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Abstract
We introduce an inexact oracle model for variational inequalities with monotone

operator, propose a numerical method, which solves such variational inequalities, and
analyze its convergence rate. As a particular case, we consider variational inequalities
with Hölder-continuous operator and show that our algorithm is universal. This means
that, without knowing the Hölder exponent and Hölder constant, the algorithm has the
least possible in the worst-case sense complexity for this class of variational inequalities.
We also consider the case of variational inequalities with strongly monotone operator
and generalize the algorithm for variational inequalities with inexact oracle and our
universal method for this class of problems. Finally, we show, how our method can be
applied to convex-concave saddle point problems with Hölder-continuous partial sub-
gradients.
Keywords: Variational inequality, monotone operator, Hölder continuity, inexact or-
acle, complexity estimate
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1 Introduction
This paper is devoted to Minty [31] (or weak [48]) variational inequalities with a monotone
and continuous operator. Variational inequalities with monotone operators are closely con-
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nected with convex optimization problems and convex-concave saddle point problems. In
the former case, the operator is just the subgradient of the objective function, and in the
latter case the operator is composed from partial subgradients of the objective in the saddle
point problem. Studying variational inequalities is important also for equilibrium and com-
plementarity problems [37, 24] and saddle point problems has become an important part of
research in machine learning [3, 41].

Our focus here is on numerical methods for such problems, their convergence rate and
complexity estimates. Significant contribution to the development of numerical methods
for solving variational inequalities was made in 1970’s, when the extragradient method was
proposed in [42]. More recently, [45] proposed a non-Euclidean variant of this method, called
Mirror Prox algorithm, which can be applied for Lipschitz continuous operators.

Different methods with similar complexity were also proposed in [59, 4, 48, 44, 43, 28].
Besides that, in [48], Nesterov proposed a method for variational inequalities with bounded
variation of the operator, i.e. with non-smooth operator. He raised also a question, whether
it is possible to propose a method, which automatically "adjusts to the actual level of smooth-
ness of the current problem instance". One of the goals of this paper is to propose such an
algorithm.

To this aim, we consider a more general class of operators being so-called Hölder-continuous.
This class covers both the case of operators with bounded variation and Lipschitz-continuous
operators. Variational inequalities with
Hölder-continuous monotone operator were already considered in [45], where a special choice
of the stepsize for the Mirror Prox algorithm led to the optimal complexity for this class of
problems; see [46]. The authors of [14] consider variational inequalities with non-monotone
Hölder-continuous operator. Unfortunately, both papers use Hölder constant and exponent
to define the stepsize of their methods. This is in contrast to optimization, where so called
universal algorithms were proposed, which do not use the information about the Hölder ex-
ponent and Hölder constant; see [49, 30, 29, 7, 19, 39, 35, 36, 51]. In this paper, we propose a
universal method for variational inequalities with Hölder-continuous monotone operator. We
also generalize this method for the case of variational inequalities with strongly monotone
operator. Such problems were considered in [52], but only for the case of Lipschitz-continuous
operator with known Lipschitz constant.

On the other hand, as it was shown for optimization problems in [16, 49], universal
methods have a natural connection with methods for smooth problems with inexact oracle.
Namely, it can be shown that a function with Hölder-continuous subgradient can be con-
sidered as a Lipschitz-smooth function with inexact oracle. Despite that there are many
works on optimization methods with inexact oracle, see e.g. [15, 16, 20, 27, 11, 39, 13, 5, 61],
we are not aware of any extensions of these non-stochastic definitions of inexact oracle to
the variational inequality setting and methods for variational inequalities with inexactly
given operator, except stochastic case. By this paper, we introduce a theory of methods for
variational inequalities with deterministic inexact oracle, see also the follow-up work [60].
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2 Preliminaries
We start with the general notations, problem statement, and description of proximal setup.
Let E be a finite-dimensional real vector space and E∗ be its dual. We denote the value of
a linear function u ∈ E∗ at x ∈ E by 〈u, x〉. Let ‖ · ‖ be a general norm on E, ‖ · ‖∗ be its
dual, defined by
‖u‖∗ := max

x

{
〈u, x〉, ‖x‖ ≤ 1

}
. We use ∇f(x) to denote any subgradient of a function f at

a point x ∈ domf .
The main problem, we consider, is the following Minty variational inequality (VI)

Find x∗ ∈ Q : 〈g(x), x∗ − x〉 ≤ 0, ∀x ∈ Q (1)

where Q is convex (non-necessary compact) subset of finite-dimensional vector space E,
g : Q→ E∗ is continuous, monotone operator

〈g(x)− g(y), x− y〉 ≥ 0, x, y ∈ Q,

satisfying Hölder condition on Q, i.e., for some ν ∈ [0, 1] and Lν ≥ 0,

‖g(x)− g(y)‖∗ ≤ Lν‖x− y‖ν , x, y ∈ Q. (2)

We refer to ν as Hölder exponent and to Lν as Hölder constant. We assume that the varia-
tional inequality (1) has a solution. Under the assumption of continuity and monotonicity of
the operator g, the problem (1) is equivalent to a Stampacchia [31] (or strong [48]) variational
inequality, in which the goal is to find x∗ ∈ Q such that

〈g(x∗), x∗ − x〉 ≤ 0, ∀x ∈ Q. (3)

Following [48, 2], to assess the quality of a candidate solution x̂, we use a convex non-empty
compact subset C of the set Q and the following restricted gap (or merit) function

GapC(x̂) = max
u∈C
〈g(u), x̂− u〉. (4)

Proposition 1 in [2] states that GapC(x̂) ≥ 0 whenever x̂ ∈ C and if GapC(x̂) = 0 and C
contains a neighborhood of x̂, then x̂ is a solution of (3). This motivates our goal that is
to find an approximate solution of the problem, that is, a point x̂ ∈ Q such that, for some
ε > 0

GapC(x̂) = max
u∈C
〈g(u), x̂− u〉 ≤ ε. (5)

As already mentioned, [45] proposed Mirror Prox algorithm under the assumption of
compactness of Q and L1-Lipschitz continuity of the operator, i.e., g satisfying (2) with
ν = 1 and L1. This method has complexity O

(
L1R2

ε

)
, where R characterizes the diameter

of the set Q and ε is the desired accuracy. By complexity we mean the number of iterations
of an algorithm to find a point x̂ ∈ Q such that (5) holds. For the case of variational
inequalities with bounded variation of the operator g, i.e., g satisfying (2) with ν = 0 and L0
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[48] proposed a method with complexity O
(
L2
0R

2

ε2

)
. The method for variational inequalities

with Hölder-continuous monotone operator [45] has the complexity

O

((
Lν
ε

) 2
1+ν

R2

)
,

which is optimal for the case of ν = 1 and for the case of ν = 0 [54, 46].
Next we give several definitions, which are necessary for introducing the method. We

choose a prox-function d(x), which is continuous and convex on Q, and also is

1. continuously differentiable at the relative interior of Q;

2. 1-strongly convex on Q with respect to ‖ · ‖, i.e., for any x ∈ Q0, y ∈ Q d(y)− d(x)−
〈∇d(x), y − x〉 ≥ 1

2
‖y − x‖2.

Without loss of generality, we assume that min
x∈Q

d(x) = 0.

We define also the corresponding Bregman divergence

V [z](x) := d(x)− d(z)− 〈∇d(z), x− z〉, x ∈ Q, z ∈ Q0.

Standard proximal setups, i.e., Euclidean, entropy, `1/`2, simplex, nuclear norm, spectahe-
dron can be found in [9]. Below we use Bregman divergence in so-called prox-mapping

min
x∈Q
{〈g, x〉+MV [x̄](x)} , (6)

where M > 0, x̄ ∈ Q0, g ∈ E∗ are given. We allow this problem to be solved inexactly in the
following sense inspired by [9]. Assume that we are given δpu > 0, M > 0, x̄ ∈ Q0, g ∈ E∗.
Further, we assume that for an arbitrary δpc > 0, we can calculate x̃ = x̃(x̄, g,M, δpc, δpu) ∈
Q0 such that

〈g +M [∇d(x̃)−∇d(x̄)] , u− x̃〉 ≥ −δpc − δpu, ∀u ∈ Q. (7)

We call the point x̃ an inexact prox-mapping and write

x̃ := arg min
x∈Q

δpc+δpu {〈g, x〉+MV [x̄](x)} . (8)

Here δpu denotes the error of the prox-mapping, which is not controlled, and δpc denotes the
error of the prox-mapping, which can be controlled and made as small as desired.

3 Inexact Oracle for Variational Inequalities
Our goal is to consider, in a unified manner, VIs with Hölder-continuous operator and VIs
with inexact values of the operator. This can be done by considering Hölder-continuous
operator as a particular case of Lipschitz-continuous operator with some inexactness. Thus,
we introduce the following definition of inexact oracle for the operator g.

4



Definition 1. Assume that for some δu > 0 (uncontrolled error) and for any number δc > 0
(controlled error) there exists a constant L(δc) ∈]0,+∞[ such that, for any points x, y ∈ Q,
one can calculate g̃(x, δc, δu) and
g̃(y, δc, δu) ∈ E∗ satisfying

〈g̃(y, δc, δu)− g̃(x, δc, δu), y − z〉 ≤
L(δc)

2

(
‖y − x‖2 + ‖y − z‖2

)
+ δc + δu, (9)

〈g̃(y, δc, δu)− g(y), y − z〉 ≥ −δu, ∀z ∈ Q. (10)

Then, the operator g̃(·, δc, δu) is called inexact oracle for the operator g.

In this definition, δc represents the error of the oracle, which we can control and make as
small as we would like to. On the opposite, δu represents the uncontrolled error, which can
be understood as an error in the problem data, for example, when g is given as a solution
to an auxiliary problem. We notice also that if the inequality (9) holds for some L(δc), then
it holds also for any L̃(δc) ≥ L(δc).

Example 1 below shows that this definition satisfies our goal of covering both the case
of Hölder-continuous operator and the case of inexact values of the operator. The following
technical lemma is the main clue for this example.

Lemma 1. Let a, b, c ≥ 0, ν ∈ [0, 1]. Then, for any δ > 0,

abνc ≤
(

1

δ

) 1−ν
1+ν a

2
1+ν

2

(
b2 + c2

)
+
δ

2
.

The proof of this lemma is given in the Appendix A.

Example 1. (Hölder-continuous operator with inexact values on a bounded set). Let us
assume that:

1. The operator g(x) is Hölder-continuous on Q, i.e., satisfies (2).

2. The set Q is bounded with maxx,y∈Q ‖x− y‖ ≤ D.

3. There exist δ̄u > 0 and at any point x ∈ Q, we can calculate approximation ḡ(x) for
g(x) such that ‖ḡ(x)− g(x)‖∗ ≤ δ̄u.

Then, for any z ∈ Q,

〈ḡ(y)− ḡ(x), y − z〉 = 〈ḡ(y)− g(y), y − z〉 − 〈ḡ(x)− g(x), y − z〉+ 〈g(y)− g(x), y − z〉
≤ 2δ̄uD + ‖g(y)− g(x)‖∗‖y − z‖ ≤ 2δ̄uD + Lν‖y − x‖ν‖y − z‖

≤ 2δ̄uD +
1

2

(
1

δ

) 1−ν
1+ν

L
2

1+ν
ν

(
‖x− y‖2 + ‖y − z‖2

)
+
δ

2
,
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where Lemma 1 was used to get the last inequality.

Thus, we can set δu = 2δ̄uD, δc = δ
2
, and L(δc) =

(
1

2δc

) 1−ν
1+ν

L
2

1+ν
ν to get (9). Further,

|〈g(y)− g(y), y − z〉| ≤ ‖g(y)− g(y)‖∗‖y − z‖ ≤ δuD =
1

2
δu < δu

and we have 〈g(y)− g(y), y − z〉 > −δu, which is (10).

Example 2. (Connection with (δ, L)-oracle in optimization). Let convex function f : Q→
R, where Q is a convex compact, be endowed with (δ, L)-oracle [16]. This means that for
some L > 0 at any y ∈ Q there exists a pair (fδ(y), gδ(y)) ∈ R×Rn such that, for all y ∈ Q,

fδ(y) + 〈gδ(y), x− y〉 ≤ f(x) ≤ fδ(y) + 〈gδ(y), x− y〉+
L‖x− y‖2

2
+ δ. (11)

Let g(y) be any selector of the exact subgradients of f . Under an additional assumption
that ‖gδ(y)− g(y)‖ ≤ δ̄u, we show that gδ(y) is an inexact oracle for the operator g(y). This
is similar to the exact case, when the subgradient of a convex function defines a monotone
operator. It is easy to show (10). Indeed,

〈gδ(y)− g(y), y − x〉 ≥ −δ̄u‖x− y‖ ≥ −δ̄uD, ∀x, y ∈ Q. (12)

Let us show that (9) is satisfied with L(δc) = L, δc = 0,
δu = max{2δ, δ̄uD}, and g̃(y, δc, δu) = gδ(y). Indeed,

〈gδ(z)− gδ(y), z − x〉 = 〈gδ(y)− gδ(z), x− z〉
= 〈gδ(y), x− y〉 − 〈gδ(z), x− z〉 − 〈gδ(y), z − y〉
= (f(x)− fδ(z)− 〈gδ(z), x− z〉) + (f(z)− fδ(y)− 〈gδ(y), z − y〉)−

− (f(x)− fδ(y)− 〈gδ(y), x− y〉) + (fδ(z)− f(z))

≤
(
L

2
‖x− z‖2 + δ

)
+

(
L

2
‖z − y‖2 + δ

)
,

where in the last inequality we used twice the right inequality in (11), and twice the left
inequality in (11).

4 Generalized Mirror Prox
In this section, we introduce a new algorithm, which we call Generalized Mirror Prox (GMP),
for problem (1) with inexact oracle for g in the sense of Definition 1. The algorithm is listed
below as Algorithm 1.

Theorem 1. Assume that g(·) and g̃(·, δc, δu) satisfy (9) and (10). Then, for any k ≥ 1 and
any u ∈ Q,

1∑k−1
i=0 M

−1
i

k−1∑
i=0

M−1
i 〈g(wi), wi − u〉 ≤

1∑k−1
i=0 M

−1
i

(V [z0](u)− V [zk](u)) +
ε

2
+ δu + 2δpu.

6



Algorithm 1 Generalized Mirror Prox
Input: accuracy ε > 0, level δu > 0 of the uncontrolled oracle error, level δpu > 0 of

the uncontrolled error of prox-mapping, initial guess M−1 for L(δc), prox-setup: d(x),
V [z](x).

1: Set k = 0, z0 = arg minu∈Q d(u).
2: for k = 0, 1, ... do
3: Set ik = 0, δc,k = ε

4
, δpc,k = ε

8
.

4: repeat
5: Set Mk = 2ik−1Mk−1.
6: Calculate

wk = arg min
x∈Q

δpc,k+δpu {〈g̃(zk, δc,k, δu), x〉+MkV [zk](x)} . (13)

zk+1 = arg min
x∈Q

δpc,k+δpu {〈g̃(wk, δc,k, δu), x〉+MkV [zk](x)} . (14)

7: ik = ik + 1.
8: until

〈g̃(wk, δc, δu)− g̃(zk, δc, δu), wk − zk+1〉 ≤
Mk

2

(
‖wk − zk‖2 + ‖wk − zk+1‖2

)
+ δc,k + δu. (15)

9: Set k = k + 1.
10: end for
Output: ŵk = 1∑k−1

i=0 M
−1
i

∑k−1
i=0 M

−1
i wi.

Proof As it follows from (9), if Mk ≥ L (δc,k) = L
(
ε
4

)
, (15) holds. Thus, Algorithm 1 is

correctly defined.
Let us fix some iteration k ≥ 0. For simplicity, we denote

g̃(zk) = g̃(zk, δc,k, δu) and g̃(wk) = g̃(wk, δc,k, δu). By the definition of inexact prox-mapping
(7)-(8) and (13), (14), we have, for any u ∈ Q,

〈g̃(zk) +Mk∇d(wk)−Mk∇d(zk), u− wk〉 ≥ −δpu −
ε

8
, (16)

〈g̃(wk) +Mk∇d(zk+1)−Mk∇d(zk), u− zk+1〉 ≥ −δpu −
ε

8
. (17)

7



Whence, for all u ∈ Q,

〈g̃(wk), wk − u〉 = 〈g̃(wk), zk+1 − u〉+ 〈g̃(wk), wk − zk+1〉
(17)
≤ Mk〈∇d(zk)−∇d(zk+1), zk+1 − u〉+ 〈g̃(wk), wk − zk+1〉+ δpu +

ε

8
= Mk(d(u)− d(zk)− 〈∇d(zk), u− zk〉)−Mk(d(u)− d(zk+1)

− 〈∇d(zk+1), u− zk+1〉)−Mk(d (zk+1)− d (zk)

− 〈∇d (zk) , zk+1 − zk〉) + 〈g̃(wk), wk − zk+1〉+ δpu +
ε

8
= MkV [zk](u)−MkV [zk+1](u)−MkV [zk](zk+1) + 〈g̃(wk), wk − zk+1〉

+ δpu +
ε

8

Further, for all u ∈ Q,

〈g̃(wk),wk − zk+1〉 −MkV [zk](zk+1) = 〈g̃(wk)− g̃(zk), wk − zk+1〉
−MkV [zk](zk+1) + 〈g̃(zk), wk − zk+1〉

(16)
≤ 〈g̃(wk)− g̃(zk), wk − zk+1〉+Mk〈∇d(zk)−∇d(wk), wk − zk+1〉

−MkV [zk](zk+1) + δpu +
ε

8
= 〈g̃(wk)− g̃(zk), wk − zk+1〉+Mk〈∇d(zk)−∇d(wk), wk − zk+1〉

−Mk(d(zk+1)− d(zk)− 〈∇d(zk), zk+1 − zk〉) + δpu +
ε

8
= 〈g̃(wk)− g̃(zk), wk − zk+1〉 −Mk

(
d(wk)− d(zk)

− 〈∇d(zk), wk − zk〉
)
−Mk(d(zk+1)− d(wk)− 〈∇d(wk), zk+1 − wk〉)

+ δpu +
ε

8
= 〈g̃(wk)− g̃(zk), wk − zk+1〉 −MkV [zk](wk)

−MkV [wk](zk+1) + δpu +
ε

8
≤ 〈g̃(wk)− g̃(zk), wk − zk+1〉

− Mk

2
(‖zk − wk‖2 + ‖zk+1 − wk‖2) + δpu +

ε

8

(15)
≤ 3ε

8
+ δu + δpu,

where we also used that δc,k = ε/4.
Thus, we obtain, for all u ∈ Q and i ≥ 0,

M−1
i 〈g̃(wi), wi − u〉 ≤ V [zi](u)− V [zi+1](u) +

M−1
i ε

2
+M−1

i (δu + 2δpu).

Summing up these inequalities for i from 0 to k − 1, we have

1∑k−1
i=0 M

−1
i

k−1∑
i=0

M−1
i 〈g̃(wi), wi − u〉 ≤

1∑k−1
i=0 M

−1
i

(V [z0](u)− V [zk](u)) +
ε

2
+ δu + 2δpu.

By (10), we obtain the statement of the Theorem 1.
Note that the compactness of the set Q was not used in the proof.
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Corollary 1. Assume that g(·) and g̃(·, δc, δu) satisfy (9) and (10). Also let C ⊆ Q be a
convex compact. Then, for all k ≥ 0, we have

GapC(ŵk) = max
u∈C
〈g(u), ŵk − u〉 ≤

1∑k−1
i=0 M

−1
i

max
u∈Q

V [z0](u) +
ε

2
+ δu + 2δpu, (18)

where ŵk =
(∑k−1

i=0 M
−1
i

)−1∑k−1
i=0 M

−1
i wi.

Proof By monotonicity of g, we have, for all i ≥ 0 and u ∈ Q,

〈g(u), wi − u〉 = 〈g(wi), wi − u〉+ 〈g(u)− g(wi), wi − u〉 ≤ 〈g(wi), wi − u〉,

Therefore,
(∑k−1

i=0 M
−1
i

)−1∑k−1
i=0 M

−1
i 〈g(wi), wi − u〉 ≥ 〈g(u), ŵk − u〉 for any u ∈ Q. Com-

bining this with Theorem 1 and taking the maximum over all u ∈ C, we obtain the statement
of the Corollary 1.

If a number D satisfying maxu∈C V [z0](u) ≤ D is known, which is the case for most
of the standard proximal setups [45], we can construct an adaptive stopping criterion: the

algorithm stops whenever D
(∑k−1

i=0 M
−1
i

)−1

≤ ε/2. This guarantees that the r.h.s. of (18)
is no greater than ε+ δu + 2δpu and ŵk is an (ε+ δu + 2δpu)-solution to (1).

Next, we consider the case of Hölder-continuous operator g and show that Algorithm
1 is universal. For simplicity we assume that the prox-mapping is calculated exactly, i.e.,
δpc = δpu = 0 and δu = 0. In this case, it is sufficient to set δc,k = ε

2
at each iteration of

Algorithm 1.

Corollary 2 (Universal Method for VI). Assume that the operator g is Hölder-continuous
with constant Lν for some ν ∈ [0, 1] and that in Algorithm 1 we have δc,k = ε/2, δu = 0,
δpc,k = 0, δpu = 0. Also let C ⊆ Q be a convex compact. Then, for all k ≥ 0, we have

GapC(ŵk) = max
u∈C
〈g(u), ŵk − u〉 ≤

2L
2

1+ν
ν

kε
1−ν
1+ν

max
u∈C

V [z0](u) +
ε

2
. (19)

Proof As it follows from (9), if Mk ≥ L(δc,k)L( ε
2
), (15) holds. Here L(·) is defined in

Example 1. Thus, for all
i = 0, ..., k − 1, we have Mi ≤ 2 · L( ε

2
) and

1∑k−1
i=0 M

−1
i

≤
2L( ε

2
)

k
=

2L
2

1+ν
ν

kε
1−ν
1+ν

.

Thus, (19) follows from (18).
Let us make several comments on the universal method. Since Algorithm 1 does not use

the values of parameters ν and Lν , we take the infinum w.r.t. ν ∈ [0, 1] and obtain the
following iteration complexity bound to find ŵk satisfying maxu∈C〈g(u), ŵk − u〉 ≤ ε:

4 inf
ν∈[0,1]

(
Lν
ε

) 2
1+ν

·max
u∈C

V [z0](u).

9



Using the same reasoning as in [49], we estimate the number of oracle calls for Algorithm 1.
The number of oracle calls at each iteration k is equal to 2ik, where by ik we mean the last
value of ik at the end of the inner cycle. So, Mk = 2ik−2Mk−1 and, hence, ik = 2 + log2

Mk

Mk−1
.

Thus, the total number of oracle calls is

k−1∑
j=0

ij = 4k + 2
k−1∑
i=0

log2

Mj

Mj−1

< 4k + 2 log2

(
2L
(ε

2

))
− 2 log2(M−1), (20)

where we used that Mk ≤ 2L( ε
2
). Hence, the total number of oracle calls of the Algorithm 1

does not exceed

inf
ν∈[0,1]

(
16

(
Lν
ε

) 2
1+ν

·max
u∈C

V [z0](u) + 2 log2 2

((
1

ε

) 1−ν
1+ν

L
2

1+ν
ν

))
− 2 log2(M−1).

Next, we compare our algorithm with the algorithm in [6] which appeared after the first
version of this paper appeared as an arxiv preprint. Their algorithm uses AdaGrad-type of
stepsizes and, denoting D2 ≥ maxu∈C V [z0](u), for the non-smooth case ν = 0, achieves, up
to logarithmic factors, complexity of O (L2

0D
2ε−2), which is similar to ours. For the smooth

case ν = 1 it achieves complexity O ((L0D + L1D
2)ε−1), which is similar to ours. Unlike our

paper, they consider only two extreme cases ν ∈ {0, 1}, but also consider stochastic setting.
At the same time, for our algorithm, 1/Mk plays the role of stepsize at iteration k, and from
(18) it is clear that, the smaller Mk, the smaller is the right hand side and the better is the
convergence guarantee. Step 5 of our algorithm ensures that the stepsize may decrease in
the course of the algorithm execution, leading to a better performance in practice. This is
in contrast to the stepsize in [6] which is a decreasing sequence. The experiments in [60,
Appendix 7] show that decreasing Mk (which is equivalent to increasing the stepsize) allows
to obtain much faster convergence.

5 Solving Variational Inequalities with Strongly Mono-
tone Operator

In this section, we assume, that the operator g in (1) is strongly monotone, which means
that, for some µ > 0,

〈g(x)− g(y), x− y〉 ≥ µ‖x− y‖2 ∀x, y ∈ Q. (21)

We slightly modify the assumptions on the prox-function d. Namely, we assume that 0 =
arg minx∈Q d(x) and that d is bounded on the unit ball in the chosen norm ‖ · ‖, that is

d(x) ≤ Ω

2
, ∀x ∈ Q : ‖x‖ ≤ 1, (22)

where Ω is some known constant. Note that for standard proximal setups, Ω = O(ln dimE)
[38]. Finally, we assume that we are given a starting point x0 ∈ Q and a number R0 > 0
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such that ‖x0 − x∗‖2 ≤ R2
0, where x∗ is the solution to (1). We show that the well-known

in optimization restart technique [47, 38, 20] also works in the context of VIs. To the best
of our knowledge, this is the first time when this technique is applied to VIs. The resulting
Restarted Generalized Mirror Prox algorithm is listed below as Algorithm 2.

Algorithm 2 Generalized Mirror Prox with restarts

Input: accuracy ε > 0, δu > 0, δpu > 0, µ > 0, Ω such that d(x) ≤ Ω
2
∀x ∈ Q : ‖x‖ ≤ 1;

x0, R0 such that ‖x0 − x∗‖2 ≤ R2
0.

1: Set p = 0, d0(x) = R2
0d
(
x−x0
R0

)
.

2: repeat
3: Set xp+1 as the output of Algorithm 1 for monotone case with accuracy µε/2, δu, δpu,

prox-function dp(·) and stopping criterion
∑k−1

i=0 M
−1
i ≥ Ω

µ
.

4: Set R2
p+1 = R2

0 · 2−(p+1) + 2(1− 2−(p+1))( ε
4

+ δu + 2δpu).

5: Set dp+1(x)← R2
p+1d

(
x−xp+1

Rp+1

)
.

6: Set p = p+ 1.
7: until p > log2

2R2
0

ε
.

Output: xp.

Theorem 2. Assume that g is strongly monotone with parameter µ. Also assume that the
prox-function d satisfies (22) and the starting point x0 ∈ Q and a number R0 > 0 are such
that ‖x0 − x∗‖2 ≤ R2

0, where x∗ is the solution to (1). Then, for p ≥ 0, the sequence xp
generated by Algorithm 2 satisfies

‖xp − x∗‖2 ≤ R2
0 · 2−p +

ε

2
+

2δu + 4δpu
µ

,

and the point xp returned by Algorithm 2 satisfies ‖xp − x∗‖2 ≤ ε+ 2δu+4δpu
µ

.

Proof Let us denote ∆ = ε
4

+ δu+2δpu
µ

. We show by induction that, for p ≥ 0,

‖xp − x∗‖2 ≤ R2
0 · 2−p + 2(1− 2−p)∆,

which leads to the statement of the Theorem 2. For p = 0 this inequality holds by the
theorem assumption. Assuming that it holds for some p ≥ 0, our goal is to prove it for p+ 1
considering the outer iteration p+ 1. Observe that the function dp defined in Algorithm 2 is
1-strongly convex w.r.t. the norm ‖ · ‖. Using the definition of dp(·) and (22), we have, since
xp = arg minx∈Q dp(x) and ‖xp − x∗‖ ≤ Rp

Vp[xp](x∗) = dp(x∗)− dp(xp)− 〈∇dp(xp), x∗ − xp〉 ≤ dp(x∗) = R2
pd

(
x∗ − xp
Rp

)
≤

ΩR2
p

2
.

Thus, by Theorem 1, taking u = x∗, we obtain

11



1∑k−1
i=0 M

−1
i

k−1∑
i=0

M−1
i 〈g(wi), wi − x∗〉 ≤

Vp[xp](x∗)∑k−1
i=0 M

−1
i

+
µε

4
+ δu + 2δpu ≤

ΩR2
p

2
∑k−1

i=0 M
−1
i

+ µ∆.

Since the operator g is continuous and monotone, the solution of the Minty VI (1) is also
the solution of the Stampacchia variational inequality [48, 24], i.e., 〈g(x∗), x∗−wi〉 ≤ 0, i =
0, ..., k − 1. This and the strong monotonicity of g, see (21), give, for all i = 0, ..., k − 1,

〈g(wi), wi − x∗〉 ≥ 〈g(wi)− g(x∗), wi − x∗〉 ≥ µ‖wi − x∗‖2.

Thus, by convexity of the squared norm, we obtain

µ‖xp+1 − x∗‖2 = µ

∥∥∥∥∥ 1∑k−1
i=0 M

−1
i

k−1∑
i=0

M−1
i wi − x∗

∥∥∥∥∥
2

≤ µ∑k−1
i=0 M

−1
i

k−1∑
i=0

M−1
i ‖wi − x∗‖2

≤ 1∑k−1
i=0 M

−1
i

k−1∑
i=0

M−1
i 〈g(wi), wi − x∗〉 ≤

ΩR2
p

2
∑k−1

i=0 M
−1
i

+ µ∆.

Using the stopping criterion
∑k−1

i=0 M
−1
i ≥ Ω

µ
, we get

‖xp+1 − x∗‖2 ≤
R2
p

2
+ ∆ =

1

2
(R2

0 · 2−p + 2(1− 2−p)∆) + ∆ = R2
0 · 2−(p+1) + 2(1− 2−(p+1))∆,

which finishes the induction proof.

Corollary 3. Assume that the operator g is Hölder-continuous with constant Lν for some
ν ∈ [0, 1] and strongly monotone with parameter µ. Then, Algorithm 2 returns a point xp
such that ‖xp−x∗‖2 ≤ ε+ 2δu+4δpu

µ
and the total number of iterations of the inner Algorithm

1 does not exceed

inf
ν∈[0,1]

⌈(
Lν
µ

) 2
1+ν 2

2
1+ν Ω

ε
1−ν
1+ν

· log2

2R2
0

ε

⌉
. (23)

Proof Let us denote p̂ =
⌈
log2

2R2
0

ε

⌉
. As it was shown in Corollary 2, at each inner

iteration, Mi ≤ 2L(µε
4

) = 2
(

2
µε

) 1−ν
1+ν

L
2

1+ν
ν . Thus, by the stopping criterion

∑k−1
i=0 M

−1
i ≥ Ω

µ
,

the inner cycle stops at the latest when

kp =

⌈(
Lν
µ

) 2
1+ν 2

2
1+ν Ω

ε
1−ν
1+ν

⌉
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and we have

N =

p̂∑
p=1

kp ≤

⌈(
Lν
µ

) 2
1+ν 2

2
1+ν Ω

ε
1−ν
1+ν

· log2

2R2
0

ε

⌉
.

Since Algorithm 1 does not need to know ν and Lν , we can take the infimum w.r.t. ν ∈
[0, 1]. The obtained complexity
estimate is optimal for the case ν = 1 [65] and is optimal up to a logarithmic factor for the
case ν = 0, [46]. For the intermediate case ν ∈ (0, 1) we are not aware of any lower bounds.
As a remark, we note that the complexity estimate for the case ν = 0 is O

(
L2
0

µ2ε

)
, whereas

one would expect O
(
L2
0

µε

)
. The reason is that we measure the error in terms of the distance

to the solution ‖xp − x∗‖, but not in terms of the residual in VI, i.e. maxu∈Q〈g(u), xp − u〉,
as in Corollary 2.

6 Applications to Saddle Point Problems
In this section, we consider saddle point problems and show, how Generalized Mirror Prox
can be applied to such problems. The problem, we consider is

f ∗ = min
u∈Q1

max
v∈Q2

f(u, v), (24)

where Q1 ⊂ E1 and Q2 ⊂ E2 are convex and closed subsets of normed spaces E1 and E2

with norms ‖ · ‖1 and ‖ · ‖2, respectively. Based on the norms in E1 and E2, we define the
norm on their product E1 × E2 as
‖x‖ = max{‖u‖1, ‖v‖2}, x = (u, v) ∈ E1 × E2 with the corresponding dual norm ‖s‖∗ =
‖z‖1,∗ + ‖w‖2,∗, s = (z, w) ∈ E∗, where ‖ · ‖1,∗ and ‖ · ‖2,∗ are the norms on the conjugate
spaces E∗1 and E∗2 , dual to ‖ · ‖1 and ‖ · ‖2 respectively.

The function f in (24) is assumed to be convex in u and concave in v. As it is usually
done, we consider the operator

g(x) =

(
∇uf(u, v)
−∇vf(u, v)

)
, x = (u, v) ∈ Q := Q1 ×Q2. (25)

By the convexity of f in u and the concavity in v, the operator g is monotone

〈g(x)− g(y), x− y〉 ≥ 0 ∀x, y ∈ Q ⊂ E, (26)

where x = (u1, v1), y = (u2, v2).
The following lemma gives sufficient conditions for g to be Hölder-continuous, i.e., to

satisfy (2).

Lemma 2. Assume that for f in (24) there exist a number
ν ∈ [0, 1] and constants L11,ν , L12,ν , L21,ν , L22,ν < +∞ such that

‖∇uf(u+ ∆u, v + ∆v)−∇uf(u, v)‖1,∗ ≤ L11,ν‖∆u‖ν1 + L12,ν‖∆v‖ν2, (27)
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‖∇vf(u+ ∆u, v + ∆v)−∇vf(u, v)‖2,∗ ≤ L21,ν‖∆u‖ν1 + L22,ν‖∆v‖ν2 (28)

for all u, u + ∆u ∈ Q1, v, v + ∆v ∈ Q2. Then g defined in (25) is Hölder-continuous, i.e.,
satisfies (2) with the same ν and

Lν = L11,ν + L12,ν + L21,ν + L22,ν .

Proof Indeed, for each x = (u1, v1), y = (u2, v2) ∈ Q we have:

‖g(x)− g(y)‖∗ = ‖∇uf(u1, v1)−∇uf(u2, v2)‖1,∗ + ‖∇vf(u1, v1)−∇vf(u2, v2)‖2,∗

≤ L11,ν‖u1 − u2‖ν1 + L12,ν‖v1 − v2‖ν2 + L21,ν‖u1 − u2‖ν1 + L22,ν‖v1 − v2‖ν2
= (L11,ν + L21,ν)‖u1 − u2‖ν1 + (L12,ν + L22,ν)‖v1 − v2‖ν2
≤ (L11,ν + L12,ν + L21,ν + L22,ν) max{‖u1 − u2‖ν1, ‖v1 − v2‖ν2}
= (L11,ν + L12,ν + L21,ν + L22,ν)‖x− y‖ν .

Remark 1. As an alternative, one can consider the following primal and dual pair of norms
for E = E1×E2: ‖x‖ =

√
‖u‖2

1 + ‖v‖2
2, x = (u, v) ∈ E1×E2, and ‖s‖∗ =

√
‖z‖2

1,∗ + ‖w‖2
2,∗,

s = (z, w) ∈ E∗, where ‖ · ‖1,∗ and ‖ · ‖2,∗ are the norms on the conjugate spaces E∗1 and E∗2 ,
dual to ‖ · ‖1 and ‖ · ‖2 respectively. We have, for each x = (u1, v1), y = (u2, v2) ∈ Q,

‖g(x)− g(y)‖2
∗ = ‖∇uf(u1, v1)−∇uf(u2, v2)‖2

1,∗ + ‖∇vf(u1, v1)−∇vf(u2, v2)‖2
2,∗

≤ 2
(
L2

11,ν‖u1 − u2‖2ν
1 + L2

12,ν‖v1 − v2‖2ν
2 + L2

21,ν‖u1 − u2‖2ν
1 + L2

22,ν‖v1 − v2‖2ν
2

)
= 2(L2

11,ν + L2
21,ν)‖u1 − u2‖2ν

1 + 2(L2
12,ν + L2

22,ν)‖v1 − v2‖2ν
2

≤ 2(L2
11,ν + L2

12,ν + L2
21,ν + L2

22,ν) max{‖u1 − u2‖2ν
1 , ‖v1 − v2‖2ν

2 })
≤ 2(L2

11,ν + L2
12,ν + L2

21,ν + L2
22,ν)‖x− y‖2ν

and
‖g(x)− g(y)‖∗ ≤

√
2(L2

11,ν + L2
12,ν + L2

21,ν + L2
22,ν)‖x− y‖ν .

Remark 2. Generally speaking, if the set Q is bounded, one can consider different level of
smoothness in (27) and (28). More precisely, assume that for some numbers ν11, ν12, ν21, ν22 ∈
[0; 1], we have

‖∇uf(u+ ∆u, v + ∆v)−∇uf(u, v)‖1,∗ ≤ L̂11‖∆u‖ν111 + L̂12‖∆v‖ν122 , (29)

‖∇vf(u+ ∆u, v + ∆v)−∇vf(u, v)‖2,∗ ≤ L̂21‖∆u‖ν211 + L̂22‖∆v‖ν222 (30)

for all u, u + ∆u ∈ Q1, v, v + ∆v ∈ Q2. Then the statement of Lemma 2 holds for ν =
min{ν11, ν12, ν21 ν22} ∈ [0; 1]. Indeed, from (29), (30), we have

‖∇uf(u+ ∆u, v + ∆v)−∇uf(u, v)‖1,∗ ≤ L̂11 ·Dν11−ν
Q · ‖∆u‖ν1 + L̂12 ·Dν12−ν

Q · ‖∆v‖ν2,

‖∇vf(u+ ∆u, v + ∆v)−∇vf(u, v)‖2,∗ ≤ L̂21 ·Dν21−ν
Q · ‖∆u‖ν1 + L̂22 ·Dν22−ν

Q · ‖∆v‖ν2
for all u, u+ ∆u ∈ Q1, v, v + ∆v ∈ Q2, DQ = sup{‖x− y‖ |x, y ∈ Q}.
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The next theorem shows, how Algorithm 1 can be applied to solve the saddle point
problem (24).

Theorem 3. Let the assumptions of Lemma 2 hold, the set Q be bounded, and Lν be given in
Lemma 2. Assume also that Algorithm 1 with accuracy ε is applied to the operator g defined
in (25). Let wi = (ui, vi) be the sequence generated by this algorithm. Then,

max
v∈Q2

f(ûk, v)− min
u∈Q1

f(u, v̂k) ≤
2L

2
1+ν
ν

kε
1−ν
1+ν

max
x∈Q

V [w0](x) +
ε

2
,

where (ûk, v̂k) =
1

Sk

k−1∑
i=0

M−1
i (ui, vi), Sk =

k−1∑
i=0

M−1
i .

Moreover, in the number of iterations

O

(
inf

ν∈[0,1]

(
Lν
ε

) 2
1+ν

·max
x∈Q

V [w0](x)

)
,

the algorithm finds a pair (û, v̂) such that maxv∈Q2 f(û, v)−minu∈Q1 f(u, v̂) ≤ ε.

Proof. By convexity of f in u and concavity of f in v, we have, for all u ∈ Q1,

1

Sk

k−1∑
i=0

〈
∇uf(ui, vi), ui − u

〉
1
≥ 1

Sk

k−1∑
i=0

M−1
i (f(ui, vi)− f(u, vi))

≥ 1

Sk

k−1∑
i=0

M−1
i f(ui, vi)− f(u, v̂k).

In the same way, we obtain, for all v ∈ Q2,

1

Sk

k−1∑
i=0

M−1
i

〈
−∇vf(ui, vi), vi − v

〉
2
≥ − 1

Sk

k−1∑
i=0

M−1
i f(ui, vi) + f(ûk, v).

Summing these inequalities, using (25) and Theorem 1, we obtain that, for all u ∈ Q1, v ∈ Q2

and x = (u, v),

f(ûk, v)− f(u, v̂k) ≤
1

Sk

k−1∑
i=0

M−1
i 〈g(wi), wi − x〉 ≤

1∑k−1
i=0 M

−1
i

V [w0](x) +
ε

2
.

Since Mi ≤ 2L
(
ε
2

)
, where L(·) is given in Example 1, and the set Q is bounded, we obtain

max
v∈Q2

f(ûk, v)− min
u∈Q1

f(u, v̂k) ≤
2L

2
1+ν
ν

kε
1−ν
1+ν

max
x∈Q

V [w0](x) +
ε

2
.

The iteration complexity follows from the requirement for k to make the first term in r.h.s.
smaller than ε.
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Remark 3. Since, for a saddle point (u∗, v∗) ∈ Q, max
v∈Q2

f(u∗, v) = min
u∈Q1

f(u, v∗), the inequality

maxv∈Q2 f(û, v)−minu∈Q1 f(u, v̂) ≤ ε means that (û, v̂) is an ε-optimal solution.

Remark 4. For µ-strongly convex-concave saddle point problems, Algorithm 2 returns a
point xp such that ‖xp − x∗‖2 ≤ ε+ 2δu+4δpu

µ
(for the exact solution x∗) with the complexity

estimate given in (23).

An important particular case of saddle point problem is the Lagrange saddle point prob-
lem for a constrained minimization problem. Let us consider the following convex optimiza-
tion problem

min{f(x) : x ∈ Q, φj(x) ≤ 0, j = 1, ...,m}, (31)

where Q is a convex and compact set, f and φj are convex and have Hölder-continuous
subgradients

‖∇f(x)−∇f(y)‖∗ ≤ Lν0‖x− y‖ν0 ,

‖∇φj(x)−∇φj(y)‖∗ ≤ Lνj‖x− y‖νj ∀x, y ∈ Q, j = 1, ...,m

for some ν0, ..., νm ∈ [0, 1] and Lν0 , ..., Lνm > 0. The corresponding Lagrange function for this

problem is L(x, λ) = f(x) +
m∑
j=1

λjφj(x), where λj ≥ 0, j = 1, ...,m are Lagrange multipliers.

If a point (x∗, λ∗) is a saddle point of the convex-concave Lagrange function L(x, λ), then
x∗ is a solution to (31). Assume also that the Slater’s constraint qualification condition
holds, i.e., there exists a point x̄ such that φj(x̄) < 0, j = 1, ...,m. Then it can be shown
that the optimal Lagrange multiplier λ∗ is bounded. Thus, instead of minimization problem
(31), one can consider the saddle point problem minx∈Q maxλ∈Λ L(x, λ), which is a convex-
concave problem on a bounded set. Using Lemma 2 and the Hölder continuity assumption
for the subgradients of f and φj, we see that Algorithm 1 and Theorem 3 can be applied.
We underline that by its nature, the smoothness level of the primal problem and the dual
problem is different. Thus, it is important for the algorithm to adapt to the actual level of
smoothness.

Next we introduce the concept inexact oracle for saddle point problems.

Definition 2. Assume that for some δu > 0 (uncontrolled error) and for any number δc > 0
(controlled error) there exists a constant L(δc) ∈]0,+∞[ such that, for any points x, y ∈ Q,
one can calculate g̃(x, δc, δu) and
g̃(y, δc, δu) ∈ E∗ satisfying

〈g̃(y, δc, δu)− g̃(x, δc, δu), y − z〉 ≤
L(δc)

2

(
‖y − x‖2 + ‖y − z‖2

)
+ δc + δu, (32)

and, for each x = (ux, vx), y = (uy, vy) ∈ Q,

f(uy, vx)− f(ux, vy) ≤ 〈g̃(y, δc, δu), y − x〉+ δu. (33)

Then the operator g̃(·, δc, δu) is called inexact oracle for the problem (24).
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Remark 5. Recall (see Definition 1), that δc represents the error of the oracle, which one
can control and make as small as we would like to. On the opposite, δu represents the error,
which one can not control.

Example 3 (saddle point problems and (δ, L)-oracle in optimization). Assume that we have
access to the operator

gδ(x) =

(
gδ,u(u, v)
−gδ,v(u, v)

)
, x = (u, v) ∈ Q,

where (fδ,u, gδ,u) is a (δ, L)-oracle for f as a function of u, and −(fδ,v, gδ,v) is a (δ, L)-oracle
for (−f) as a function of v, see (11).
Define ‖x‖ = ‖(u, v)‖ :=

√
‖u‖2 + ‖v‖2. By Example 2, for each x = (ux, vx), y = (uy, vy),

z = (uz, vz) ∈ Q,

〈gδ,u(uy, vy)− gδ,u(ux, vx), uy − uz〉 ≤
L

2
(‖uy − uz‖2 + ‖uy − ux‖2) + 2δ,

〈−gδ,v(uy, vy) + gδ,v(ux, vx), vy − vz〉 ≤
L

2
(‖vy − vz‖2 + ‖vy − vx‖2) + 2δ,

and we have
〈gδ(y)− gδ(x), y − z〉 ≤ L

2
(‖y − z‖2 + ‖y − x‖2) + 4δ. (34)

Further, from inequalities

f(uy, vy)− f(ux, vy) ≤ 〈gδ,u(y), uy − ux〉+ δ,

f(uy, vx)− f(uy, vy) ≤ 〈−gδ,v(y), vy − vx〉+ δ

we have f(uy, vx)−f(ux, vy) ≤ 〈gδ(y), y−x〉+2δ. So, g̃(y, δc, δu) = gδ(y) satisfies Definition
2 with δu = 4δ, δc = 0 and L(δc) = L.

Similarly to Theorem 3 it is sufficient to make

O

(
inf

ν∈[0,1]

(
L

ε

)
·max
x∈Q

V [w0](x)

)
iterations of Algorithm 1, to find a pair (û, v̂) satisfying

max
v∈Q2

f(û, v)− min
u∈Q1

f(u, v̂) ≤ ε+O(δu + δc).

7 Conclusions
In this paper we introduced a definition of inexact oracle for VIs with monotone operator
and provided several examples, where such inexactness naturally arises. In particular, we
showed, that Hölder-continuous operator is covered by our general framework of inexact
oracle. In order to solve VIs with inexact oracle, we generalized Mirror Prox algorithm
[45] and provided theoretical guarantees for its convergence rate. As a corollary, we proved
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that this method is universal for VIs with Hölder-continuous monotone operator, i.e., has
complexity

O

(
inf

ν∈[0,1]

(
Lν
ε

) 2
1+ν

R2

)
and, unlike existing methods, does not require any knowledge of Lν or ν. We generalized
our algorithm for the case of µ-strongly monotone operators and obtain complexity

O

(
inf

ν∈[0,1]

(
Lν
µ

) 2
1+ν 1

ε
1−ν
1+ν

· log2

R2

ε

)

to find a point x̂ ∈ Q such that ‖x̂ − x∗‖ ≤ ε. Finally, we showed, how our method can be
applied to convex-concave saddle point problems. In the follow-up work [60] we extended
the proposed here methods for the case of inexact relative smoothness and strong convexity.

As a future work it would be interesting to generalize this method for the case of stochastic
VIs using the techniques in [18, 33] and apply it for the Wasserstein barycenter problem
[62], apply this method for solving differential games in the spirit of [22, 23], extend this
algorithm to the case of VIs with operator having higher-order Hölder-continuous derivatives
[50, 25, 12, 53], propose a generalization for zeroth order methods for saddle point problems
[32, 57] using the techniques in [34, 58, 21], for accelerated methods for saddle-point problems
[26, 64, 1, 63], for decentralized distributed setup by combining with the ideas of [17, 56, 10].
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Appendix A
Proof of Lemma 1
Proof Let us fix some ν ∈ [0, 1]. Then, for any x ∈ [0, 1], x2ν ≤ 1. On the other hand, for
any x ≥ 1, x2ν ≤ x2. Thus, for any x ≥ 0, x2ν ≤ x2 + 1. Hence, for any α, β ≥ 0,
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and
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.

Appendix B
To show the practical performance of the proposed Algorithm 1, we performed a series
of numerical experiments for the Lagrange saddle point problem induced by the Fermat-
Torricelli-Steiner problem.

All experiments were made using Python 3.4, on a computer with Intel(R) Core(TM)
i7-8550U CPU @ 1.80GHz, 1992 Mhz, 4 Core(s), 8 Logical Processor(s), and 8 GB RAM.

We consider an example of a variational inequality with a non-smooth, i.e., with ν = 0,
and non-strongly monotone operator. For this VI, the proposed universal method, due
to its adaptivity to the smoothness level of the problem, works in practice with iteration
complexity much smaller than the one predicted by the theory. This example is inspired
by the well-known Fermat-Torricelli-Steiner problem, in which we add some non-smooth
functional constraints. This problem can be solved by a switching subgradient scheme [55,
8] with complexity O(1/ε2), but as we will see, our method allows to obtain much faster
convergence in practice than the one given by this bound.

More precisely, for a given set of N points Ak ∈ Rn, k = 1, ..., N consider the optimization
problem

min
x∈Q

{
f(x) :=

N∑
k=1

‖x− Ak‖2

∣∣∣∣∣ ϕp(x) :=
n∑
i=1

αpi|xi| − 1 ≤ 0 , p = 1, ...,m

}
,

where Q is a convex compact, αpi are drawn from the standard normal distribution and then
truncated to be positive. The corresponding Lagrange saddle point problem is defined as

min
x∈Q

max
λ=(λ1,λ2,...,λm)T∈Rm+

L(x, λ) := f(x) +
m∑
p=1

λpϕp(x),

As it was described in (6), this problem is equivalent to the variational inequality with
monotone non-smooth operator

G(x, λ) =

 ∇f(x) +
m∑
p=1

λp∇ϕp(x),

(−ϕ1(x),−ϕ2(x), . . . ,−ϕm(x))T

 .

For simplicity, we assume that there exists (potentially very large) bound for the optimal
Lagrange multiplier λ∗, which allows us to compactify the feasible set for the pair (x, λ) to
be a Euclidean ball of some radius. We believe that the approach from [44, 14] to deal with
unbounded feasible sets can be extended to our setting and we leave this for future work.
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We run Algorithm 1 for different values of n,m, and N with standard Euclidean prox-
setup and the starting point (x0, λ0) = 1√

m+n
1 ∈ Rn+m, where 1 is the vector of all ones.

The points Ak, k = 1, ..., N are drawn randomly from the standard normal distribution. For
each value of the parameters, the random data was drawn 10 times and the results were
averaged. The results of the work of Algorithm 1 are represented in Fig. 1. For different
values of the accuracy ε ∈ {1/2i, i = 1, 2, 3, 4, 5, 6}, we report the number of iterations and
the running time in seconds required by Algorithm 1 to reach an ε-solution of the considered
problem.

As it is known [46], for a VI with a non-smooth operator, the theoretical iteration com-
plexity estimate O

(
1
ε2

)
is optimal. However, experimentally we see from slope of the lines

in Fig. 1 that, due to the adaptivity, the proposed Algorithm 1 has iteration complexity
O
(

1
4√ε

)
.

Figure 1: Results of Algorithm 1 for Fermat–Torricelli–Steiner problem with different values of m
and n.

Appendix C
In this appendix, in order to demonstrate the performance of the Generalized Mirror Prox
with restarts (Algorithm 2), we consider the variational inequality with Lipschitz-continuous
strongly monotone operator (see Example 5.2 in [40])

g : Q ⊂ Rn → Rn, g(x) = x. (35)

We compare the work of the proposed Algorithm 2 with Modified Projection Method, which
was proposed in [40]. We run Algorithm 2 with different values of the accuracy ε ∈ {10−i, i =
3, 4, . . . , 10} and for the dimension n = 107. We take Q = {x ∈ Rn, ‖x‖2 ≤ 2}. The results of
the comparison are presented in Fig. 2, which illustrates the norm ‖xout−x∗‖2, as a function
of iterations, where xout is the output of each algorithm, and x∗ is the solution of the problem
(1), for the operator (35). Note that x∗ = 0 ∈ Rn. In the conducted experiments, at the
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first, we run Algorithm 2, and calculate ‖xout − x∗‖2 for the different previously mentioned
values of ε and the corresponding number of iterations, resulted by the working of algorithm.
For the calculated number of iteration of Algorithm 2, we rum Modified Projection Method
and calculate the corresponding values ‖xout − x∗‖2. From Fig. 2, we can see the higher
efficiency of the proposed Algorithm 2, and the big difference between the results of the
compared algorithms.

Figure 2: Results of Algorithm 2 and Modified Projection Method with n = 107.
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