistency (see existing dynamic Shapley value measures
which do not share this property in Gromova (2016) [4], Petrosyan and Zaccour
(2003) [10], Yeung (2010) [13], Yeung and Petrsoyan (2016 and 2018) [15,16]).

4 Game Inside the Partner Set Mk, k = 1, . . . , l

Consider now cooperative game with players i ∈ Mk belonging to one partner
set Mk. In this game, it is supposed that player i ∈ Mk interacts only with
players j ∈ Mk\{i}.
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Thus the payoff function of player i ∈ Mk has the form

∑

j∈K̃(i)∩Mk

∫ T

t0

hj
i (x

i(τ), xj(τ))dτ,

where xi(τ), xj(τ) are solutions of (1).
In this case, the cooperative behaviour of players from Mk means the maxi-

mization of the sum

∑

i∈Mk

∑

j∈K̃(i)∩Mk

∫ T

t0

hj
i (x

i(τ), xj(τ))dτ

Denote by ¯̄x(t) = (¯̄xi(t), i ∈ Mk) the corresponding optimal cooperative
trajectory

∑

i∈Mk

∑

j∈K̃(i)∩Mk

∫ T

t0

hj
i (¯̄x

i(τ), ¯̄xj(τ))dτ

= max
ui,i∈Mk

∑

i∈Mk

∑

j∈K̃(i)∩Mk

∫ T

t0

hj
i (x

i(τ), xj(τ))dτ = W (Mk, T − t0)

subject to dynamic (1).
Next, we consider distributing the cooperative payoff to the participating

players i ∈ Mk under an agreeable scheme. Given that the contributions of an
individual player to the joint payoff through linked players can be diverse, the
Shapley value provides one of the best solutions in attributing a fair gain to each
player in a complex network. One of the contentious issues in using the Shap-
ley value is the determination of the worth of subsets of players (characteristic
function). We shall use the Shapley value as in previous case.

In computing the values of characteristic function for coalitions, before we
evaluate contributions of the players in the process of cooperation and maintain
the cooperative strategies for all players along the cooperative trajectory. In
particular, we evaluate the worth of the coalitions S ⊂ Mk along the cooperative
trajectory as

V Mk(S;x0, T − t0) =
∑

i∈S

⎛

⎝
∑

j∈K̃(i)∩S

∫ T

t0

hj
i (¯̄x

i(τ), ¯̄xj(τ))dτ

⎞

⎠ . (12)

Note that the worth of coalition S is measured by the sum of players payoffs
from the set S ⊂ Mk in the cooperation process with the exclusion of gains from
players outside coalition S. Thus, the characteristic function reflecting the worth
of coalition S in (12) is formulated along the cooperative trajectory ¯̄x(t).

Similarly, the characteristic function at time t ∈ [t0, T ] can be evaluated as

V Mk(S; ¯̄x(t), T − t) =
∑

i∈S

⎛

⎝
∑

j∈K̃(i)∩S

∫ T

t

hj
i (¯̄x

i(τ), ¯̄xj(τ))dτ

⎞

⎠ . (13)
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An important property of the above characteristic function as a measure of
the worth of coalition in the Shapley value is given below.

Proposition 3. The characteristic function defined by (12) and (13) is convex.

From (12), (13) we get

V Mk(S;x0, T − t0) =
∑

i∈S

∑

i∈K̃(i)∩S

∫ t

t0

hj
i (¯̄x

i(τ), ¯̄xj(τ))dτ

+
∑

i∈S

(
∑

j∈K̃(i)∩S

∫ T

t

hj
i (¯̄x(τ), ¯̄xj(τ))dτ)

=
∑

i∈S

(
∑

j∈K̃(i)∩S

∫ t

t0

hj
i (¯̄x

i(τ), ¯̄xj(τ))dτ)) + V Mk(S; ¯̄x(t), T − t) (14)

The Eq. (14) can be interpreted as time-consistency property of introduced char-
acteristic function.

As before in our case the worth of coalitions is measured under the process
of cooperation instead of under min-max confrontation or Nash non-cooperative
stance. Players outside S in worst case will cut connection with players from S,
and players from S will get positive payoffs only interacting with other players
from S.

5 Dynamic Shapley Value in Game Inside the Partner
Set Mk, k = 1, . . . , l

In this section, we develop a dynamic Shapley value imputation using the defined
characteristic function.

Now, we consider allocating the grand coalition cooperative network gain
V (N ;x0, T −t0) to individual players according to the Shapley value imputation.
Player i’s payoff under cooperation would become

ShMk
i (x0, T − t0) =

∑

S⊂Mk,
S�i

(|S| − 1)!(n − |S|)!
n!

× [V Mk(S;x0, T − t0) − V Mk(S\{i};x0, T − t0)], (15)

for i ∈ N .
Invoking (14), in our case, we can obtain the cooperative payoff of player i

under the Shapley value as

ShMk
i (x0, T − t0) =

∑

S⊂Mk
S�i

(|S| − 1)!(n − |S|)!
n!
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×
⎧
⎨

⎩
∑

m∈S

⎛

⎝
∑

j∈K̃(m)∩S

∫ T

t0

hj
m(¯̄xm(τ), ¯̄xj(τ))dτ

⎞

⎠

−
∑

m∈S\{i}

⎛

⎝
∑

j∈K̃(m)∩(S\{i})

∫ T

t0

hj
m(¯̄xm(τ), ¯̄xj(τ)]dτ

⎞

⎠

⎫
⎬

⎭ . (16)

However, in a dynamic framework, the agreed upon optimality principle for
sharing the gain has to be maintained throughout the cooperation duration
(see Yeung and Petrosyan (2004 and 2016) [14,15]) for a dynamically consistent
solution. Applying the Shapley value imputation in (17) to any time instance
t ∈ [t0, T ], we obtain:

ShMk
i (x̄(t), T − t) =

∑

S⊂Mk
S�i

(|S| − 1)!(n − |S|)!
n!

×
⎧
⎨

⎩
∑

m∈S

⎛

⎝
∑

j∈K̃(m)∩S

∫ T

t

hj
m(¯̄xm(τ), ¯̄xj(τ))dτ

⎞

⎠

−
∑

m∈S\{i}

⎛

⎝
∑

j∈K̃(m)∩(S\{i})

∫ T

t

hj
m(¯̄xm(τ), ¯̄xj(τ)]dτ

⎞

⎠

⎫
⎬

⎭ (17)

.

6 The Solution Under the Two Level Cooperation

Let Shk(x0, T − t0) defined by (11) be the amount of the joint gain of partner
sets {M1, . . . ,Ml} given to the partner set (player on the first level) Mk. And
let ShMk

i be the amount given to the player i ∈ Mk under the cooperation when
players from Mk play independent of players from other partner sets.

Introduce the following notation

βik =
ShMk

i (x0, T − t0)∑
i∈Mk

ShMk
i (x0, T − t0)

. (18)

Let the amount prescribed to player i ∈ N ∩ Mk under two level cooperation be
equal to

γi(x0, T − t0) = βikShk(x0, T − t0). (19)

Similarly, the amount prescribed to player i ∈ N ∩ Mk at time t under two
level cooperation be equal to

γi(x̄(t), T − t) = βikShk(x̄(t), T − t).

If we keep βik independent from t ∈ [t0, T ] the proposed solution concept
will be time-consistent as Sh = {Shk}, k = 1, . . . , l is time-consistent solution
in the game between partner sets.
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7 Example

For simplicity in notation, we denote the gain that player i can obtain through
the network link with player j ∈ K̃(i) as

αij(x0, T − t0) =
∫ T

t0

hj
i (x̄

i(τ), x̄j(τ))dτ, (20)

αk
ij(x0, T − t0) =

∫ T

t0

hj
i (¯̄x

i(τ), ¯̄xj(τ))dτ. (21)

Using (20), (21) we can rewrite the expression of characteristic functions in
the following form

V (S;x0, T − t0) =
∑

k∈S

∑

i∈Mk

⎛

⎝
∑

j∈K̃(i)∩(∪k∈SMk)

αij(x0, T − t0)

⎞

⎠ , (22)

V Mk(S;x0, T − t0) =
∑

i∈S

⎛

⎝
∑

j∈K̃(i)∩S

αk
ij(x0, T − t0)

⎞

⎠ . (23)

Introduce additional notations before considering the example.

αij(x0, T − t0) + αji(x0, T − t0) = αij + αji = Aij = Aji = A(i, j)

and

αk
ij(x0, T − t0) + αk

ji(x0, T − t0) = αk
ij + αk

ji = Ak
ij = Ak

ji = Ak(i, j)

Example. Consider the following 5 player network game (see Fig. 1).
First, consider the cooperative game between partner sets M1 = {1, 5}, M2 =
{2, 3, 4}, and construct the characteristic function in this 2-player game using
(6) and (20). We get

Fig. 1. 5 player network game
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V ({1}) = α15 + α51 = A(1, 5),
V ({2}) = α23 + α24 + α42 + α32 = A(2, 3) + A(2, 4),
V ({1, 2}) = α15 + α51 + α12 + α21 + α23 + α24 + α42 + α32 + α45 + α54

= A(1, 2) + A(1, 5) + A(2, 3) + A(2, 4) + A(4, 5).
Computing the Shapley value we obtain

Sh1 = A(1, 5) +
A(1, 2) + A(5, 4)

2
, Sh2 = A(2, 3) + A(2, 4) +

A(1, 2) + A(5, 4)
2

.

(24)
Now, consider cooperative game with players i ∈ Mk, k = 1, 2 belonging to

one partner set Mk and construct characteristic function using (12) and (21).
For M1 = {1, 5} characteristic function has the following form
V M1({1}) = 0,
V M1({5}) = 0,
V M1({1, 5}) = α1

15 + α1
51 = A1(1, 5).

The Shapley value in this game is equal to

ShM1
1 =

A1(1, 5)
2

, ShM1
5 =

A1(1, 5)
2

(25)

For M2 = {2, 3, 4} characteristic function has the following form
V M2({2}) = V M2({3}) = V M2({4}) = 0,
V M2({2, 3}) = α2

23 + α2
32 = A2(2, 3),

V M2({2, 4}) = α2
24 + α2

42 = A2(2, 4),
V M2({3, 4}) = 0.
V M2({2, 3, 4}) = α2

23 + α2
32 + α2

24 + α2
42 = A2(2, 3) + A2(2, 4).

The Shapley value in this game is equal to

ShM2
2 =

A2(2, 3) + A2(2, 4)
2

, ShM2
3 =

A2(2, 3)
2

, ShM2
4 =

A2(2, 4)
2

(26)

Using (18), (25), (26) we can compute βik.

β11 = Sh
M1
1∑

i∈M1
Sh

M1
i

= Sh
M1
1

V M1 ({1,5}) =
A1(1,5)

2
A1(1,5) = 1

2 ,

β22 =
ShM2

2∑
i∈M1

ShM2
i

=
ShM2

2

V M2({2, 3, 4})
=

A2(2,3)+A2(2,4)
2

A2(2, 3) + A2(2, 4)
=

1
2
,

β32 =
ShM2

3∑
i∈M1

ShM2
i

=
ShM2

3

V M2({2, 3, 4})
=

A2(2,3)
2

A2(2, 3) + A2(2, 4)

=
1
2

A2(2, 3)
A2(2, 3) + A2(2, 4)

,

β42 =
ShM2

4∑
i∈M1

ShM2
i

==
ShM2

4

V M2({2, 3, 4})
=

A2(2,4)
2

A2(2, 3) + A2(2, 4)

=
1
2

A2(2, 4)
A2(2, 3) + A2(2, 4)

,

β51 =
ShM1

5∑
i∈M1

ShM1
i

=
ShM1

5

V M1({1, 5})
=

1
2
.
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The payoff of player i, i ∈ N under two-level cooperation is equal to (see (19)).

γ1(x0, T − t0) = β11Sh1(x0, T − t0) =
1
2

·
(

A(1, 5) +
A(1, 2) + A(5, 4)

2

)
,

γ2(x0, T−t0) = β22Sh2(x0, T−t0) =
1
2
·
(

A(2, 3) + A(2, 4) +
A(1, 2) + A(5, 4)

2

)
,

γ3(x0, T − t0) = β32Sh2(x0, T − t0)

=
1
2

A2(2, 3)
A2(2, 3) + A2(2, 4)

·
(

A(2, 3) + A(2, 4) +
A(1, 2) + A(5, 4)

2

)
,

γ4(x0, T − t0) = β42Sh2(x0, T − t0)

=
1
2

A2(2, 4)
A2(2, 3) + A2(2, 4)

·
(

A(2, 3) + A(2, 4) +
A(1, 2) + A(5, 4)

2

)
,

γ5(x0, T − t0) = β51Sh1(x0, T − t0) =
1
2

·
(

A(1, 5) +
A(1, 2) + A(5, 4)

2

)
.

8 Conclusion

Differential cooperative network games with partner sets are considered. As opti-
mality principle two level cooperative solution is proposed. The proposed solu-
tion is similar to one introduced by G. Owen [6] but is easier to compute. On
the first level, players (partner sets) cooperate to get maximal joint payoff. This
payoff is then allocated between partner sets according to the Shapley value.
On the second level, players from each partner set allocate the payoff prescribed
by the corresponding component of the Shapley value between players members
from this partner set. This allocation is proportional to the components of the
Shapley value defined as a cooperative solution between players in the partner
set. The example is provided.
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Abstract. We consider a dynamic, discrete-time, game model where
many players use a common resource and have different criteria to opti-
mize. Moreover, the participants planning horizons are assumed to be
different. Multicriteria Nash and cooperative equilibria are defined via
modified bargaining schemas. To stabilize the multicriteria cooperative
solution a time-consistent payoff distribution procedure is constructed.
To illustrate the presented approaches, a dynamic bi-criteria bioresource
management problem with many players and asymmetric planning hori-
zons is investigated.

Keywords: Dynamic games · Multicriteria games · Nash bargaining
solution · Asymmetric horizons

1 Introduction

Game-theoretic models with the presence of more than one players’ objective [20]
are closer to real problems. Participants often aim to optimize several criteria,
which can be incomparable, simultaneously. For example, in renewable resource
management problems the players wish both to maximize the profit from the
resource exploitation and to minimize the costs or the harm to the environ-
ment. The multicriteria approach helps to determine an optimal behavior in such
situations.

In static multicriteria games, the solution concepts are usually based on the
Pareto set [2,20] or some convolutions of the criteria [1]. Some other approaches
for the solution have been proposed recently, including, e.g., the ideal Nash
equilibrium [22] and the E-equilibrium [13]. However, Pareto equilibrium is the
most studied solution for static multicriteria game theory.

The methods of static multicriteria games are not applicable to the dynamic
version. The construction of equilibria in dynamic games with vector payoffs
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is a little-studied problem. In the series of papers [14–17], new approaches to
obtain players’ optimal behavior in dynamic multicriteria games have been sug-
gested. The concept of multicriteria noncooperative equilibrium was formalized
in [14] combining the ideas of multi-objective optimization (nadir points [24])
and the classical concept of Nash equilibrium. The concept of Pareto optimal-
ity, most widespread in multi-objective optimization, and the Nash bargaining
approach [8,9,21] were applied to determine the cooperative strategies and pay-
offs of the players in [15]. Another method to define cooperative behavior in
dynamic multicriteria games that guarantees the fulfillment of individual ratio-
nality conditions was presented in [16,19]. For different game-theoretic resource
management problems with vector payoffs [15,17], it was shown that the coop-
erative behavior determined according to presented approaches is beneficial for
the players and, that is more important, improves the ecological situation.

As is well known, the Nash bargaining scheme is not dynamically stable
[4]. The concept of time-consistency (dynamic stability) and the notion of time-
consistent imputation distribution procedure have been introduced by Petrosyan
L.A. [11,12]. Different payoff distribution procedures, including the time-consis-
tent ones, for multicriteria multistage games were presented in [5–7]. The idea of
payoff distribution procedure was applied in [16,17,19] for dynamic multicriteria
games with finite and random horizons.

The aim of this paper is to adopt the developed approaches to the multicri-
teria dynamic game with asymmetric planning horizons. In renewable resource
management problems when the exploitation time of the participant is smaller
than that of others, the player under consideration is interested in gaining more
from exploitation process than the players that continue operation. Hence, the
solution concept should capture the possibility of the players’ leaving the game.

In [19] the dynamic multicriteria game with random planning horizon was
investigated under assumption that the exploitation time is identical for all the
players. Here the extension of this model where the players have asymmetric
planning horizons is presented.

We consider a dynamic, discrete-time, game model where many players use a
common resource and have different criteria to optimize. Moreover, the partici-
pants planning horizons are assumed to be different. To construct a multicriteria
Nash equilibrium the bargaining solution is adopted [14]. To design a multicri-
teria cooperative equilibrium a modified bargaining scheme [16] is applied. To
stabilize the multicriteria cooperative solution a time-consistent payoff distri-
bution procedure [17] is constructed. To illustrate the presented approaches a
dynamic bi-criteria bioresource management problem with many players and
asymmetric planning horizons is investigated.

Further exposition has the following structure. Section 2 describes the non-
cooperative and cooperative solution concepts for a multicriteria dynamic game
with many players and asymmetric horizons. The time-consistent payoff dis-
tribution procedure is presented in Sect. 2.3. A bi-criteria discrete-time game-
theoretic bioresource management model (harvesting problem) is treated in
Sect. 3. Finally, Sect. 4 provides the basic results and their discussion.
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2 Dynamic Multicriteria Game with Asymmetric
Horizons

Consider a multicriteria dynamic game in discrete time. Let N = {1, . . . , n} play-
ers exploit a common resource and each of them wishes to optimize k different
criteria. The state dynamics is in the form

xt+1 = f(xt, u1t, . . . , unt) , x1 = x , (1)

where xt ≥ 0 is the resource size at time t ≥ 0, f(xt, u1t, . . . , unt) denotes the
growth function, and uit ≥ 0 gives the exploitation rate of player i at time t,
i ∈ N .

We explore a model where the players possess heterogeneous planning hori-
zons. By assumption, the players exploit the resource during m1, . . . , mn steps,
respectively. In [19] the planning horizon was assumed to be identical for all the
players. Here, the asymmetric case is considered that can be interpreted as the
situation when the players conclude exploitation agreements with the resource
owner for different time periods. For example, the regional government gives the
license to exploit the resource in Karelian lakes for the period from one month
to several years.

For simplicity, renumber the players according to m1 ≤ . . . ≤ mn and m1 >
m0 = 0. Therefore, during the time period [mi−1,mi] n + 1 − i players exploit
the same resource stock, and the problem consists in evaluating their optimal
strategies.

Each player has k goals to optimize. The payoff functions of the players are
defined by

J1 =

⎛
⎜⎜⎜⎜⎝

J1
1 =

m1∑
t=m0+1

δtg11(xt, u1t, . . . , unt)

. . .

Jk
1 =

m1∑
t=m0+1

δtgk
1 (xt, u1t, . . . , unt)

⎞
⎟⎟⎟⎟⎠

,

J2 =

⎛
⎜⎜⎜⎜⎝

J1
2 =

m1∑
t=m0+1

δtg12(xt, u1t, . . . , unt) +
m2∑

t=m1+1
δtg12(xt, u2t, . . . , unt)

. . .

Jk
2 =

m1∑
t=m0+1

δtgk
2 (xt, u1t, . . . , unt) +

m2∑
t=m1+1

δtgk
2 (xt, u2t, . . . , unt)

⎞
⎟⎟⎟⎟⎠

,

. . . ,

Jn =

⎛
⎜⎜⎜⎜⎜⎝

J1
n =

n∑
i=1

mi∑
t=mi−1+1

δtg1n(xt, uit, . . . , unt)

. . .

Jk
n =

n∑
i=1

mi∑
t=mi−1+1

δtgk
n(xt, uit, . . . , unt)

⎞
⎟⎟⎟⎟⎟⎠

, (2)

where gj
i (·) ≥ 0 gives the instantaneous utility, i ∈ N , j = 1, . . . , k, δ ∈ (0, 1)

denotes a common discount factor and xt possesses the dynamics

xt+1 = f(xt, uit, . . . , unt) , t ∈ [mi−1 + 1,mi] , i ∈ N , x1 = x . (3)
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Here the asymmetry of the players is captured by different planning horizons;
another approach was presented in [16] where the participants possessed different
discount factors. The results of the presented paper can be extended to such a
case, but to simplify the analysis we assume that the discount factor is common.

2.1 Multicriteria Nash Equilibrium

We design the noncooperative behavior in dynamic multicriteria game with
asymmetric horizons combining the methods of multi-objective optimization and
the classical concept of Nash equilibrium [14,15]. To adopt the ideas of nadir
points or status quo points for the Nash products some worst or guaranteed
objective values of all the criteria should be determined. The possible concepts
to construct the guaranteed payoffs for the game with two players were presented
in [14]. As it was demonstrated, the variant where the guaranteed payoffs are
determined as the Nash equilibrium solutions is the best for the state of the
exploited system and profitable for the players. Therefore, for dynamic multicri-
teria game with asymmetric horizons we adopt this concept. Namely,

G
1mj

i , i ∈ N , j = 1, . . . , i, are the Nash equilibrium payoffs in the dynamic
game 〈xt, {j, . . . , n}, {Ul}n

l=j , {J1
l }n

l=j〉, t ∈ [mj−1 + 1,mj ],
. . .,
G

kmj

i , i ∈ N , j = 1, . . . , i, are the Nash equilibrium payoffs in the dynamic
game 〈xt, {j, . . . , n}, {Ul}n

l=j , {Jk
l }n

l=j〉, t ∈ [mj−1 + 1,mj ],
where the state dynamics has the form (3). It is assumed that on the last period
[mn−1,mn] where the player n exploit the stock alone the guaranteed payoffs
points are equal to zero.

The players’ payoff functions in the dynamic multicriteria game are con-
structed adopting the Nash products with the guaranteed payoffs playing the
role of the status quo points:

H1(u1t, . . . , unt) = (J1
1 − G1m1

1 ) · . . . · (Jk
1 − Gkm1

1 )

= (
m1∑

t=m0+1

δtg11(xt, u1t, . . . , unt) − G1m1
1 ) · . . . ·

·(
m1∑

t=m0+1

δtgk
1 (xt, u1t, . . . , unt) − Gkm1

1 ) , t ∈ [m0 + 1,m1] ,

H2(u1t, . . . , unt) = (J1
2 − G1m1

2 − G1m2
2 ) · . . . · (Jk

2 − Gkm1
2 − Gkm2

2 )

= (
2∑

i=1

mi∑

t=mi−1+1

δtg12(xt, uit, . . . , unt) − G1m1
2 − G1m2

2 ) · . . . ·

·(
2∑

i=1

mi∑

t=mi−1+1

δtgk
2 (xt, uit, . . . , unt) − Gkm1

2 − Gkm2
2 ) , t ∈ [m0 + 1,m2] ,

. . .

Hn(u1t, . . . , unt) = (J1
n −

n−1∑

j=1

G1mj
n ) · . . . · (Jk

n −
n−1∑

j=1

Gkmj
n )
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= (
n∑

i=1

mi∑

t=mi−1+1

δtg1n(xt, uit, . . . , unt) −
n−1∑

j=1

G1mj
n ) · . . . ·

·(
n∑

i=1

mi∑

t=mi−1+1

δtgk
n(xt, uit, . . . , unt) −

n−1∑

j=1

Gkmj
n ) , t ∈ [m0 + 1,mn] .

The multicriteria Nash equilibrium strategies are constructed in the feedback
form uN

it = uN
it (xt), i ∈ N , t ∈ [m0 + 1,mi].

Definition 1. A strategy profile uN
t = uN

t (xt) = (uN
1t, . . . , u

N
nt) is called a mul-

ticriteria Nash equilibrium [14] of the problem (2), (3) if

Hi(u
N
t ) ≥ Hi(u

N
1t, . . . , u

N
i−1 t, uit, u

N
i+1 t, . . . , u

N
nt) ∀uit ∈ Ui, i ∈ N, t ∈ [m0 + 1, mi]. (4)

Hence, in accordance with the proposed noncooperative solution concept,
the players maximize the product of all deviations of their payoffs from the
guaranteed ones.

2.2 Multicriteria Cooperative Equilibrium

An approach to determine cooperative strategies in dynamic multicriteria game
with asymmetric players was presented in [16]. This solution concept guarantees
the rationality of cooperative behavior as the cooperative payoffs of the players
are greater than or equal to the multicriteria Nash payoffs. More specifically,
the cooperative strategies and payoffs of the players are determined from the
modified bargaining solution that combines compromise programming [24] and
the Nash bargaining scheme [8,9]. The status quo points are the noncoopera-
tive payoffs obtained by the players applying the multicriteria Nash equilibrium
strategies uN

t :

JN
1 =

⎛

⎜⎜⎜⎜⎝

J1N
1 =

m1∑
t=m0+1

δtg11(x
N
t , uN

1t, . . . , u
N
nt)

. . .

JkN
1 =

m1∑
t=m0+1

δtgk
1 (xN

t , uN
1t, . . . , u

N
nt)

⎞

⎟⎟⎟⎟⎠
,

. . . ,

JN
n =

⎛

⎜⎜⎜⎜⎝

J1
n =

n∑
i=1

mi∑
t=mi−1+1

δtg1n(xN
t , uN

it , . . . , uN
nt)

. . .

Jk
n =

n∑
i=1

mi∑
t=mi−1+1

δtgk
n(xN

t , uN
it , . . . , uN

nt)

⎞

⎟⎟⎟⎟⎠
, (5)

where noncooperative trajectory xN
t possessse the dynamics

xN
t+1 = f(xN

t , uN
it , . . . , uN

nt) , t ∈ [mi−1 + 1,mi] , i = 1, . . . , n , x1 = x .
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The cooperative strategies in the feedback form uc
it = uc

it(xt), i ∈ N , t ∈
[m0 + 1,mi], and payoffs are obtained as the solution of the following problem:

(V 1c
1 − J1N

1 ) · . . . · (V kc
1 − JkN

1 ) + . . . + (V 1c
n − J1N

n ) · . . . · (V kc
n − JkN

n )

= (
m1∑

t=m0+1

δtg11(xt, u
c
1t, . . . , u

c
nt) − J1N

1 ) · . . . ·

·(
m1∑

t=m0+1

δtgk
1 (xt, u

c
1t, . . . , u

c
nt) − JkN

1 ) + . . .

+(
n∑

i=1

mi∑

t=mi−1+1

δtg1n(xt, u
c
it, . . . , u

c
nt) − J1N

n ) · . . . ·

·(
n∑

i=1

mi∑

t=mi−1+1

δtgk
n(xt, u

c
it, . . . , u

c
nt) − JkN

n )→ max
uc
1t,...,u

c
nt

, (6)

where JjN
i are the noncooperative payoffs given by (5), i ∈ N , j = 1, . . . , k,

cooperative trajectory xc
t is defined by (3) where uit = uc

it, i ∈ N .

Definition 2. A strategy profile uc
t = uc

t(xt) = (uc
1t, . . . , u

c
nt) is a rational mul-

ticriteria cooperative equilibrium [16] of problem (2), (3) if it is the solution of
problem (6).

This approach is similar to the classical cooperative solution as the players
seek to maximize the sum of their individual payoffs. The goal of each player is
to maximize the distance to the noncooperative payoffs, and to behave cooper-
atively the players aim to do it jointly.

2.3 Time-consistent Payoff Distribution Procedure

The players’ cooperative payoffs for the duration of the game can be calculated
as

Jc
i (1, x) =

⎛

⎜⎜⎜⎜⎜⎝

J1c
i (1, x) =

i∑
j=1

mj∑
t=mj−1+1

δtg1i (xc
t , u

c
it, . . . , u

c
nt)

. . .

Jkc
i (1, x) =

i∑
j=1

mj∑
t=mj−1+1

δtgk
i (xc

t , u
c
it, . . . , u

c
nt)

⎞

⎟⎟⎟⎟⎟⎠
, i ∈ N , (7)

where uc
t = (uc

1t, . . . , u
c
nt) are the cooperative strategies obtained from (6).

Similarly we determine the cooperative payoffs Jc
i (t, xc

t), i = 1, . . . , n, t ∈
[m0 + 1,mi], for every subgame started from the state xc

t at time t.
To stabilize the cooperative solution in multicriteria dynamic game with

asymmetric horizons we adopt the time-consistent payoff distribution procedure
[5,11,12,17] which main idea is to distribute the cooperative gain along the game
path. The payment to player i, i ∈ N , in all criteria at time t is defined from
the following definitions.



270 A. Rettieva

Definition 3. A vector

β(t, xt) = (β1(t, xt), . . . , βn(t, xt)) ,

where

βi(t, xt) =

⎛

⎝
β1

i (t, xt)
. . .

βk
i (t, xt)

⎞

⎠ , i ∈ N , t ∈ [m0 + 1,mi] ,

is a payoff distribution procedure (PDP) for the dynamic multicriteria game with
asymmetric horizons (2), (3), if

Jjc
i (1, x) =

mi∑

t=m0+1

δtβj
i (t, xt) , i ∈ N , j = 1, . . . , k . (8)

Definition 4. A vector β(t, xt) = (β1(t, xt), . . . , βn(t, xt)) is a time-consistent
PDP [11,12] for dynamic multicriteria game with asymmetric horizons (2), (3),
if for every t ∈ [m0 + 1,mi]

Jjc
i (1, x) =

t∑

l=m0+1

δlβj
i (l, xl) + Jjc

i (t + 1, xt+1) , i ∈ N , j = 1, . . . , k . (9)

Theorem 1. A vector β(t, xt) = (β1(t, xt), . . . , βn(t, xt)), where

βi(t, xt) = Jc
i (t, xt) − δJc

i (t + 1, xt+1) , i ∈ N , t ∈ [m0 + 1,mi] , (10)

is a time-consistent payoff distribution procedure for dynamic multicriteria game
with asymmetric horizons (2), (3).

Proof. is similar to [17].

Next, we consider a dynamic bi-criteria model with many players and differ-
ent planning horizons related with the bioresource management problem (har-
vesting) to illustrate the suggested concepts.

3 Dynamic Bi-Criteria Resource Management Problem
with Asymmetric Horizons

Consider a bi-criteria discrete-time dynamic resource management model. Let
n players (countries or firms) exploit a bioresource during m1, . . . , mn steps,
m1 ≤ . . . ≤ mn and m1 > m0 = 0. The bioresource evolves according to the
equation

xt+1 = εxt − uit − . . . − unt , t ∈ [mi−1 + 1,mi] , i ∈ N , x1 = x , (11)

where xt ≥ 0 is the resource size at time t ≥ 0, ε ≥ 1 denotes the natural birth
rate, and uit = uit(xt) ≥ 0 specifies the exploitation strategy of player i at time
t ≥ 0, i ∈ N = {1, . . . , n}.
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Each player wishes to achieve two goals: to maximize the revenue from
resource sales and to minimize the exploitation costs. Assume that the play-
ers have different market prices but the same costs that depend quadratically on
the exploitation rate. The vector payoff functions of the players take the forms

J1 =

⎛

⎜⎜⎝
J1
1 =

m1∑
t=m0+1

δtp1u1t(xt)

J2
1 = −

m1∑
t=m0+1

δtcu2
1t(xt)

⎞

⎟⎟⎠ , . . . , Jn =

⎛

⎜⎜⎝
J1

n =
mn∑

t=m0+1
δtpnunt(xt)

J2
n = −

mn∑
t=m0+1

δtcu2
nt(xt)

⎞

⎟⎟⎠ ,

(12)
where pi ≥ 0 is the market price of the resource for player i, i ∈ N , c ≥ 0
indicates the exploitation cost, and δ ∈ (0, 1) denotes the discount factor.

3.1 Multicriteria Nash Equilibrium

First, we construct the guaranteed payoff points G
1mj

i , i ∈ N , j = 1, . . . , i, as
the Nash equilibrium in the game 〈xt, {j, . . . , n}, {Ul}n

l=j , {J1
l }n

l=j〉, t ∈ [mj−1 +
1,mj ].

Applying the Bellman principle and assuming the linear form of the strategies
and value functions, we obtain the Nash equilibrium strategies

ujt = . . . = unt =
ε − 1
n − j

xt ,

and the dynamics becomes

xt+1 =
n − j + 1 − ε

n − j
xt .

Hence, on the time interval [mj−1 + 1,mj ] we can define the resource size as

xt =
(n − j + 1 − ε

n − j

)t

xmj−1+1

and xmj−1+1 can be expressed via the initial stock size x1 = x as

xmj−1+1 =
j−1∏

l=1

(n − l + 1 − ε

n − l

)ml

x .

Then the guaranteed payoff points take the form

G
1mj

i = pi

mj∑

t=mj−1+1

δtujt = piAmj
x , (13)

where

Amj
=

ε − 1
n − j

(δQj)mj+1 − (δQj)mj−1

δQj − 1

j−1∏

l=1

Qml

l , Qj =
δ(n − j + 1 − ε)

n − j
.
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Similarly, determining the Nash equilibrium in the game with the second
criteria of all players 〈xt, {j, . . . , n}, {Ul}n

l=j , {J2
l }n

l=j〉, t ∈ [mj−1,mj ], yields the
guaranteed payoffs points

G
2mj

i = −cDmj
x2 , (14)

where

Dmj
=

(δε2 − 2(n − j + 1) + ε2 S

(n − j + 1)(δε2 + εS)

)2 (δLj)2mj+1 − (δLj)mj−1

L2 − 1
(j−1∏

l=1

Lml

l

)2

,

Lj =
2ε(n − j + 1)

δε2 + εS
, S =

√
δ(δε2 − 4(n − j + 1) + 4(n − j + 1)2) .

According to Definition 1, to determine the multicriteria Nash equilibrium
of the game (11) (12) the following problem has to be solved:

p1c(
m1∑

t=m0+1

δtu1t − Am1x)(−
m1∑

t=m0+1

δtu2
1t + Dm1x

2) → max
u1t

,

. . .

pnc(
mn∑

t=m0+1

δtunt −
n−1∑

l=1

Aml
x)(−

mn∑

t=m0+1

δtu2
nt +

n−1∑

l=1

Dml
x2) → max

unt

. (15)

Proposition 1. The multicriteria Nash equilibrium strategies in problem (11),
(12) have the form uN

it = γN
it xt, i ∈ N , t ∈ [m0 + 1,mi]

γN
jt =

γN
j1

εt−1−
i−1∑
k=1

γN
k1

t−2∑
l=t−mk−1

εl−
n∑

k=i
γN

k1

t−2∑
l=0

εl

, j= i, . . . , n, t∈ [mi−1+1, mi], (16)

where the players’ strategies at the first stage are

γN
j1 =

−
j∑

l=1

Aml
+

√

(
j∑

l=1

Aml
)2 − 3

mj−1∑
k=0

δk
j∑

l=1

Dml

3
mj−1∑
k=0

δk

.

Proof. We start with the last time interval [mn−1+1,mn]. Here player n exploits
the stock alone. Lets consider the one-step game and as usual we seek the strate-
gies in linear form uN

nmn
= γnmn

x. The players n’s payoff for the first criterium
is

V 1
nmn

(γnmn
;x) = γnmn

x ,

and for the second one

V 2
nmn

(γnmn
;x) = −γ2

nmn
x2 .
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Hence, to determine the strategies for this one-step game we solve the fol-
lowing problem

(V 1
nmn

(γnmn
;x) − Amn

)(V 2
nmn

(γnmn
;x) − Gmn

)

= (γnmn
x − Amn

x)(−γ2
nmn

x2 − Gmn
x2) → max

γnmn

.

We can now consider problem (15) for the two-step game. The player n’s
objective function for the two-step game is

V 1
nmn−1(γnmn−1, γnmn

;x) = γnmn−1x + δV 1
nmn

(γnmn
; (ε − γnmn−1)x) ,

V 2
nmn−1(γnmn−1, γnmn

;x) = −γ2
nmn−1x

2 + δV 2
nmn

(γnmn
; (ε − γnmn−1)x) .

To determine the strategies for this two-step game we solve the following
problem

(V 1
nmn−1(γnmn−1, γnmn

;x) − Amn
x) ·

·(V 2
nmn−1(γnmn−1, γnmn

;x) − Gmn
x2)

= (γnmn−1x + δγnmn
(ε − γnmn−1)x − Amn

x) ·
·(−γ2

nmn−1x
2 + δγ2

nmn
(ε − γnmn−1)2x2 − Gmn

x2) → max
γnmn−1,γnmn

. (17)

By continuing the process for the mn − mn−1 + 1-step game we get the
relations for the player n’s strategies

γnt =
γN

nmn−1

εt−1 − γN
nmn−1

t−2∑
l=0

εl

, j = i, . . . , n, t ∈ [mn−1 + 1,mn] .

Lets move to the time interval [mn−2 + 1,mn−1]. Here two players (n and
n − 1) exploit the resource stock.

The player n − 1’s objective function for the mn − mn−2 + 1-step game and
the first criterium is

V 1
n−1mn−1

(γn−1mn−1 , γnmn−1 , γnmn−1+1, . . . , γnmn
;x) = γn−1mn−1x ,

and for the second one

V 2
n−1mn−1

(γn−1mn−1 , γnmn−1 , γnmn−1+1, . . . , γnmn
;x) = −γ2

n−1mn−1
x2 .

The player n’s objective functions are

V 1
nmn−1

(γn−1mn−1 , γnmn−1 , γnmn−1+1, . . . , γnmn
;x) = γnmn−1x

+δVnmn−1+1(γnmn−1 , γnmn−1+1, . . . , γnmn
; (ε − γnmn−1 − γn−1mn−1)x

= γnmn−1 + (ε − γnmn−1 − γn−1mn−1)x ·

·(δγnmn−1+1+δ2γnmn−1+2(ε−γnmn−1+1)+. . .+δmnγnmn

mn−1∏

j=mn−1+1

(ε−γnj) ,
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V 2
nmn−1

(γn−1mn−1 , γnmn−1 , γnmn−1+1, . . . , γnmn
;x) = −γ2

nmn−1
x2

+ δVnmn−1+1(γnmn−1 , γnmn−1+1, . . . , γnmn
; (ε − γnmn−1 − γn−1mn−1)x)

= −γ2
nmn−1

x2 + (ε − γnmn−1 − γn−1mn−1)
2x2 ·

·(−δγ2
nmn−1+1−δ2γ2

nmn−1+2(ε−γnmn−1+1)
2−. . .−δmnγ2

nmn

mn−1∏

j=mn−1+1

(ε−γnj)2 .

To determine noncooperative strategies for this mn − mn−2 + 1-step game
we solve the following problem

(V 1
n−1mn−1

(γn−1mn−1 , γnmn−1 , γnmn−1+1, . . . , γnmn ;x) − Amn−1x) ·
·(V 2

n−1mn−1
(γn−1mn−1 , γnmn−1 , γnmn−1+1, . . . , γnmn ;x)−Gmn−1x2)→ max

γn−1mn−1

,

(V 1
nmn−1

(γn−1mn−1 , γnmn−1 , γnmn−1+1, . . . , γnmn ;x) − (Amn−1 + Amn )x) ·
·(V 2

nmn−1
(γn−1mn−1 , γnmn−1 , γnmn−1+1, . . . , γnmn ;x)

−(Gmn−1 + Gmn )x
2) → max

γnmn−1 ,γnmn−1+1,...,γnmn

. (18)

Continuing the process from the first-order conditions we obtain the relations
(16) for the players n and n − 1’s noncooperative strategies on time interval
[mn−2 + 1,mn−1].

By applying the described scheme on each time interval [mj−1 + 1,mj ], j =
1, . . . , n − 2, we obtain the relations (16).

Corollary 1. The players with smaller planning horizon get more gain from the
exploitation process.

Proof. As the players’ strategies on each time interval [mi−1 +1,mi], i ∈ N , are
expressed via the strategies at the first stage (16) let us compare γj1 and γj+11,
j = 1, . . . , n − 1.

γj1 is the solution of the next equation

3γ2
j1

mj−1∑

k=0

δk + 2γj1

j∑

l=1

Aml
+

j∑

l=1

Gml
= 0 , (19)

while γj+11 is defined from

3γ2
j+11

mj+1−1∑

k=0

δk + 2γj+11

j+1∑

l=1

Aml
+

j+1∑

l=1

Gml
= 0 . (20)

Subtracting (20) from (19) we get

3(γ2
j1 − γ2

j+11)
mj−1∑

k=0

δk − 3γ2
j+11

mj+1−1∑

k=mj

δk − 2γj+11Amj+1 − Gmj+1 = 0 ,
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that yields

γj1 − γj+11 =

3γ2
j+11

mj+1−1∑
k=mj

δk + 2γj+11Amj+1 + Gmj+1

3(γj1 + γj+11)
mj−1∑
k=0

δk

> 0 .

Hence, on each time interval t ∈ [mi−1 + 1,mi], for i ∈ N , j = i, . . . , n,

ujt − uj+1t = (γjt − γj+1t)xt =
γj1 − γj+11

εt−1−
i−1∑
k=1

γN
k1

t−2∑
l=t−mk−1

εl−
n∑

k=i

γN
k1

t−2∑
l=0

εl

> 0,

(21)
that means that the player j with planning horizon mj exploit the stock more
intensively that the player j + l with larger planning horizon mj+l > mj , l =
1, . . . , n − j.

Corollary 2. The players exploitation rates decrease in time.

Proof. Let us consider time interval [mi−1,mi], i ∈ N , and compare ujt and
ujt+1, j = i, . . . , n:

ujt − ujt+1 = γjtxt − γjt+1xt+1 = γjtxt − γjt+1(εxt −
n∑

l=i

γltxt)

= xt(γjt − εγjt+1 + γjt+1

n∑

l=i

γlt) = xt(−γjt+1

n∑

l=i

γlt + γjt+1

n∑

l=i

γlt) = 0(22)

as

γjt − εγjt+1

=

−γj1

n∑
k=i

γk1

(εt−1−
i−1∑
k=1

γN
k1

t−2∑
l=t−mk−1

εl−
n∑

k=i
γN

k1

t−2∑
l=0

εl)(εt−
i−1∑
k=1

γN
k1

t−1∑
l=t−mk

εl−
n∑

k=i
γN

k1

t−1∑
l=0

εl)

= −γjt+1

n∑
l=i

γlt .

Hence,

γjt − γjt+1(ε −
n∑

l=i

γlt) = 0

and
γjt+1 < γjt . (23)

The same reasoning for the neighboring intervals [mi−1 + 1,mi] and [mi +
1,mi+1] leads to

γjt+mi
< γjt , j = i + 1, . . . , n , t ∈ [mi − mi−1,mi+1 − mi] .
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3.2 Cooperative Equilibrium

To construct the cooperative payoffs and strategies the modified bargaining
scheme [16] is applied. First, we have to determine the noncooperative payoffs
as the ones gained by the players using the multicriteria Nash strategies. Then,
we construct the sum of the Nash products with the noncooperative payoffs of
players acting as the status quo points.

In view of Proposition 1, the noncooperative payoffs have the forms

J1N
i (x) =

mi∑

t=m0+1

δtpiγ
N
it x ,

J2N
i (x) = −c

mi∑

t=m0+1

δt(γN
it )2x2 , i ∈ N .

In accordance with Definition 2, for designing the multicriteria cooperative
equilibrium the following problem has to be solved:

p1(
m1∑

t=m0+1

δtuc
1t − Bm1x)(−

m1∑

t=m0+1

δt(uc
1t)

2 + Km1x
2) . . .

+ pn(
mn∑

t=m0+1

δtuc
nt −

n∑

j=1

Bmj
x)(−

mn∑

t=m0+1

δt(uc
nt)

2 +
n∑

j=1

Kmj
x2)→ max

uc
1t,...,u

c
nt

,

where Bmj
=

mj∑
t=mj−1+1

δtγN
jt , Kmj

=
mj∑

t=mj−1+1
δt(γN

jt )
2, j = 1, . . . , n.

Considering the process starting from one-stage game to mn-stage, similarly
to the Proposition 1 we construct cooperative behavior.

Proposition 2. The multicriteria cooperative equilibrium strategies in problem
(11), (12) take the form uc

it = γc
itxt, i ∈ N , t ∈ [m0 + 1,mn]

γc
jt=

γc
j1

εt−1−
i−1∑
k=1

γc
k1

t−2∑
l=t−mk−1

εl−
n∑

k=i

γc
k1

t−2∑
l=0

εl

, j= i, . . . , n, t∈ [mi−1+1, mi]. (24)

where the players’ strategies at the first stage are

γc
j1 =

−
j∑

l=1

Bml
+

√

(
j∑

l=1

Bml
)2 − 3

mj−1∑
h=0

δh
j∑

l=1

Kml

3
mj−1∑
h=0

δh

.

Remark 1. As the cooperative strategies possess the similar to the noncoopera-
tive ones relations (16) the Corollaries 1 and 2 are also fulfilled for cooperative
behavior.
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Proposition 3. The time-consistent payoff distribution procedure in the prob-
lem (11), (12) takes the form

βi(t, xt) =
(

β1
i (t, xt)

β2
i (t, xt)

)
, i ∈ N , t ∈ [m0 + 1,mi] ,

where

β1
i (t, xt) = δtpiγ

c
itxt + pi(1 − δ)

mi∑

τ=t+1

δτγc
iτxτ ,

β2
i (t, x) = −cδt(γc

it)
2x2

t − c(1 − δ)
mi∑

τ=t+1

δτ (γc
iτ )2x2

τ .

Proof. Follows from Theorem 1 and the form of cooperative payoffs.

4 Conclusions

The multicriteria dynamic game with asymmetric planning horizons has been
investigated. The multicriteria Nash and cooperative equilibria have been con-
structed via the modified bargaining schemas. The proposed approaches capture
the possibility of the players’ leaving the game. We have adopted the concept of
dynamic stability for multicriteria dynamic games with different planning hori-
zons and have constructed the time-consistent payoff distribution procedure.

To illustrate the presented approaches, we have studied a bi-criteria discrete-
time bioresource management problem with asymmetric planning horizons. Mul-
ticriteria Nash and cooperative equilibria strategies as well as the time-consistent
payoff distribution procedure have been derived analytically. It was proved that
the proposed solution concepts give the players with smaller planning horizons
more gain from resource exploitation during their operation times.

The results presented in this paper can be applied in biological, economic
and other game-theoretic models with vector payoffs.
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Abstract. This paper is a contribution to the problem of sustainable
cooperation in an extensive-form game. We study an extension of the
subgame-perfect core concept to more broad class of games (when the
payoffs are defined at all nodes) which is based on the payoff distribution
procedure approach. The properties of this β-S-P Core are studied and
algorithm of its implementation in a 2-player game is provided. Using
this algorithm we construct specific payoff distribution procedure from
the β-S-P Core in an extensive-form version of the fishery-management
model with asymmetric players.
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1 Introduction

The problem of a long-term sustainable cooperation designing is an important
issue in the theory of dynamic games and their applications in economics (see,
e.g., [4,7,10,18,20,27,33] and the references therein). A recent solution called
subgame-perfect core (S-P Core) for games in extensive form (with only termi-
nal payoffs) that takes into account both sustainable cooperation motivation and
subgame perfection property [29] was proposed in [6]. When considering possible
deviations from the cooperative agreement in a subgame along the cooperative
history the S-P Core focuses only on the players which still have decision nodes
in the current subgame [6,14,15,27] (so-called “active” players). The S-P Core
consists of such distributions of the total cooperative payoff (in the correspond-
ing terminal nodes) that no active coalition can implement a joint profitable
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deviation from the cooperative agreement as a game unfolds along the coopera-
tive path. An extension of the S-P Core to specific n-person discrete-time game
of climate change with current payoffs was introduced in [4].

We provide an extension of the S-P Core concept to more general class of
extensive-form games, when the payoffs are defined at all nodes of the game tree
(such assumption is more natural when modelling different real-life situations
(see, e.g., [4,10,13,27])). This extension (called β-S-P Core) is based on designing
a certain payoff distribution procedure (PDP) β [10,26,27,33] (now the players
redistribute the current total payoff at each position in the cooperative history).
It is worth noting that PDP-based approach introduced for differential games in
[26] has been extended to various models of dynamic games (see, e.g., [8,10,21,
25,27,33]) since it provides a powerful tool to sustain a long-term cooperative
agreement. A novel solution that incorporates both the core concept and the
PDP technique was introduced in [28].

We prove that β-S-P Core satisfies several advantageous properties (see Prop.
1–2, Remark 3) for class of extensive games under consideration and provides
a useful mechanism for the players to sustain the cooperative agreement. To
choose a specific PDP from the β-S-P Core we adopt an optimization based
approach which aims to maximize the relative benefit from cooperation of the
least winning player (see, e.g., [23]). Lastly, for 2-person extensive-form game
we provide an algorithm to construct this specific PDP and consider how one
can apply the β-S-P Core concept to the analysis of an extensive-form version
of known fishery-management model with asymmetric players [2,10,18].

The rest of the paper is organised as follows. The specification of an extensive-
form game with payoffs defined at all nodes is recalled in Sect. 2. In Sect. 3
we derive the β-S-P Core definition which is based on the payoff distribution
procedure approach. The strategic and coalitional support of the β-S-P Core are
examined in Sect. 4. In addition, in Sect. 4, we introduce a rule for the β-S-P Core
refinement and provide an algorithm how to construct a specific PDP from the
β-S-P Core. We apply the suggested mechanism of sustainable cooperation in
Sect. 5 to examine a two-player asymmetric extensive-form fishery management
model. Section 6 is a conclusion.

2 Extensive-Form Game with Current Payoffs at Each
Node

We need to remind the basic notations and assumptions that are accepted in the
theory of finite extensive-form games (see, e.g., [12,15,16,27] for details). Let
N = {1, . . . , n} be the players’ set; K denotes the game tree with the original
node (root) x0 and the set of all nodes (positions) P ; S(x) denotes the set of
direct successors of intermediate node x.

Let Pi denote the finite set of decision nodes of player i (where this player
“moves”), Pi ∩ Pj = ∅, for all i, j ∈ N , i �= j, while Pn+1 = {zj}m

j=1 is the set of
terminal nodes, S(zj) = ∅ ∀zj ∈ Pn+1. Denote by ω = (x0, . . . , xt−1, xt, . . . , xT )
the trajectory in the game tree (also called the path or the history), xt−1 =
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S−1(xt), 1 ≤ t ≤ T , xT = zj ∈ Pn+1; where subscript t in xt indicates the
number of this position in the trajectory ω. Let the payoff hi(x) of the ith
player, i ∈ N be defined at all nodes x ∈ P . Lastly, we consider the case of
non-negative current payoffs, that is, hi(x) � 0 ∀i ∈ N, x ∈ P .

In the following, we use GP (n) to denote the class of extensive-form n-
player games with perfect information (see, e.g., [10,12,27] for details), where
Γ x0 ∈ GP (n) is a game with original node x0. The pure strategy ui(·) of the
ith player is a function that determines for every position x ∈ Pi the subse-
quent position ui(x) ∈ S(x) the player i is going to choose at x. Denote by
Ui the finite set of all possible strategies of the player i, while U =

∏
i∈N Ui

denote a corresponding set of strategy profiles. Each pure strategy profile u =
(u1, . . . , un) ∈ U determines a unique history ω(u) = (x0, . . . , xt, xt+1, . . . , xT ) =
(x0, x1(u), . . . , xt(u), xt+1(u), . . . , xT (u)), where xt+1 = uj(xt) ∈ S(xt) if xt ∈
Pj , 0 ≤ t ≤ T − 1, xT ∈ Pn+1, and, hence, a set of all the players’ payoffs. For
any strategy profile u the value of the player i’s payoff (objective) function is
determined as follows:

Hi(u) = h̃i(ω(u)) =
T∑

τ=0

hi(xτ (u)).

According to [10,12,27] each intermediate position xt ∈ P \ Pn+1 forms a
subgame Γ xt with the subgame tree Kxt and the subgame root xt. Let P xt

i ,
i ∈ N , denote the restriction of Pi on Kxt , while uxt

i , i ∈ N , is the restric-
tion of the ith player’s strategy ui(·) in Γ x0 on the set P xt

i . The strategy pro-
file uxt = (uxt

1 , . . . , uxt
n ) generates the history ωxt(uxt) = (xt, xt+1, . . . , xT ) =

(xt, xt+1(uxt), . . . , xT (uxt)) in the subgame and, hence, a set of the player’s pay-
offs in Γ xt :

Hxt
i (uxt) = h̃xt

i (ωxt(uxt)) =
T∑

τ=t

hi(xτ (uxt)). (1)

Note that (1) differs from the subgame payoff definition for extensive-form games
with terminal payoffs (see [12,27] for details).

Definition 1. [24] A strategy profile u = (u1, u2, . . . , un) constitutes a Nash
Equilibrium (NE) in Γ x0 ∈ GP (n) if ∀i ∈ N and for any strategy vi ∈ Ui the
following inequality holds: Hi(vi, u−i) � Hi(ui, u−i).

Definition 2. [29] A strategy profile u forms a subgame perfect equilibrium
(SPE) in Γ x0 ∈ GP (n) if ∀x ∈ P \ Pn+1 the restriction of u in the subgame
Γ x still constitutes a Nash equilibrium in the subgame, that is ux ∈ NE(Γ x).

Note that every extensive-form game Γ x0 ∈ GP (n) with payoffs defined at all
nodes possesses pure strategy SPE (see, e.g., [27]).
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3 Payoff Distribution Procedure and the Subgame-Perfect
Core Concept

Let ω̄ = ω̄(ū) = (x0 = x̄0, . . . , x̄t, . . . , x̄T ) be a cooperative trajectory, i.e.

max
u∈U

∑

i∈N

Hi(u) =
∑

i∈N

Hi(ū) =
∑

i∈N

T∑

τ=0

hi(x̄τ ) =
∑

i∈N

h̃i(ω̄). (2)

For the sake of simplicity we focus on the case when either there exists
a unique cooperative history in Γ x0 ∈ GP (n) or the players employ a specific
approach (for instance, the PRB algorithm introduced in [16]) to choose a unique
cooperative history from all the trajectories ω̄ meeting (2). Note that such an
approach should satisfy subgame consistency (see, e.g. [10,16,26,27,33]) that is
a fragment of the cooperative path in the subgame Γ x̄t , x̄t ∈ ω̄ has to remain
cooperative history in this subgame. A vector (px̄t

1 , . . . , px̄t
n ) such that

∑

i∈N

px̄t
i =

∑

i∈N

T∑

τ=t

hi(x̄τ ) =
∑

i∈N

h̃i(ω̄x̄t), (3)

determines a possible sharing rule of the aggregated cooperative (subgame) pay-
off between the players and could be interpreted as a cooperative solution recog-
nized in the subgame Γ x̄t , x̄t ∈ ω̄.

Let β = {βi(x̄τ )}, i = 1, . . . , n; τ = 0, . . . , T ; x̄τ ∈ ω̄ be the Payoff Dis-
tribution Procedure (PDP) which is designed for some cooperative solution
(p1, . . . , pn) = (px0

1 , . . . , px0
n ) (see, e.g., [10,13,26,27,33]). The PDP approach

implies that all the participants have agreed to split the aggregated coopera-
tive payoff in Γ x0 among the players according to the vector (p1, . . . , pn) and,
moreover, to allocate every player’s cooperative payoff pi along the cooperative
history ω̄ in accordance with some specific payment schedule which is called
PDP. Then, βi(x̄τ ) specifies the actual payment that the player i has to receive
at position x̄τ ∈ ω̄ instead of hi(x̄τ ) when the players use PDP β. We aim to
design such a PDP β that all the coalitions S ⊂ N will have an incentive to
follow a sharing rule (px̄t

1 , . . . , px̄t
n ) in any subgame Γ x̄t , x̄t ∈ ω̄ along the coop-

erative history. Denote by β̃i(ω̄x̄t) the total payment which the i-th player is
expected to gain in accordance with PDP β in the subgame Γ x̄t , i.e.

β̃i(ω̄x̄t) = β̃i(x̄t, x̄t+1, . . . , x̄T ) =
T∑

τ=t

βi(x̄τ ).

Consider such PDP β that satisfy the following conditions (see [13,16,26,27] for
details):

Definition 3. [16] The PDP β for the payoff vector (p1, . . . , pn) meeting (3)
satisfies the subgame efficiency property if for all x̄t ∈ ω̄ = (x̄0, . . . , x̄T ) and for
all i ∈ N

β̃i(ω̄x̄t) = px̄t
i . (4)
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Condition (4) for t = 0 (called the efficiency in the original game [16,26,27])
means that PDP β could be reasonably considered as a time schedule for the
ith player’s payoff pi allocation.

Definition 4. [13,26,27] The PDP β = {βi(x̄τ )} meets the strict balance con-
dition if for every position x̄τ ∈ ω̄, τ = 0, . . . , T

∑

i∈N

βi(x̄τ ) =
∑

i∈N

hi(x̄τ ). (5)

If (5) holds a rule β could be implemented by the players without any loans
or credits.

Remark 1. Note that if the PDP β meets the subgame efficiency condition (4)
it necessarily satisfies the strict balance constraint (5).

Lastly, we suppose that PDP β meets non-negativity condition, i.e.

βi(x̄τ ) � 0 ∀i ∈ N ∀t = 0, . . . , T. (6)

The player i is called active in Γ x if he/she still has a decision position in
Γ x, i.e. Pi ∩ Kx �= ∅ (see [6,14,15,27]). Following [6], we suppose that coalition
S ⊂ N is active at x if each player i ∈ S is active in Γ x. For each coalition
S ⊂ N that is active at position x denote by Γ x,S the induced game, which
differs from the original game Γ x only in that coalition S becomes a new player
while hS(y) =

∑

i∈S

hi(y), y ∈ P x. Lastly, we denote by γ(S;x), x ∈ P \ Pn+1,

S ⊂ N the highest possible SPE payoff of S in the induced subgame Γ x,S .
Consider a coalition S ⊂ N which follows a cooperative agreement (that is,

a PDP β is implemented at each position in the cooperative history from the
origin x̄0 till some intermediate position x̄t ∈ ω̄, 1 � t � T − 1), but decides
to break down the cooperative agreement in the subgame Γ x̄t (S is active in
Γ x̄t). Then, the highest payoff a coalition S could get in the original game Γ x0

is equal to
t−1∑

τ=0
βS(x̄τ ) + γ(S; x̄t). If we assume that

t−1∑

τ=0
βS(x̄τ ) + γ(S; x̄t) �

t−1∑

τ=0
βS(x̄τ ) +

T∑

τ=t
βS(x̄τ ), then there is no reason for any active coalition S to

deviate from the cooperative agreement at x̄t . Hence, we obtain a rather simple
conditions that ensure subgame-consistency of the cooperative scenario (S is
active coalition at x̄t) :

γ(S; x̄t) �
T∑

τ=t

βS(x̄τ ), x̄t ∈ ω̄, t = 0, . . . , T − 1. (7)

The concept of β-S-P Core was firstly introduced in [17], yet without provid-
ing the detailed analysis of its basic properties. The most important properties
of the β-S-P Core (see Proposition 1 and 2 below) are proved in this paper.
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Definition 5. [17] The set of all payoff distribution procedures β which satisfy
(4), (3), (5), (6), and (7) is called the β-subgame-perfect core (β-S-P Core) for
a game Γ x0 ∈ GP (n) in extensive form with payoffs defined at all nodes.

The concept of subgame-perfect core introduced in [6] for games in exten-
sive form with terminal payoffs implies that the players redistribute the highest
total payoffs at corresponding terminal nodes to support the cooperative sce-
nario. Note that the β-S-P Core in accordance with Def. 5 is an extension of the
subgame-perfect core concept [6] to more general class of extensive games which
allows the payoffs transfers (via appropriate PDP) in all nodes along the coop-
erative history and, hence, provides a powerful tool to sustain the cooperative
agreement. Since the properties of the payoff distribution procedure β are incor-
porated in Def. 5 one may refer to the S-P Core for the class of extensive-form
games GP (n) with payoffs defined at all nodes as the β-S-P Core or the S-P Core
that is based on the payoff distribution procedure. Note that the subgame-perfect
cooperative agreements suggested in [4] for specific discrete-time dynamic game
of climate change also imply payoff transfers between countries in each period.

4 Properties and Implementation of the β-S-P Core

If a game Γ x0 ∈ GP (n) possesses non-empty β-S-P Core then any particular
PDP β from the core generates a related extensive-form game Γ x0

β that differs
from the original game Γ x0 only in that the payoffs hi(x̄t), i ∈ N at every
position x̄t ∈ ω̄ along the cooperative history are replaced by βi(x̄t). Note that
similar approach was used earlier, in particular, in [27] to define a “regularized
game” for differential or extensive-form game with payoffs at all nodes and also
in [6] to introduce a “strategic transform” of an extensive-form game with only
terminal payoffs.

The following proposition is an extension of the Proposition 1 from [6] to
more general class of extensive games GP (n). The difference is that now we need
to adopt distinct subgame payoff definition (1) and use more general concept of
the related non-cooperative game Γ x0

β . This proposition was firstly provided (yet
without proof) in [17].

Proposition 1. Let the β-S-P Core of a game Γ x0 ∈ GP (n) in extensive form
with payoofs defined at all nodes be non-empty, while β = βi(x̄t), i ∈ N, x̄t ∈ ω̄,
is a PDP from the β-S-P Core. Then there exists a subgame-perfect equilibrium
u = (u1, . . . , un) in a related extensive-form game Γ x0

β that generates the same
(cooperative) trajectory ω̄ = (x̄0, . . . , x̄T ) with a resulting SPE players’ payoffs

vector Hi(u) =
T∑

t=0
βi(x̄t) = β̃i(ω̄), i = 1, ..., n.

Proof. Let ω̄ = ω̄(ū) = (x̄0, . . . , x̄t, x̄t+1, . . . , x̄T ) denote a unique cooperative
history in Γ x0 meeting (2) while ūi(x̄t) = x̄t+1 denote a ”correct choice” of
the i-th player in her / his decision node x̄t ∈ Pi according to the cooperative
scenario ū = (ū1, . . . , ūn).



A Novel PDP for Sustainable Cooperation in an Extensive Game 285

Given payoff distribution procedure β = {βi(x̄τ )}, i ∈ N, τ = 0, . . . , T
meeting (3)–(6) and (7) we employ a backwards induction procedure (see, for
instance, [11,27,29]) to construct a SPE u = (u1, . . . , un) in a related non-
cooperative game Γ x0

β . Note that for any intermediate node x ∈ P \ Pn+1 apart
from the cooperative history (i.e., x /∈ ω̄) the subgame Γ x

β and Γ x coincide since
a replacing of the payoffs in x̄t, x̄t ∈ ω̄ does not affect the payoffs in the subgame
starting at x. Hence, we focus on the SPE strategies ui(·) construction only in
nodes x̄t along the cooperative history ω̄.
Step 1. Consider subgames Γ

x̄T−1
β and Γ x̄T−1 of the length 1. Let x̄T−1 ∈ Pi.

Then S = {i} is a coalition which is active at x̄T−1, and (7) takes the form:

βi(x̄T−1) + βi(x̄T ) � γ({i}, x̄T−1). (8)

Since the players’ payoffs in the related subgame Γ
x̄T−1
β at all but one terminal

node x̄T are the same as in Γ x̄T−1 , and γ({i}, x̄T−1) denotes to the highest i-th
player’s SPE payoff in Γ x̄T−1 , inequality (8) implies that the choice ui(x̄T−1) =
x̄T corresponds to the SPE behavior of the i-th player in the related subgame
Γ

x̄T−1
β .

Step t (t = 2, . . . , T). Consider subgames Γ
x̄T−t

β and Γ x̄T−t of the length
t assuming that the SPE u = (u1, . . . , un) has been already constructed in all
the related subgames Γ

x̄T−τ

β , 1 � τ < t. Let x̄T−t ∈ Pj . Then, applying (7) for
S = {j} we get:

βj(x̄T−t) + βj(x̄T−t+1) + . . . + βj(x̄T ) � ω({j}, x̄T−t). (9)

Since the players’ payoffs in the related subgame Γ
x̄T−t

β along all but one
history ω̄(x̄T−t) = (x̄T−t, x̄T−t+1, . . . , x̄T ) are the same as in Γ x̄T−t , and
γ({j}, x̄T−t) is the highest SPE payoff the j-th player can achieve in Γ x̄T−t ,
inequality (9) ensures that the choice uj(x̄T−t) = x̄T−t+1 corresponds to the
SPE behavior of player j at position x̄T−t of the related subgame Γ

x̄T−t

β .
Hence, we designed (via backwards induction procedure) a strategy profile

u = (u1, . . . , un) which constitutes a SPE in the related game Γ x̄0
β . Note that

for all j ∈ N by the construction uj(x̄t) = ūj(x̄t) at each node x̄t ∈ ω̄ ∩ Pj .
Therefore, subgame perfect equilibria (u1, . . . , un) for Γ x̄0

β generates cooperative

trajectory ω̄ and the players’ payoffs β̃i(ω̄) =
T∑

τ=0
βi(x̄τ ), i ∈ N .

An extensive-form game Γ ∈ GP (n) can be converted into a coalitional
(cooperative) game by defining a worth (or a characteristic) function for each
coalition S ⊂ N . We adopt in the paper the concept of γ-characteristic function
introduced in [5] which implies that the guaranteed payoff of coalition S in Γ x0 is
the Nash equilibria payoff which this coalition is expected to get in the induced
game Γ x0,S .

Suppose that the players consider some cooperative solution (px0
1 , . . . , px0

n )
meeting (3) for t = 0, that is a distribution of the total cooperative payoff

v(N) = vx0(N) =
∑

i∈N

h̃i(ω̄) (10)
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in Γ x0 ∈ GP (n) while β be any payoff distribution procedure for vector
(px0

1 , . . . , px0
n ).

For any coalition S ⊂ N,S �= N , one can calculate the value

v(S) = vx0(S) = max
x̄t∈ω̄\{x̄T }

(
t−1∑

τ=0

βS(x̄τ ) + γ(S; x̄t)), (11)

while the maximum has to be taken only over those decision positions x̄t in
the cooperative history ω̄ at which S is active. Note that (11) determines the
highest guaranteed payoff a coalition S could receive in the original game Γ x0

given all possible behavior schemes with one switching from cooperative scenario
to non-cooperative one (see also the paragraph above formula (7)).

Note that for any (px̄0
1 , . . . , px̄0

n ) meeting (3) and any PDP β function (10),
(11) is well-defined for every coalition S ⊂ N since every coalition is active at x0.
Hereafter we will consider a coalitional game (v,N) with characteristic function
(10), (11).

Definition 6. (see., e.g., [10,27,30]). The core of the coalitional game (v,N)
is a payoff vector (px0

1 , . . . , px0
n ) meeting (3) and the inequalities:
∑

i∈S

px0
i � v(S), S ⊂ N. (12)

The following proposition is an extension of the Proposition 2 from [6] to
more broad class of extensive-form games GP (n) with payoffs at all nodes. The
difference is that now we use characteristic function of special type that takes
into account the dynamics of payments in an extensive game Γ x0 ∈ GP (n). In
addition, some properties of the PDP β (like subgame efficiency condition) are
now involved in Prop. 2.

Proposition 2. Let payoff distribution procedure β belong to the β-S-P Core of
a game Γ x̄0 ∈ GP (n) in extensive form with payoffs defined at all nodes. Then
the corresponding vector (px0

1 , . . . , px0
n ) belongs to the core of the cooperative game

(v,N) with characteristic function (10), (11).
Conversely, let PDP β satisfy subgame efficiency condition (4) and

non-negativity constraint (6) while the corresponding cooperative solution
(px0

1 , . . . , px0
n ) is in the core of the cooperative game (v,N) with characteristic

function (10), (11). Then PDP β belongs to the β-S-P Core of an extensive-
form game Γ x̄0 .

Proof. If PDP β belongs to the β-S-P Core then according to (7) for any coalition
S ⊂ N and every node x̄t ∈ ω̄ \ {x̄T } such that S is active at x̄t the following
inequality holds

T∑

τ=t

βS(x̄τ ) � γ(S; x̄t).
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If we add
t−1∑

τ=0
βS(x̄τ ) to both sides and take maximum of the right hand side

over all nodes x̄t in the cooperative history ω̄ at which coalition S is active, we
get in accordance with (11)

∑

i∈S

β̃i(ω̄) � v(S).

Since β̃i(ω̄) = px0
i due to (4) for t = 0 the vector (px0

1 , . . . , px0
n ) satisfies (12) and

hence belongs to the core of (v,N).
Conversely, if (px0

1 , . . . , px0
n ) belongs to the core of the cooperative game (v,N)

then it follows from (12), (11) and (4) for t = 0 that for any coalition S ⊂ N
and every node x̄t ∈ ω̄ \{x̄T } such that S is active at x̄t the following inequality
holds:

∑

i∈S

T∑

τ=0

βi(x̄τ ) �
t−1∑

τ=0

βS(x̄τ ) + γ(S; x̄t). (13)

If we eliminate coinciding addends in both parts of (13) we get

T∑

τ=t

βS(x̄τ ) � γ(S; x̄t),

hence, PDP β satisfies (7).
The strict balance constraint (5) holds due to Remark 1. Since all the con-

ditions (4), (3), (5), (6), and (7) are valid the PDP β belongs to the β-S-P Core
of Γ x0 .

Remark 2. Proposition 2 provides a coalitional support to the β-S-P Core,
namely any PDP β in the β-subgame-perfect core corresponds to the payoff
distribution (px0

1 , . . . , px0
n ) from the core of certain coalitional game (v,N).

Remark 3. Since the components βi(x̄t), i ∈ N, t = 0, . . . , T, of the PDP β
from the β-S-P Core have to satisfy a finite number of non-strict linear inequal-
ities (7), (6) and linear equations (3)–(5) a nonempty β-S-P Core is a convex
polytope B in Rn×(T+1).

Obviously, the main concern of the jth player when choosing a specific PDP β
from β-S-P Core is maximization of her / his cooperative payoff pj = β̃j(ω̄). We
adopt in the paper an optimization-based approach for the refinement of the β-S-
P Core, i.e. a specific rule for choosing β̃j(ω̄), j ∈ N . This rule takes care of the
relative benefit from cooperation (RBC) of the least winning player. Denote by

Δj the range of the j-th player’s payoffs in Γ x0 . The value
˜βj−γ({j};x0)

Δj
could be

considered as the relative benefit of player j that is achieved due to cooperation.
Note that the relative benefit of cooperation could be also interpreted as the
”value of cooperation” (see, e.g. [9] for details). Hence, the above approach which
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we will refer later as the maxmin RBC rule implies the solution of the following
problem

max
β∈B

min
j∈N

β̃j − γ({j};x0)
Δj

. (14)

Remark 4. In a game with only 2 players optimization problem (14) takes the
form

β̃1 − γ({1};x0)
Δ1

=
β̃2 − γ({2};x0)

Δ2
. (15)

In a 2-player game Γ x0 ∈ GP (2) to determine unique distribution {βi(x̄t)},
x̄t ∈ ω, of the total i-th player payoff β̃i (15) meeting (5), (6) and (7) one can
use the following algorithm which aims to minimize the payoff transfers at each
node x̄t.

Algorithm:

1. Find a cooperative trajectory ω̄ = (x̄0, . . . , x̄t, . . . , x̄T ). If there are at least
two paths meeting (2) employ PRB algorithm (see [13]) to choose a unique
cooperative history.

2. Check whether the system of non-strict linear inequalities (6), (7) and linear
equations (3)–(5) is compatible (one could use, for instance, any software
package for solving Linear Programming problems). If no, then subgame-
perfect cooperative agreement in Γ x0 does not exist, i.e. the β-S-P Core is

empty. If β-S-P Core is non-empty solve (15) to calculate β̃1 =
T∑

τ=0
β1(x̄τ )

and β̃2.
3. Using (5), (6) and (7) obtain the system of double inequalities for β̃1(ω̄x̄1) =

T∑

τ=1
β1(x̄τ ), β̃1(ω̄x̄2) =

T∑

τ=2
β1(x̄τ ), . . . , β̃1(ω̄x̄T−1) = β1(x̄T−1)+β1(x̄T ) in the

form: ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c11 � β̃1(ω̄x̄1) � C1
1

c21 � β̃1(ω̄x̄2) � C2
1

...
cT−1
1 � β1(x̄T−1) + β1(x̄T ) � CT−1

1

, (16)

where 0 � ct
1 � Ct

1, t = 1, 2, . . . , T − 1.
4. Accept β1(x̄T ) = h1(x̄T ), hence, no transfers are expected at terminal node

x̄T .
5. Solve (16) backwards, implying minimal payoff transfer |β1(x̄t) − h1(x̄t)| at

each node x̄t, t = T − 1, T − 2, . . . , 1, that is sufficient to satisfy (16).

6. Calculate β1(x̄0) = β̃1 −
T∑

τ=1
β1(x̄τ ).

7. Calculate β2(x̄t), t = 0, . . . , T , using strict balance condition (5).
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5 β-S-P Core for Fishery-Management Extensive-Form
Model

To provide an application of the β-S-P Core in the resource exploitation models
in extensive form we explore a finite version of the original fishery-management
model [18] that has been studied in [10]. Note that this game-theoretical fishery-
management model belongs to a broad class of renewable resource extraction
models (see, e.g., [1,2,18,19,21]).

The main sources of the players’ asymmetry in the renewable resource extrac-
tion models as well as in dynamic environmental models are discussed in [2,3,22].
The players may have different costs, different discount rates, they may value the
residual stock differently, e.t.c. We focus in the paper on the case when the play-
ers have the same discount factor δ, and the only source for asymmetry is that
the players value differently the resource residual stock (after the fishery process
ends). Namely, we assume that K1 > K2 in (18). Note that such an assump-
tion is discussed in [3,10,17]. However, an algorithm for sustainable cooperation
provided in the paper could be employed for extensive-form fishery-management
model that takes into account other sources of the players’ asymmetry.

It is worth noting that the symmetric case of extensive-form fishery-
management model was studied in [17], and we will briefly compare the results
obtained.
Example. (An extensive-form fishery-management with asymmetric players).

Denote by y(t) a fish biomass (state variable) in year t, t = 0, 1, . . . , T , which
evolves in accordance with the difference equation y(t + 1) = a · y(t), where
a > 1 is the annual net growth rate. Suppose that only two players exploit
the fishery and let uj(t) ≥ 0 denote the catch amount of player j in year t
(strategy or control variable). Given the initial state condition y(0) = y0 the
system dynamics is described by the equation

y(t + 1) = a · (y(t) − (u1(t) + u2(t))) , (17)

while 0 ≤ u1(t) + u2(t) ≤ y(t). Player j aims to maximize the objective (payoff)
function of the form

Hj(·) =
T−1∑

t=0

δt
j

√
uj(t) + Kj · δT

j

√
y(T ), j = 1, 2, (18)

where δj ∈ [0, 1) is a discount factor and Kj > 0 reflects how the jth player
evaluates the worth of the fish biomass remainder (fishery’s scrap or bequest)
after the fishery process ends.

To specify the fishery-management model (17)–(18) in an extensive-form
framework we need to make some additional assumptions. Firstly, for the sake
of simplicity assume that each player can fish out at only two levels: High
(uH

j = Hj) and Low (uL
j = Lj) and consider two-period model, i.e., t = 0, 1, 2.

Secondarily, to deal with a game of perfect information assume that the player
1 moves first at each year while the player 2 moves second, i.e., player 2 is aware
of the first player’s decision when choosing own harvest level.
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Fig. 1. Fishery-management model in extensive form

The resulting fishery-management model for given values of parameters:
y(0) = 10; a = 1.25; uH

j = Hj = 3, uL
j = Lj = 1; δ1 = δ2 = δ = 0.9;

K1 = 1, K2 = 0.5, is presented in Fig. 1. Let P1 = {x0, x3, x4, x5, x6},
P2 = {x1, x2, x7 − x14}, Pn+1 = {z1, . . . , z16}, the right move at each decision
position xk ∈ Pj corresponds to uj(xk) = Hj (with only one exception for x14)
while the left alternative corresponds to Lj . According to (18) the current payoffs√

uj(0) in x1 − x6 correspond to the first year of fishery process (hence, δ0 = 1)
whereas the current payoffs

√
uj(1) in x7 − x14 and z1 − z16 correspond to

the second year and have to be multiplied by δ. Note that if u1(0) = u2(0) = H
then y(1) = 5, and if the first player again chooses u1(1) = H1 at x6, then the
player 2 can not choose u2(1) = H2 at x14 (the case of over-fishing) due to con-
straint u1(1)+u2(1) ≤ y(1). We take it into account assuming that h2(z16) = 0.
Additionally, we admit some positive payoffs hj(x0), j = 1, 2, at the root x0

which could be interpreted as the players’ initial assets (for instance, we let
hj(x0) = 1, j = 1, 2, in Fig. 1).

The above fishery-management model in extensive form admits a unique SPE
(the players’ equilibrium strategies for each decision positions are determined via
backwards induction procedure and marked as dotted lines in Fig. 1). This SPE
generates history ωSPE = (x0, x2, x5, x12, z12) with the payoffs (5.4; 4.12).

The cooperative history ω̄ = (x0, x1, x3, x8, z4), that is marked in bold in
Fig. 1, implies maximal summary payoff h̃1(ω̄) + h̃2(ω̄) = 5.37 + 4.47 = 9.84.
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Comparing these results with symmetric case of similar model studied in
[17] one can notice that the SPE history is preserved, while the cooperative
history has been changed. Namely, in asymmetric model the cooperative behav-
ior implies more fishing efforts of both players at the second time period and
consequently lower fish biomass remainder. The β-S-P Core is turned out to be
non-empty for both cases. Obviously, these results rely heavily on the chosen
parameters values.

Note that system (3)–(6) and (7) for the extensive-form game in Fig. 1 is
compatible, and hence, the β-S-P Core is non-empty. To determine unique pay-
ment vector (β̃1(ω̄), β̃2(ω̄)) from the β-S-P Core one can employ the maxmin
RBC rule. If we denote β̃1(ω̄) = 5.37 + ε, β̃2(ω̄) = 4.47 − ε, Eq. (15) takes the
form

(5.37 + ε) − 5.4
5.98 − 4.54

=
(4.47 − ε) − 4.12

5.14 − 3.37
⇐⇒ ε = 0.17.

Hence, β̃1(ω̄) = 5.54, β̃2(ω̄) = 4.3. We apply the above algorithm to calculate all
the components βi(xt) of this payoff distribution procedure β. The (minimal in

ω̄ x0 x1 x3 x8 z4 ˜βj(ω̄)

β1(xt) 1.55 0.62 0 1.56 1.81 5.54

β2(xt) 0.45 0.38 1 0 2.47 4.3

β1(xt) − h1(xt) 0.55 −0.38 0 0 0 0.17

absolute value) payoff transfers (from player 2 to player 1) at every position in the
cooperative history are presented in the lowest row. Note that the cooperative
history for the subgame Γ x3 coincides with the SPE path, hence, no transfers in
nodes x3, x8 and z4 are needed to sustain cooperative agreement.

However, inequalities (7) for S = {1} and S = {2} in x1 ∈ ω̄ take the form:
γ({1};x1) = 3.67 � β1(x1) + 3.37; γ({2};x1) = 3.85 � β2(x1) + 3.47. Obviously,
β1(x1) � 0.3, β2(x1) � 0.38, and the players have to redistribute current payoffs
at x1 (a transfer at least 0.38 from player 1 to player 2 is needed to create
an incentive to cooperate for player 2 at Γ x1). Similar remark is valid for the
origin x0.

Note that if we treat this extensive-form game as the game where the payoffs
are defined and could be redistributed between the players in only terminal nodes
the S-P Core [6] of such a game is empty.

6 Concluding Remarks

Since the β-S-P Core definition for a game Γ x0 ∈ GP (n) with payoffs defined at
all nodes allows the payoffs transfers at each node of the cooperative history, it
provides a powerful tool to sustain cooperative scenario. We employ the maxmin
RBC rule for selecting unique payment vector (β̃1(ω̄), β̃2(ω̄)) from the β-S-P
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Core in Example. One may consider a natural refinement of the maxmin RBC
rule which implies that the players should initially implement the sequentional
elimination of strictly dominated strategies procedure (see, e.g., [10,23,27]) and
then estimate the absolute ranges Δj of their payoffs. If we apply this refinement
to the fishery-management model in Example we obtain another PDP from the
β-S-P Core, namely β̃1(ω̄) = 5.516; β̃2(ω̄) = 4.324. It is surely of interest to
consider other approaches for the β-S-P Core refinement as well as to study
additional properties of this cooperative solution (for instance, time consistency
[10,26,27] and irrational-behavior-proof condition [32,33]).

Hopefully, similar approach could be applied to other discrete-time dynamic
games of bio-resource management (see, e.g., [1,21]) and other dynamic mod-
els of climate change (see, e.g., [20]). An open question is whether the β-S-P
Core concept can be adapted to the analysis of the dynamic interaction between
different political and religious movements (see [31] for details).
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https://doi.org/10.1007/978-3-030-51941-4 10

15. Kuzyutin, D., Romanenko, I.: On properties of equilibrium solutions for n-person
games in extensive form. Vestnik St. Petersburg Univ. Math. 3(15), 17–27 (1998).
(in Russian)

16. Kuzyutin, D., Smirnova, N.: Subgame consistent cooperative behavior in an exten-
sive form game with chance moves. Mathematics 8(7), 1061 (2020). https://doi.
org/10.3390/math8071061

17. Kuzyutin, D., Smirnova, N., Skorodumova, Y.: Implementation of subgame-perfect
cooperative agreement in an extensive-form game. In: Petrosyan, L.A., Zenke-
vich, N.A. (eds.) Contributions to Game Theory and Management, pp. 257–272.
St. Petersburg State Univ., St. Petersburg, Russia (2021). http://hdl.handle.net/
11701/33701

18. Levhari, D., Mirman, L.J.: The great fish war: an example using a dynamic
Cournot-Nash solution. Bell J. Econ. 11(1), 322–334 (1980)

19. Mazalov, V., Parilina, E., Zhou, J.: Altruistic-like equilibrium in a differential game
of renewable resource extraction. In: Pardalos, P., Khachay, M., Kazakov, A. (eds.)
MOTOR 2021. LNCS, vol. 12755, pp. 326–339. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-77876-7 22

20. Masoudi, N., Zaccour, G.: Adapting to climate change: is cooperation good for the
environment? Econ. Lett. 153, 1–5 (2017). https://doi.org/10.1016/j.econlet.2017.
01.018

21. Mazalov, V.V., Rettiyeva, A.N.: The discrete-time bioresource sharing model. J.
Appl. Math. Mech. 75, 180–188 (2011)

22. Mazalov, V. V., Rettieva, A.N.: Asymmetry in a cooperative bioresource manage-
ment problem. In: Game-Theoretic Models in Mathematical Ecology, pp. 113–152.
Nova Science Publishers (2015)

23. Moulin, H.: Axioms of Cooperative Decision Making. Cambridge University Press,
Cambridge (1988)

24. Nash, J.F.: Equilibrium points in n-person games. Proc. Nat. Acad. Sci. USA 36,
48–49 (1950)

25. Parilina, E., Zaccour, G.: Node-consistent core for games played over event trees.
Automatica 55, 304–311 (2015)

26. Petrosyan, L.A., Danilov, N.N.: Stability of solutions in non-zero sum differential
games with transferable payoffs. Astron. 1, 52–59 (1979)

27. Petrosyan, L., Kuzyutin, D.: Games in Extensive Form: Optimality and Stability.
Saint Petersburg University Press, St. Petersburg (2000). (in Russian)

28. Petrosian, O., Zakharov, V.: IDP-Core: novel cooperative solution for differential
games. Mathematics 8, 721 (2020)

29. Selten, R.: Reexamination of the perfectness concept for equilibrium points in
extensive games. Int. J. Game Theory 4, 25–55 (1975)

30. Shapley, L.S.: On balanced sets and cores. Nav. Res. Logist. 14(4), 453–460 (1967)
31. Tantlevskij, I., Gromova, E., Gromov, D.: Network analysis of the interaction

between different religious and philosophical movements in early Judaism. Philoso-
phies 6(1), 2 (2021). https://www.mdpi.com/2409-9287/6/1/2

https://doi.org/10.1007/978-3-030-51941-4_10
https://doi.org/10.3390/math8071061
https://doi.org/10.3390/math8071061
http://hdl.handle.net/11701/33701
http://hdl.handle.net/11701/33701
https://doi.org/10.1007/978-3-030-77876-7_22
https://doi.org/10.1007/978-3-030-77876-7_22
https://doi.org/10.1016/j.econlet.2017.01.018
https://doi.org/10.1016/j.econlet.2017.01.018
https://www.mdpi.com/2409-9287/6/1/2


294 D. Kuzyutin and N. Smirnova

32. Yeung, D.: An irrational-behavior-proof condition in cooperative differential games.
Int. Game Theory Rev. 8(4), 739–744 (2006)

33. Yeung, D., Petrosyan, L.: Subgame Consistent Economic Optimization: An
Advanced Cooperative Dynamic Game Analysis. Springer, New York (2012).
https://doi.org/10.1007/978-0-8176-8262-0

https://doi.org/10.1007/978-0-8176-8262-0


The Core of Cooperative Differential
Games on Networks

Anna Tur(B) and Leon Petrosyan

St. Petersburg State University, 7/9, Universitetskaya nab.,
Saint-Petersburg 199034, Russia
{a.tur,l.petrosyan}@spbu.ru

Abstract. A class of differential games on networks is considered. The
construction of cooperative optimality principles using a special type of
characteristic function that takes into account the network structure of
the game is investigated. It is assumed that interaction on the network
is possible between neighboring players and between players connected
by paths whose length does not exceed a given value. It is shown that in
such games the characteristic function is convex even if there are cycles
in the network. The core is used as cooperative optimality principles.
A necessary and sufficient condition for an imputation to belong to the
core is obtained. The network differential resource extraction game is
investigated as an example.

Keywords: Differential game · Cooperative game · Network game ·
The core · The Shapley value · The position value

1 Introduction

Many real-life multi-agents processes can be interpreted as a scheduling problem
on a network. Vertices in networks can corespond to agents (region, country), and
connections can represent the ability of agents to interact (transport connection,
an information transfer, resource distribution). In such problems, methods of
cooperative game theory turn out to be effective and practical.

Different principles for measuring the power of a player in a network are
considered, for example, in [1,4–6].

If the evolution of decision making is continuous in time, the problem is
usually viewed as a differential game. In such processes, it is important to take
into account the ability of players to change the chosen cooperative solution
at some intermediate time instant in the game. Cooperative differential games
on networks were first considered in [8]. There was introduced a new type of
strategies with possibility of cutting links with neighboring players during the
game.

The new type of strategies has led to the possibility of construction a novel
form for characteristic function [10]. It was proposed a measuring of coalition’s
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worth without considering the actions of players who are not members of this
coalition. Also it was considered the case when payoff of a player depends not
only on his neighbors’ actions but also on players’ actions connected with this
player by a path in the network [11]. In [15], it was shown that the convexity of
the new characteristic function in such games can only be guaranteed if there
are no cycles in the graph.

This paper is a continuation of the indicated research on cooperative differen-
tial games on networks. Another type of players’ payoff is treated. It is assumed
that players can interact with each other only if the distance between them on
the network is not greater than a given value. This assumption allows to gen-
eralize the convexity of the characteristic function for the case of a graph with
cycles. A necessary and sufficient condition for an imputation to belong to the
core is derived. The strong time-consistency of the core is proved.

The paper is structured as follows. The definition of the cooperative differ-
ential game on a network is given in Sect. 2. In Sect. 3, the definition of the
characteristic function based on cooperative strategies used by players from a
coalition is given. A necessary and sufficient condition for the imputation to
belong to the core is derived in Sect. 4. The strong time-consistency of the core
is proved in Sect. 5. The Shapley value and the position value are discussed in
Sect. 6. As an illustrative example, a differential game of resource extraction on
the network is investigated in Sect. 7.

2 Problem Formulation

Consider a class of n-person differential games with prescribed duration T . Let
N = {1; 2; . . . ;n} be the set of players. Players are connected in a network
system. A pair (N,L) is called a network, where N is a set of nodes, and L ⊂
N × N is a given set of links. The players are represented by nodes. If pair
(i, j) ∈ L, there is a link connecting players i ∈ N and j ∈ N . It is supposed
that all links are undirected.

Denote the set of players directly connected to player i as K(i) = {j : (i; j) ∈
L}.

Denote by Km(i), where m ≥ 2, the set of players connected with player
i ∈ N by a shortest path containing exactly m edges (only paths without cycles
and loops are considered), and let K1(i) = K(i) ∪ i, for i ∈ N .

Every player i ∈ N at any instant of time can cut a connection with any
other players from K(i).

The system dynamics is given by

ẋi(τ) = fi(xi(τ);ui(τ)); xi(t0) = x0
i ; for τ ∈ [t0;T ] and i ∈ N. (1)

Here xi(t) ⊂ Rm is the state variable of player i ∈ N at time t, and ui(t) ∈ Ui ⊂
Rk – the control variable of player i ∈ N . Function fi(xi;ui) are continuously
differentiable in xi and ui.
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The payoff of player i is given as

Hi(x0;u1, . . . , un) =
r∑

m=1

δm−1
∑

j∈Km(i)

T∫

t0

hj
i (xi(τ);xj(τ);ui(τ);uj(τ))dτ. (2)

The term hj
i (xi(τ);xj(τ);ui(τ);uj(τ)) is the instantaneous gain that player

i can obtain through interaction with player j ∈ Km(i), and hi
i(xi(τ);ui(τ)) is

the instantaneous gain that player i can obtain by itself. Suppose that functions
hj

i (xi(τ);xj(τ);ui(τ);uj(τ)), for j ∈ Km(i), j �= i are non-negative. Assume that
δ ∈ (0, 1). The multiplier δm−1 shows that the more remote network players from
player i, the less their behavior affects the playoff of that player. The parameter
r : n − 1 ≥ r ≥ 1 corresponds to the length of the shortest path between the
player i and the connected player, from which the player i receives any benefit.
Such a restriction on the interaction of players may be due to territorial features.
For example, if the interaction of players is associated with transport costs, then
it is assumed that the interaction is justified only if the distance between the
players is not greater than a given value. We denote by x0 = (x0

1;x
0
2; . . . ;x

0
n) the

vector of initial conditions.
We consider the game Γ (x0, T − t0) if the network (N,L) is defined, the

system dynamics (1) and the sets of feasible controls Ui, i ∈ N are given, and the
players’ payoffs are determined by (2). Each player, choosing a control variable ui

from his set of feasible controls, steers his own state according to the differential
equation (1) and seeks to maximize his objective functional (2).

Suppose that players can cooperate in order to achieve the maximum joint
payoff

∑

i∈N

r∑

m=1

δm−1
∑

j∈Km(i)

T∫

t0

hj
i (xi(τ);xj(τ);ui(τ);uj(τ))dτ. (3)

subject to dynamics (1).
The optimal cooperative strategies of players u(t) = (u1(t), . . . , un(t)), for

t ∈ [t0;T ] are defined as follows

u(t) = arg max
u1,...,un

∑

i∈N

r∑

m=1

δm−1
∑

j∈Km(i)

T∫

t0

hj
i (xi(τ);xj(τ);ui(τ);uj(τ))dτ. (4)

The trajectory corresponding to the optimal cooperative strategies (u1(t), . . . ,
un(t)) is the optimal cooperative trajectory x(t) = (x1(t);x2(t); . . . ;xn(t)). The
maximum joint payoff can be expressed as:

∑

i∈N

r∑

m=1

δm−1
∑

j∈Km(i)

T∫

t0

hj
i (xi(τ);xj(τ);ui(τ);uj(τ))dτ =

max
u1,...,un

⎧
⎨

⎩
∑

i∈N

r∑

m=1

δm−1
∑

j∈Km(i)

T∫

t0

hj
i (xi(τ);xj(τ);ui(τ);uj(τ))dτ

⎫
⎬

⎭ (5)
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subject to dynamics

ẋi = fi(xi(τ);ui(τ)); xi(t0) = x0
i ; for τ ∈ [t0;T ] and i ∈ N. (6)

To determine how to allocate the maximum total payoff among the players
under an agreeable scheme, defining the characteristic function is necessary.

Usually, in cooperative games, the concept of a characteristic function is used
to determine how to distribute the maximum payoff between players. There are
different approaches for construction of characteristic functions (see [3,16]).

We define the characteristic function in the same way as it was proposed in
[10]. It was supposed there to find the value of the characteristic function of S on
the cooperative trajectory when players from S use cooperative strategies under
the condition that connections with players from N \ S are cut off (since the
worst thing they can do for the coalition S is to cut the connection with players
from S). The characteristic function constructed in this way is easier to compute
and possesses some advantageous properties. In this paper, we will apply this
approach to the class of games under consideration.

Let S ⊂ N is a subset of vertices and LS denote the set of all edges between
vertices from S in L. A pair (S,LS) is called a subgraph induced by S. For
player i ∈ S denote by Km

S (i), where m ≥ 2, the set of players connected with
player i by the shortest path in (S,LS) containing exactly m edges, and let
K1

S(i) = K(i) ∩ S ∪ i, for i ∈ S.
The worth of coalition S in the game is evaluated along the cooperative

trajectory

V (S;x0, T − t0) =
∑

i∈S

r∑

m=1

δm−1
∑

j∈Km
S (i)

T∫

t0

hj
i (xi(τ);xj(τ);ui(τ);uj(τ))dτ, (7)

where xi(t) and ui(t) are the solutions obtained in (4) and (6).
Similarly, the cooperative-trajectory characteristic function of the subgame

Γ (x(t), T − t) starting at time t ∈ [t0;T ] can be evaluated as

V (S;x(t), T − t) =
∑

i∈S

r∑

m=1

δm−1
∑

j∈Km
S (i)

T∫

t

hj
i (xi(τ);xj(τ);ui(τ);uj(τ))dτ. (8)

3 Properties of the Characteristic Function

Characteristic function V (S;x0, T − t0) is called convex (or supermodular) if for
any coalitions S1, S2 ⊆ N the following condition holds: V (S1 ∪S2;x0, T − t0)+
V (S1 ∩ S2;x0, T − t0) ≥ V (S1;x0, T − t0) + V (S2;x0, T − t0). A game is called
convex if its characteristic function is convex.

In [10], the characteristic function was constructed in a similar way, but it
was assumed that hj

i = 0 if the players i and j are not connected by an edge. It
was shown that such characteristic function is convex. In [15], for the case when
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there are not restrictions on the length of the shortest path between interacting
players, it was shown that such characteristic function is convex if there are no
cycles in the network.

The restrictions on the interaction of players introduced in this paper allowed
us to expand the class of networks for which the characteristic function is convex.

Define functions W (S; t) that can be interpreted as instantaneous values of
the characteristic function according to the following rule

W (S; t) =
∑

i∈S

r∑

m=1

δm−1
∑

j∈Km
S (i)

hj
i (xi(t);xj(t);ui(t);uj(t)). (9)

Proposition 1. Let S1 ⊂ N , S2 ⊂ S1. If there are no cycles of length less
than 2r + 1 in the network (N,L), then the following inequality holds for each
i ∈ N \ S1 and each t ∈ [t0, T ]:

W (S1 ∪ {i}; t) − W (S1; t) ≥ W (S2 ∪ {i}; t) − W (S2; t). (10)

Proof. For simplicity, we denote

hj
i (xi(t);xj(t);ui(t);uj(t)) = h

j

i (t),

h
j

i (t) + h
i

j(t) = hi,j(t)

The absence of cycles of length less than 2r + 1 in the network means that
there can be only one path of length less than r+1 between any two vertices. Let
Dm

S (i) be the set of pairs of vertices {p, q} such that p ∈ S, q ∈ S, the distance
between them equals m ≤ r, all vertices of the path between p and q belong to
S, and i lies on this path. Then

W (S1 ∪ {i}; t) − W (S1; t) = h
i

i(t) +
r∑

m=1

δm−1
∑

{p,q}∈Dm
S1∪{i}(i)

hp,q(t), (11)

W (S2 ∪ {i}; t) − W (S2; t) = h
i

i(t) +
r∑

m=1

δm−1
∑

{p,q}∈Dm
S2∪{i}(i)

hp,q(t). (12)

Since S2 ⊂ S1, we have Dm
S2∪{i}(i) ⊂ Dm

S1∪{i}(i). Then

k∑

m=1

δm−1
∑

{p,q}∈Dm
S1∪{i}(i)

hp,q(t) ≥
k∑

m=1

δm−1
∑

{p,q}∈Dm
S2∪{i}(i)

hp,q(t).

It follows that (10) is satisfied.
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Remark 1. Note that the presence of a cycle of length less than 2r + 1 in the
network can lead to the violation of property (10).

Indeed, the presence of a cycle of length less than 2r+1 in the network allows
several paths of length less than r + 1 between two vertices.

Assume that there are two paths of length l ≤ r between vertices p∗ ∈ S2

and q∗ ∈ S2. Suppose that all vertices from the first path belong to S2 ∪{i}, and
vertex i lies on this path. Assume also that the second path contains vertices
from S1 \ S2 and vertex i does not lie on this path.

Note that there exists a path of length less than r + 1 between p∗ and q∗ in
(S2 ∪ {i}, LS2∪{i}), but there is no such path between these vertices in (S2, LS2)
(since the first path goes through player i who is no longer in the coalition and
the second path does not belong to (S2, LS2)). Then there is a term δl−1hp∗,q∗(t)
in the right-hand side of (12).

There are two paths of length l ≤ r between vertices p∗ and q∗ in (S1 ∪
{i}, LS1∪{i}). One of them passes trough vertex i and the other does not. So
there exists path between p∗ and q∗ in (S1, LS1). This means that in the right-
hand side of (11), there is no term corresponding to the vertices p∗ and q∗.

Thus, if hp∗,q∗(t) is large enough, inequality (10) will not hold.

Corollary 1. If there are no cycles of length less than 2r + 1 in the network
(N,L), then the characteristic function defined in (7)–(8) is convex.

Proof. It was shown that for each τ ∈ [t0, T ], S1 ⊂ N , S2 ⊂ S1 and each
i ∈ N \ S1, the following inequality holds

W (S1 ∪ {i}; t) − W (S1; t) ≥ W (S2 ∪ {i}; t) − W (S2; t). (13)

Integrating both sides of this inequality with respect to t we have for each
t ∈ [t0, T ], each S1 ⊂ N , S2 ⊂ S1, and each i ∈ N \ S1

V (S1 ∪ {i};x(t), T − t) − V (S1;x(t), T − t) ≥ V (S2 ∪ {i};x(t), T − t) − V (S2;x(t), T − t).

This means that the characteristic function defined in (7)–(8) is convex
(see [14]).

Further, we will assume that there are no cycles of length less than 2r + 1 in
the network (N,L).

4 The Core

The set of all imputations in the game Γ (x0, T − t0) is given by

E(x0, T − t0) = {ξ(x0, T − t0) = (ξ1(x0, T − t0), . . . , ξn(x0, T − t0)) :
∑

i∈N

ξi(x0, T − t0) = V (N ;x0, T − t0), ξi(x0, T − t0) ≥ V ({i};x0, T − t0), i ∈ N}. (14)
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Definition 1 ([14]). The core C(x0, T − t0) of the game Γ (x0, T − t0) is the
subset of the imputation set E(x0, T − t0), such that

C(x0, T − t0) = {ξ(x0, T − t0) ∈ E(x0, T − t0) :
∑

i∈S

ξi(x0, T − t0) ≥ V (S;x0, T − t0), S ⊂ N}. (15)

Similarly, for every t ∈ [t0, T ] denote by E(x(t), T − t) the set of all impu-
tations and by C(x(t), T − t) the core in the subgame Γ (x(t), T − t) along the
cooperative trajectory.

Consider a pair of vertices {p, q}, p, q ∈ N . Let the length of the shortest
path between them is l ≤ r, and the shortest path is {i1, . . . , il+1} (here p = i1,
q = il+1). We denote by Φp,q the set of vectors φp,q = (φp,q

i1
, . . . , φp,q

il+1
), such that

l+1∑
j=1

φp,q
ij

= 1, 0 ≤ φp,q
ij

≤ 1, for each j = 1, l + 1 (for each vertex ij , j = 1, l + 1,

belonging to the path between p and q, the coefficient φp,q
ij

is given).

Proposition 2. In the class of games under consideration, an imputation
ξ(x0, T − t0) ∈ E(x0, T − t0) belongs to the core if and only if it can be rep-
resented in the following form

ξi(x0, T − t0) =

T∫

t0

h
i

i(τ)dτ +
r∑

m=1

δm−1
∑

{p,q}∈Dm
N (i)

T∫

t0

φp,q
i hp,q(τ)dτ, i ∈ N.

(16)
Here φp,q ∈ Φp,q for each pair of vertices p ∈ N , q ∈ N .

Proof. First, prove that the vector defined by Eq. (16) is an imputation.

n∑

i=1

ξi(x0, T − t0) =
n∑

i=1

T∫

t0

h
i
i(τ)dτ +

n∑

i=1

r∑

m=1

δm−1
∑

{p,q}∈Dm
N

(i)

T∫

t0

φp,q
i hp,q(τ)dτ =

n∑

i=1

T∫

t0

h
i
i(τ)dτ +

r∑

m=1

δm−1
∑

{p,q}∈ ⋃

i∈N
Dm

N
(i)

(φp,q
i1

+ . . . φp,q
im+1

)

T∫

t0

hp,q(τ)dτ =

n∑

i=1

T∫

t0

h
i
i(τ)dτ +

r∑

m=1

δm−1
∑

{p,q}∈ ⋃

i∈N
Dm

N
(i)

T∫

t0

hp,q(τ)dτ = V (N ;x0, T − t0) (17)

Also note that V ({i};x0, T −t0) =
T∫

t0

h
i

i(τ)dτ , then ξi(x0, T −t0) ≥ V ({i};x0, T −
t0) and ξ(x0, T −t0) is an inputation in the game Γ (x0, T −t0) according to (14).

Now show that if an imputation can be represented in the form (16) then it
belongs to the core.
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∑

i∈S

ξi(x0, T − t0) =
∑

i∈S

T∫

t0

h
i

i(τ)dτ +
∑

i∈S

n−1∑

m=1

δm−1
∑

{p,q}∈Dm
N (i)

T∫

t0

φp,q
i hp,q(τ)dτ

=
∑

i∈S

T∫

t0

h
i

i(τ)dτ +
∑

i∈S

n−1∑

m=1

δm−1
∑

{p,q}∈Dm
S (i)

T∫

t0

φp,q
i hp,q(τ)dτ

+
∑

i∈S

n−1∑

m=1

δm−1
∑

{p,q}∈Dm
N (i)\Dm

S (i)

φp,q
i

T∫

t0

hp,q(τ)dτ

=
∑

i∈S

T∫

t0

h
i

i(τ)dτ +
n−1∑

m=1

δm−1
∑

{p,q}∈ ⋃

i∈S

Dm
S (i)

(φp,q
i1

+ . . . φp,q
im+1

)

T∫

t0

hp,q(τ)dτ

+
∑

i∈S

n−1∑

m=1

δm−1
∑

{p,q}∈Dm
N (i)\Dm

S (i)

φk,l
i

T∫

t0

hp,q(τ)dτ

= V (S;x0, T − t0) +
∑

i∈S

n−1∑

m=1

δm−1
∑

{p,q}∈Dm
N (i)\Dm

S (i)

φp,q
i

T∫

t0

hp,q(τ)dτ.

(18)

Then ∑

i∈S

ξi(x0, T − t0) ≥ V (S;x0, T − t0),

which proves that ξ(x0, T − t0) belongs to the core.
Last show that any imputation from the core can be represented in the form

(16).
Let π represents a simple ordering of the players. π(i) – the number of player

i in π. Π – the set of all possible permutations of N . Define

Sπ,k = {i ∈ N : π(i) ≤ k}, k = 0, 1, . . . , n.

It was shown by Shapley [14] that the core is the convex hull of marginal impu-
tations α(π) = (απ

1 , απ
2 , . . . , απ

n), where

απ
i = V (Sπ,π(i), x0, T − t0) − V (Sπ,π(i)−1, x0, T − t0), i ∈ N.

So the vertices of the core have coordinates α(π) = (απ
1 , απ

2 , . . . , απ
n) for all

possible π ∈ Π, and

απ
i = V ({i}) +

r∑

m=1

δm−1
∑

{k,l}∈Dm
Sπ,π(i)

(i)

T∫

t0

hk,l(τ)dτ. (19)

The core is a compact convex polyhedron. Every its point can be represented
as a convex combination of vertices (extreme points).
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If the vector ξ̃(t) belongs to the core, then its components can be written as

ξ̃i(x0, T − t0) =
∑

π∈Π

επαπ
i ,

here
∑

π∈Π

επ = 1, 0 ≤ επ ≤ 1 for all π ∈ Π. Then

ξ̃i(x0, T − t0) =

=
∑

π∈Π

επV ({i};x0, T − t0) +
∑

π∈Π

επ

r∑

m=1

δm−1
∑

{p,q}∈Dm
Sπ,π(i)

(i)

T∫

t0

hp,q(τ)dτ =

= V ({i};x0, T − t0) +
∑

π∈Π

επ

r∑

m=1

δm−1
∑

{p,q}∈Dm
Sπ,π(i)

(i)

T∫

t0

hp,q(τ)dτ. (20)

Consider the pair of vertices (ki1 , kil+1) with the length of the shortest path
between them l ≤ r. Let ki1 , ki2 , . . . , kil+1 – the vertices from the shortest path

between ki1 and kil+1 . The term δm−1
T∫

t0

hki1 ,kil+1
(τ)dτ is in the right-hand part

of (20) only if i belongs to the shortest path between ki1 and kil+1 . This follows
from the form of marginal contributions (19) and imputation (20).

Also note that for each permutation π the value δm−1
T∫

t0

hki1 ,kil+1
(τ)dτ

occurs as a term only in one component αki∗ (π) of vector α(π), where
ki∗ = arg max

j=1,...,l+1
π(kij

) (ki∗ is the last player from ki1 , ki2 , . . . , kil+1 in permu-

tation π).
This means that in ξ̃ki1

(t) + ξ̃ki2
(t) + . . . + ξ̃kil+1

(t) we get the value

δm−1
T∫

t0

hki1 ,kil+1
(τ)dτ with the coefficient

∑
π∈Π

επ = 1. Hence, the value

δm−1
T∫

t0

hki1 ,kil+1
(τ)dτ should be shared only between players lying on the short-

est path from ki1 to kil+1 .
Since this must hold for any pair of vertices, it follows that the arbitrary

imputation ξ̃(t) from the core has the form (16).
This concludes the proof.

5 Strong Time–Consistency of the Core

In Proposition 2, it is shown that if players use the core as an optimality principle,
to choose an imputation they need to determine the value of coefficients φp,q for
every pair of vertices p, q. But at some intermediate time instant of the game,
players can change their mind and choose other coefficients, thus choose another
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imputation from the core. It is important that the resulting imputation of the
game remains in the core. This is true only if the cooperative solution is strong
time-consistent. This property of cooperation solution was introduced in [7]. Let
us show that the core of games under consideration is strong time-consistent.

Definition 2 (see [9]). A function β(t) = (β1(t), . . . , βn(t)), t ∈ [t0, T ] is the
imputation distribution procedure (IDP) for imputation α ∈ E(x0, T − t0), if

αi =

T∫

t0

βi(τ)dτ, i ∈ N.

Definition 3 (see [7]). An optimality principle M(x0, T − t0) ⊂ E(x0, T − t0)
is called strong time-consistent if

1. M(x(t), T − t) �= ∅, ∀ t ∈ [t0, T ].
2. For each α ∈ M(x0, T − t0) there exists an IDP β(τ) = (β1(τ), . . . , βn(τ)),

τ ∈ [t0, T ], such that α =
T∫

t0

βi(τ)dτ , i ∈ N and

M(x0, T − t0) ⊃
t∫

t0

β(τ)dτ ⊕ M(x(t), T − t), ∀t ∈ [t0, T ]. (21)

For a ∈ Rn, B ⊂ Rn, the symbol ⊕ means the following: a ⊕ B = {a + b :
b ∈ B}.

Proposition 3. In the game under consideration the core is strong-time con-
sistent.

Proof. Consider an arbitrarily chosen imputation ξ(x0, T − t0) from the core.
According to Proposition 2, there exist such coefficients φ

p,q ∈ Φp,q for every
pair of vertices (p, q) with the length of the shortest path between them less
then r + 1, that ξ can be represented as

ξi(x0, T − t0) =

T∫

t0

h
i

i(τ)dτ +
r∑

m=1

δm−1
∑

{p,q}∈Dm
N (i)

T∫

t0

φ
p,q

i hp,q(τ)dτ, i ∈ N.

(22)
Define the following imputation distribution procedure (IDP) for ξ(x0, T −t0)

βi(t) = h
i

i(t) +
r∑

m=1

δm−1
∑

{p,q}∈Dm
N (i)

φ
p,q

i hp,q(τ).

Consider the vector with components

T∫

t

βi(τ)dτ =

T∫

t

h
i

i(τ)dτ +
r∑

m=1

δm−1
∑

{p,q}∈Dm
N (i)

T∫

t

φ
p,q

i hp,q(τ)dτ. (23)
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Note that this vector belongs to the core C(x(t), T − t) of the sub-
game Γ (x(t), T − t), because it can be represented in the form (16) with

coefficients φ
p,q ∈ Φp,q. Then

∑
i∈N

T∫
t

βi(τ)dτ = V (N ;x(t), T − t) and

∑
i∈N

t∫
t0

βi(τ)dτ = V (N ;x0, T − t0) − V (N ;x(t), T − t).

Let ξi(x(t), T −t) is an imputation from the core C(x(t), T −t) of the subgame
Γ (x(t), T − t). Then

∑

i∈S

ξi(x(t), T − t) ≥ V (S;x(t), T − t).

Also note that
∑

i∈N

ξi(x(t), T − t) = V (N ;x(t), T − t) and ξi(x(t), T − t) ≥
V ({i};x(t), T − t).

Let

ξ̃(x0, T − t0) =

t∫

t0

β(τ)dτ + ξ(x(t), T − t). (24)

First show, that ξ̃(x0, T − t0) is an imputation in C(x0, T − t0). Show that
the group rationality holds:

∑

i∈N

ξ̃i(x0, T − t0) =
∑

i∈N

t∫

t0

βi(τ)dτ +
∑

i∈N

ξi(x(t), T − t) =

= V (N ;x0, T − t0) − V (N ;x(t), T − t) + V (N ;x(t), T − t) = V (N ;x0, T − t0).
(25)

And individual rationality holds:

ξ̃i(x0, T − t0) =

t∫

t0

βi(τ)dτ + ξi(x(t), T − t) =

=

t∫

t0

h
i
i(τ)dτ +

r∑

m=1

δm−1
∑

{p,q}∈Dm
N

(i)

t∫

t0

φ
i
p,qhp,q(τ)dτ + ξi(x(t), T − t) ≥

=

t∫

t0

h
i
i(τ)dτ +

r∑

m=1

δm−1
∑

{p,q}∈Dm
N

(i)

t∫

t0

φ
p,q
i hp,q(τ)dτ + V ({i};x(t), T − t) =

=

t∫

t0

h
i
i(τ)dτ +

r∑

m=1

δm−1
∑

{p,q}∈Dm
N

(i)

t∫

t0

φ
p,q
i hp,q(τ)dτ +

T∫

t

h
i
i(τ)dτ =

= V ({i};x0, T − t0) +

r∑

m=1

δm−1
∑

{p,q}∈Dm
N

(i)

t∫

t0

φ
p,q
i hp,q(τ)dτ ≥ V ({i};x0, T − t0). (26)

So, ξ̃(x0, T − t0) indeed is an imputation in Γ (x0, T − t0).
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Now we need to prove that ξ̃(x0, T − t0) belongs to the core C(x0, T − t0).

For this, consider the value
∑
i∈S

t∫
t0

β(τ)dτ :

∑

i∈S

t∫

t0

β(τ)dτ =
∑

i∈S

⎛

⎝
t∫

t0

h
i

i(τ)dτ +
r∑

m=1

δm−1
∑

{p,q}∈Dm
N (i)

t∫

t0

φ
p,q

i hp,q(τ)dτ

⎞

⎠ =

=
∑

i∈S

t∫

t0

h
i

i(τ)dτ +
∑

i∈S

n−1∑

m=1

δm−1
∑

{p,q}∈Dm
S (i)

t∫

t0

φ
p,q

i hp,q(τ)dτ+

+
∑

i∈S

n−1∑

m=1

δm−1
∑

{p,q}∈Dm
N (i)\Dm

S (i)

t∫

t0

φ
p,q

i hp,q(τ)dτ =

=
∑

i∈S

t∫

t0

h
i

i(τ)dτ +
n−1∑

m=1

δm−1
∑

{p,q}∈ ⋃

i∈S

Dm
S (i)

t∫

t0

(φ
p,q

i1 + . . . φ
p,q

im+1
)hp,q(τ)dτ+

+
∑

i∈S

n−1∑

m=1

δm−1
∑

{p,q}∈Dm
N (i)\Dm

S (i)

t∫

t0

φ
p,q

i hp,q(τ)dτ ≥

≥
∑

i∈S

t∫

t0

h
i

i(τ)dτ +
n−1∑

m=1

δm−1
∑

{p,q}∈ ⋃

i∈S

Dm
S (i)

t∫

t0

hp,q(τ)dτ =

= V (S;x0, T − t0) − V (S;x(t), T − t). (27)

Then

∑

i∈S

ξ̃i(t) =
∑

i∈S

t∫

t0

β(τ)dτ +
∑

i∈S

ξi(x(t), T − t) ≥

≥ V (S;x0, T − t0) − V (S;x(t), T − t) + V (S;x(t), T − t) = V (S;x0, T − t0)
(28)

According to (28), ξ̃(x0, T −t0) belongs to the core C(x0, T −t0). This proves
the strong-time consistency of the core.

6 Some Imputations from the Core

Proposition 2 shows that an imputation belongs to the core, if and only if, the
payoff from the interaction of any pair of players is divided only between the
players belonging to the shortest path between these players. The choice of a
particular imputation from the core must correspond to some idea of fairness
among the participants in the game. Consider some of such imputations.
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6.1 The Shapley Value

The Shapley value [13] is a classic cooperative solution. According to this solu-
tion, each player receives an expected marginal contribution in the game with
respect to a uniform distribution over the set of all permutations on the set of
players.

The Shapley value is defined by:

Shi(x0, T − t0) =
∑

S: i∈S

(s − 1)!(n − s)!
n!

(V (S;x0, T − t0) − V (S \ i;x0, T − t0)).

The Shapley value in our game has the following form

Shi(x0, T − t0) = V ({i};x0, T − t0)+

+
r∑

m=1

δm−1

m + 1

∑

{p,q}∈Dm(i)

T∫

t0

hp,q(τ)dτ. (29)

Here δm−1
T∫

t0

hp,q(τ)dτ – the payoff from the interaction of two players p and

q with the length of shortest path m between them. It is assumed that this value
is divided equally among all the players lying on the shortest path between p
and q.

In the game under consideration, players can interact only if they are con-
nected by a path of length no more than r. This means that the game can be
considered as a game with restricted cooperation. Then, taking into account the
form of the characteristic function, we can conclude that the Myerson value [6]
coincides with the Shapley value in this game. And this solution is the unique
allocation rule that satisfies fairness (loss of players i and j from the removal of
a link ij are the same) and efficiency (component efficiency requires the total
value of a component to be allocated among the members of the component).

6.2 Position Value Solution

Meessen [5] introduced another value function for communication situations,
called the position value. This solution assumes a dual point of view and con-
centrates on the role of links. The idea of the position value is as follows. The
communicative strength of a link is measured by means of the Shapley value
of a kind of “dual” game on the links of graph. And assuming each player has
veto power of the use of any arc that he is an endpoint of, it seems reasonable
to divide the worth of an arc equally between the two players who are at its
endpoints [1].

Denote by V (S;x0, T − t0) the characteristic function in “dual” game on the
links. Let Sm is the set of pairs of vertices {p, q}, such that p ∈ S, q ∈ S, the
distance between them is m ≤ r, all vertices from the shortest path between p
and q belong to S. Then
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V (S;x0, T − t0) =
r∑

m=1

δm−1
∑

{p,q}∈Sm

T∫

t0

hp,q(τ)dτ. (30)

Denote as Dm(i, j) the set of pairs {p, q}, such that the distance between
them is m ≤ r, link (i, j) belongs to the shortest path between p and q.

The Shapley value in link game has the form:

Shi,j(x0, T − t0) =

T∫

t0

hi,j(τ)dτ +
r∑

m=2

δm−1

m

∑

{p,q}∈Dm(i,j)

T∫

t0

hp,q(τ)dτ. (31)

Then the position value can be defined as

Pi(x0, T − t0) =

T∫

t0

hi,j(τ)dτ +
∑

j∈K(i)

1
2
Shi,j(x0, T − t0). (32)

Let Dm
N (i) = Em(i)

⋃
Fm(i). Here Em(i) is the set of pairs of vertices {p, q}

such that the distance between them equals m ≤ r, and i coincides with p or
q (i is an endpoint of the path between p and q). Fm(i) is the set of pairs of
vertices {p, q} such that the distance between them equals m ≤ r, i lies on the
path between p and q, and i is not an endpoint in it. Then the position value
has the following form

Pi(x0, T − t0) = V ({i};x0, T − t0) +
r∑

m=1

δm−1

2m

∑

{p,q}∈Em(i)

T∫

t0

hp,q(τ)dτ

+
r∑

m=1

δm−1

m

∑

{p,q}∈F m(i)

T∫

t0

hp,q(τ)dτ. (33)

According to this imputation, the payoff of interaction between any pair
of vertices p and q (with the distance m between them) is divided as follows.

Players p and q receive 1
2m

T∫
t0

hp,q(τ)dτ and all other players from the shortest

path between them receive 1
m

T∫
t0

hp,q(τ)dτ . Such distribution of the payoff can be

explained by the following reasoning. Endpoint players have the ability to remove
only one link on the shortest path, and all intermediate players can remove two
links.

7 Example

Consider a model of non-renewable resource extraction (see, for example, [2]).
Let n players (regions or countries) exploit a non-renewable natural resource.
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But we assume separate extraction, which may be due to territorial features.
Further, xi(t) denotes the state corresponding to the resource stock at time t
available to the extraction for player i. The dynamics of the stock is given by
the following differential equations with the initial conditions xi0 > 0:

ẋi(t) = −ui(t), xi(t0) = xi0. (34)

Here, ui(t) denotes the extraction effort of player i at time t.
In compliance with the physical nature of the problem we require that ui(t) ≥

0 and xi(t) ≥ 0 for all t ≥ t0, and that, if xi(t) = 0, then the only feasible rate
of extraction is ui(t) = 0 for all i = 1, . . . , n.

The payoff of region i is positively related to its extraction effort and the
extraction efforts of regions linked in the region network.

It is assumed that the instantaneous payoff is discounted at a constant rate
ρ > 0. The gain region i obtains through interaction with region j has the form
hj

i (t) = e−ρtbj
iu

μ
j (t). And hi

i(t) = e−ρtuμ
i (t) is the instantaneous gain that player

i can obtain by itself. Here μ ∈ (0, 1). Then the objective function of the ith
player is defined as

Ji(x0, u1, . . . , un) =

T∫

t0

e−ρt

⎛

⎝uμ
i (t) +

r∑

m=1

δm−1
∑

j∈Km(i)

bj
iu

μ
j (t)

⎞

⎠ dt. (35)

The players cooperate in order to achieve the maximum total payoff:

∑

i∈N

Ji(x0, u1, . . . , un) =
∑

i∈N

T∫

t0

e−ρtaiu
μ
i (t)dt, (36)

where ai = 1 +
r∑

m=1
δm−1

∑
j∈Km(i)

bi
j .

Following [12], we define the Hamiltonian function as

H =
∑

i∈N

e−ρtaiu
μ
i (t) −

∑

i∈N

ψi(t)ui(t).

Taking into account that xi(t) ≥ 0 and ui(t) ≥ 0, the optimal controls ūi are
obtained from the first-order optimality conditions ∂H

∂ui
= 0 as

ūi(t) =
(

μai
e−ρt

ψi(t)

) 1
1−μ

.

Solving the respective canonical system with the transversality conditions
ψi(T )xi(T ) = 0, we obtain

ψi = μai

⎡

⎣
(1 − μ)

(
e

−ρt0
1−μ − e

−ρT
1−μ

)

ρx0

⎤

⎦
1−μ

.
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The optimal state trajectory of player i is thus

x̄i(t) = xi0 +
xi0

(
e

−ρt
1−μ − e

−ρt0
1−μ

)

(
e

−ρt0
1−μ − e

−ρT
1−μ

) .

The optimal value of the total payoff then equals

V (N ;x0, T − t0) =
∑

i∈N

Ji(x0, ū) =

⎛

⎝
(1 − μ)

(
e

−ρt0
1−μ − e

−ρT
1−μ

)

ρ

⎞

⎠
1−μ

∑

i∈N

xμ
i0ai.

According to (7) we can find V (S;x0, T − t0):

V (S;x0, T − t0) =

⎛

⎝
(1 − μ)

(
e

−ρt0
1−μ − e

−ρT
1−μ

)

ρ

⎞

⎠
1−μ

∑

i∈S

xμ
i0aiS

where aiS = 1 +
r∑

m=1
δm−1

∑
j∈Km

S (i)

bi
j .

Consider now the numeric example for the case of 6-players game. Assume
r = 2. Figure 1 shows the structure of the network in the game.

Fig. 1. The network structure of the game

According to Proposition 2 to find the core of the game we need to define the
set of vectors

φ1,2 = (φ1,2
1 , φ1,2

2 ), φ2,3 = (φ2,3
2 , φ2,3

3 ), φ3,4 = (φ3,4
3 , φ3,4

4 )

φ4,5 = (φ4,5
4 , φ4,5

5 ), φ5,6 = (φ5,6
5 , φ5,6

6 ), φ1,6 = (φ1,6
1 , φ1,6

6 )

φ1,3 = (φ1,3
1 , φ1,3

2 , φ1,3
3 ), φ2,4 = (φ2,4

2 , φ2,4
3 , φ2,4

4 )

φ3,5 = (φ3,5
3 , φ3,5

4 , φ3,5
5 ), φ4,6 = (φ4,6

4 , φ4,6
5 , φ4,6

6 )

φ1,5 = (φ1,5
1 , φ1,5

6 , φ1,5
5 ), φ2,6 = (φ2,6

2 , φ2,6
1 , φ2,6

6 ).

For every vector φp,q the sum of its components is equal to 1 and 0 ≤ φp,q
k ≤ 1.
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Then every imputation from the core can be represented in the following
form

ξ1(x0, T − t0) =

T∫

t0

[h
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ξ3(x0, T − t0) =
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For the Shapley value we have

φ1,2 = φ2,3 = φ3,4 = φ4,5 = φ5,6 = φ1,6 = (
1
2
,
1
2
),
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φ1,3 = φ2,4 = φ3,5 = φ4,6 = φ1,5 = φ2,6 = (
1
3
,
1
3
,
1
3
).

The payoff of player 1 according to the Shapley value is

Sh1(x0, T − t0) =
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For the position value we use the following vectors:

φ1,2 = φ2,3 = φ3,4 = φ4,5 = φ5,6 = φ1,6 = (
1
2
,
1
2
),

φ1,3 = φ2,4 = φ3,5 = φ4,6 = φ1,5 = φ2,6 = (
1
4
,
1
2
,
1
4
).

The payoff of player 1 according to the position value is

P1(x0, T − t0) =
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We assume the following values of the parameters: μ = 0.5, T = 100, t0 = 0,
ρ = 0.01, x0i = 1000, i = 1, . . . , 6, δ = 0.5, b21 = b31 = b51 = b42 = b43 = b64 = b13 =
b16 = b15 = b23 = b35 = b46 = b56 = 0.01, b12 = b24 = b26 = b34 = b32 = b54 = b65 = 0.02,
b61 = b62 = b53 = b45 = 0.03. Then V (N ;x0, T − t0) = 4142.38, V ({i};x0, T − t0) ≈
657, 52. Figure 2 shows the optimal trajectory and optimal control of one player.

Sh(x0, T − t0) = (690.4, 688.2, 687.11, 693.68, 692.59, 690.4),

P (x0, T − t0) = (692.04, 687.11, 687.11, 694.51, 692.04, 689.57).

Fig. 2. Optimal trajectory and optimal control of player 1

To illustrate the strong-time consistency of the core assume players choose
the Shapley value as cooperative solution, but change it on the position value at
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the moment t = 50. Then the payoffs of players at the period [t0, 50] are (504.72,
503.12, 502.32, 507.12, 506.32, 504.72) and at the period [50, 100] are (186.12,
184.79, 184.79, 186.78, 186.12, 185.46). The resulting imputation (690.84, 687.91,
687.11, 693.9, 692.44, 690.18) (see Eq. (24)) belongs to the core of the initial
game.

8 Conclusion

One class of cooperative differential games on networks is investigated. It is
assumed that players can interact with each other only if the distance between
them on the network is not greater than a given value. A condition is derived
under which the characteristic function is convex even in the presence of suffi-
ciently large cycles. This expanded the class of problems that are described by
the models discussed earlier.

A necessary and sufficient condition for the imputation to belong to the core
is provided. The strong time-consistency of the core is proved. This means that
players can switch at intermediate moments of the game to imputations from
the core, different from the one chosen at the begining. This procedure does not
output resulting imputation from the core of the original game. As an illustrative
example, a differential game of resource extraction on the network is investigated.
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